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  The effects of magnesium oxide on the thermal, 
morphological, and crystallinity properties of 
metallocene linear low-density polyethylene/
rubbers composite  
   Abstract:   The effects on the thermal, morphological, and 

crystallinity properties of the different loadings of magne-

sium oxide (MgO) blended with 10 %  rubbers [9:1 natural rub-

ber (NR)/epoxidized NR] and metallocene linear low-density 

polyethylene (mLLDPE) in the presence of  N , N - m -phenylen-

ebismaleimide (HVA-2) compatibilizer were investigated. 

Fourier transform infrared spectroscopy showed that the 

epoxy and double-bond groups were absent in the blends. 

The crystallinity degree of mLLDPE composites were deter-

mined based on the results of differential scanning calo-

rimetry. The crystallinity of the blends was continuously 

increased by the loading of MgO compared with blend of 

0 phr MgO. Based on thermogravimetric analysis, the degra-

dation temperature of NR in the blends with MgO is signifi-

cantly enhanced compared with a pure NR and 0 phr MgO 

blend. The observations of the scanning electron micro-

graphs indicate that the HVA-2 had caused a cross-linking 

reaction in the rubber phase and the domains of the MgO 

are separated from the continuous phase (mLLDPE).  

   Keywords:    crystallization;   metallocene linear low-density 

polyethylene (mLLDPE);   morphology;   natural rubber/

epoxidized natural rubber (NR/ENR);   thermal properties.  
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1    Introduction 
 Magnesium oxide (MgO) is used for wire and cable appli-

cation and has been known to impart improved  insulation 

properties for various applications  [1] .  Traditionally, addi-

tive agents and fillers are often used to improve the insu-

lating and mechanical properties. In  particular,  several 

articles have reported that a nanocomposite of low-density 

 polyethylene (LDPE) and MgO nanofillers shows superior 

characteristics as a candidate for future insulating mate-

rial for DC power cables  [2 – 5] . 

 Thermal stability, flammability, and processability are 

important properties of wire and cable insulation materi-

als. Linear low-density polyethylene (LLDPE) with excel-

lent electrical properties, mechanical toughness, good 

resistance to chemicals, and ease of processing has been 

used as an insulation material for several applications  [6, 

7] . However, its applications are restricted due to its flam-

mability and poor thermal properties. Flame inhibition 

can be performed on a physical basis as addition of inert 

fillers (MgOH 
2
 , MgO), as heat sinks, or the release of inert 

gases (H 
2
 O, CO 

2
 , NH 

3
 )  [8, 9] . 

 The incorporation of magnesium hydroxide (MgOH
2
) 

into silane cross-linked LLDPE results in improved flame 

retardation, whereas limiting oxygen index, time to igni-

tion, and the residue after combustion increase as the 

MgOH
2
 content increases  [10] . Thermal analysis techniques 

[thermogravimetric analysis (TGA), differential scanning 

calorimetry (DSC), differential thermal analysis (DTA) etc.] 

have been most important in the characterization of the 

flame-retardant features and the thermal stability of poly-

mers and in the study of retardation of the mechanism  [11] . 

 The metallocene linear low-density polyethylene 

(mLLDPE) from single-site-constrained geometry cata-

lysts optimizes polymer chain architecture to generate 

highly uniform polymer molecules with specific target 

properties. This technology of molecular synthesis and 

molecular control for polyolefin provides new options 

for replacing or modifying materials across a broad spec-

trum of processes and applications  [6] . Wang et al.  [12]  

reported that the amount of space charge accumulated in 

the developed polyethylene (PE) polymerized using the 

metallocene catalyst is smaller than that of conventional 

PE. Taniguchi et al.  [13]  studied the space charge behav-

ior in LDPE polymerized using a metallocene catalyst. 

The experimental results revealed that the space charge 

amounts decreased when film density increased. 
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 Blending polymers is a common technology frequently 

applied to develop a product with superior mechanical 

properties from an inexpensive polymer material and 

small amounts of compatibilizers  [14] . Epoxidized natural 

rubber (ENR-50) was used as a compatibilizer for differ-

ent blends  [15 – 17] .  N , N - m -Phenylenebismaleimide (HVA-2) 

was also shown to be an effective compatibilizer by reduc-

ing the interfacial tension and improving the adhesion 

between immiscible polymers  [18 – 20] . 

 In addition, it is also essential to study the morphol-

ogy of blends to gain insight into the resistance of the 

material to crack growth failure. The resultant preparation 

of polymer blend depends on the proportion and proper-

ties of the individual polymeric components and the mode 

of dispersion and interaction between the phases. Homo-

geneity at the microscopic level is necessary to optimize 

the performance behavior of the polymer blends  [21, 22] . 

 The thermal degradation and crystallization behav-

ior of polymer blends are very critical in assessing their 

processing property relationship  [23, 24] . The physico-

mechanical and thermal properties of these blends are 

dependent on the crystallinity developed and on their 

morphological properties. Hence, the morphology of the 

blends depends on the molding condition and the relative 

crystallization time and temperature  [25, 26] . 

 This present study investigates mLLDPE filled with 9:1 

natural rubber (NR)/ENR blend. NR has been chosen as 

one of the blend constituents for its good electrical char-

acteristics. The other blend constituent, chosen because 

of its reasonably good impact strength and good solvent 

and oil-resistance properties and is an effective com-

patibilizer, is ENR containing 50 mol %  of epoxy groups. 

MgO, besides its excellent dielectric properties, also acts 

as a flame-retardant and thermal polymer stabilizer. In 

addition, 2 phr HVA-2 was used as a compatibilizer for 

all compounds. Therefore, the objective of this article is 

to investigate the thermal stability, morphological, and 

crystallization properties of mLLDPE/(NR/ENR-50) (90:9:1 

wt % ) blend at different contents of MgO (5 – 20 phr) to 

assess the suitability of these blends for engineering 

applications and, in particular, to determine if this blend 

delivers a better performance than unmodified mLLDPE.  

2    Experimental 

2.1    Materials 

 The mLLDPE polymer matrix Exceed 1018CA was 

obtained from ExxonMobil Chemical Singapore Pte. 

 Table 1      Chemical analysis and physical properties of magnesium 

oxide grade EMAG  ®   1000  [12] .  

Chemical analysis ( % ) Physical properties

MgO 94.0 Specific surface area 38 m 2 /g

SiO 
2
 2.4 Loose fill density 700 kg/m 3 

CaO 3.0 Sizing 500  μ m

Al 
2
 O 

3
 0.20

Fe 
2
 O 

3
 0.26

Mn 
3
 O 

4
 0.14

Ltd. It has a density of 0.918 g/cm 3 , a melt flow index of 

1.0 g/10 min, and a DSC melting peak at 119 ° C  [27] . The 

second component was NR (SMR-L grade) obtained from 

the Rubber Research Institute of Malaysia. The third 

component used in this study, ENR with 50 mol %  epoxi-

dation (grade EPOXYPRENE 50), which has a specific 

gravity of 1.03 and a Mooney viscosity, M 
L
 , of 140 at a 

temperature of 100 ° C, was obtained from the Malaysian 

Rubber Board, Malaysia. The compatibilizer used for 

the blend was HVA-2, a free radical cross-linking agent 

from DuPont Dow Elastomers. The physical properties 

of HVA-2 are a melting point of 195 ° C and a density of 

1.44 g/cm 3 . 

 Magnesium Oxide Grade EMAG  ®   1000, a calcined 

natural MgO manufactured by Queensland Magnesia ’ s 

Pty. Ltd., Australia, is mined from a high-quality cryp-

tocrystalline magnesite deposit  [28] . EMAG  ®   1000 is a 

nontoxic, pale pink powder. It is characterized by a high 

magnesium content and neutralizing property. The chem-

ical analysis and physical properties are given in Table  1  .  

2.2    Preparation of blends 

 Initially, all raw materials were dried in an oven at 80 ° C for 

24 h before processing. Compositions consisting of HVA-2 

were mixed separately with rubber to obtain a homog-

enous mix using a milling machine (Double Elephant 

Brand SWX, China). This uniformly mixed compound was 

manually shredded to pieces using a pair of scissors. The 

pellets were compounded with mLLDPE and MgO using 

a twin screw extruder (Brabender PL2000, Germany, with 

L/D  =  30 and D  =  2.5 cm) at a barrel temperature of 140 ° C, 

145 ° C, and 150 ° C at the feeding, metering, and die zones, 

respectively, at a speed of 45 rpm. The prepared com-

pound was mixed in a milling machine at 110 ° C to obtain 

a homogenous mixture. Test samples were prepared by 

compression molding (Guthrie Industries Malaysia Shd. 

Bhd., RPM 0014-02-60T, Malaysia) at 205 ° C and under 

70 kg/cm 2  of pressure for 15 min. The percentage of rubber 
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content of NR/ENR-50 was fixed at 90/10 wt % . The com-

pound formulations are given in Table  2  .  

2.3    Differential scanning calorimetry 

 The thermal properties of mLLDPE, NR, ENR-50, and their 

blends were determined using a differential scanning cal-

orimeter DSC7 (Perkin-Elmer, USA). Samples are analyzed 

by DSC over the temperature range ambient to 200 ° C. A 

heating rate of 10 ° C/min and a nitrogen atmosphere flow 

rate of 20 ml/min were used. The temperature was kept 

at 50 ° C and 200 ° C for 5 min before heating and cooling 

at the same rate to study the thermal history. The melting 

temperatures of the samples,  T  
m

 , were taken as the endo-

thermic peaks of the thermograms, whereas the fusion 

heats,  Δ  H  
f
 , were calculated as the areas under endother-

mic peaks. 

 The percentage of crystallinity was calculated as the 

enthalpy of fusion taken from DSC test divided by the 

enthalpy of 100 %  crystalline PE. The latter was taken as 

279 J/g  [29, 30] . The crystallinity ( xc   % ) was calculated 

according to Eq. (1): 

    

f

o

 %
H

xc
k H
Δ

=
Δ  

(1) 

 where  Δ  H  
f
  is the melting enthalpy of the sample,  Δ  H  

o
  is 

the melting enthalpy of 100 %  crystalline PE, and  k  is the 

weight percent of the mLLDPE in blends.  

2.4    Thermogravimetry analysis 

 TGA is usually used to measure the amount and rate of 

change in the mass of a material as a function of tem-

perature or time. TGA was carried out with a TGA7 

 thermogravimetric (Perkin-Elmer, USA) analyzer. The 

samples were heated from room temperature to 900 ° C in a 

20-ml/min flow of N 
2
  at a scanning rate of 10 ° C/min. The 

 Table 2      mLLDPE/NR/ENR/MgO/HVA-2 compound formulations.  

Materials Designations

A1 A2 B1 B2 B3 B4

mLLDPE a 100 90 90 90 90 90

Rubber (90 %  NR + 10 %  ENR) a 0 10 10 10 10 10

Magnesium oxide b 0 0 5 10 15 20

HVA-2 b 0 2 2 2 2 2

    a Weight percent. 

  b Parts per hundred parts (phr) of total polymer (rubber and mLLDPE).   

mass loss of each sample was measured as a function of 

temperature at a given heating rate.  

2.5    Fourier transform infrared spectroscopy 

 Fourier transform infrared spectroscopic (FTIR) analysis 

(Perkin-Elmer, USA) was used to study the chemical struc-

tures of mLLDPE, NR, ENR-50, MgO, and their composites. 

The infrared sample spectrum was conducted using a 

Perkin-Elmer FTIR spectrophotometer. The measurements 

were done over a range of 4000 – 370 cm -1  at room tempera-

ture, and a uniform resolution of 16 cm -1  was maintained 

in all cases.  

2.6    Morphological analysis 

 The studies were performed using a scanning electron 

microscope (SEM) model JEOL JSM-6390 LV, USA on the 

liquid nitrogen-fractured surfaces and benzene-extracted 

samples with 1 KX magnifications. Samples were coated 

with thin layer of gold before examination under the elec-

tron beam, and an operating voltage of 15 kV was used.   

3    Results and discussion 

3.1    FTIR spectroscopy 

 The FTIR spectrum of ENR and NR is presented in Figure  1  . 

The characteristic bands observed: 2963.28 and 2960.99 cm -1  

(�C�H aliphatic stretching), 1450.07 and 1448.6 cm -1  (�CH 
2
 � 

bend), 1378.23 and 1375.92 cm -1  (�CH 
3
  symmetric bending), 

701.09 and 737.88 cm -1  [�(CH 
2
 ) 

 n 
 � wagging], respectively. 

The band stretching of the �C � C band of the ENR and 

NR was observed at 1662 cm -1 , and the unsaturated group 

(  >  C�CH�) appeared in NR spectrum at 836.33  cm -1 . The 

epoxide group of ENR-50 (C�O�C) showed in the FTIR 

spectrum at 1250.56 and at 875.48 cm -1 . This result was 

similar to the observation by Latif et al.  [31] . 

 Figure 1 presents the FTIR spectrum of the mLLDPE 

(A1): 2918.7 cm -1  (�C�H aliphatic stretching), 1465.27 cm -1  

(�CH 
2
  bend), weak peak at 1371.76 cm -1  (�CH 

3
  symmetric 

bending) due to the presence of hexane side chain, and 

719.47 cm -1  [�(CH 
2
 ) 

2
 � wagging] due to the presence of PE 

chain. These results are in agreement with the work of 

Saha et al.  [32]  and Sedlarik et al.  [33] . 

 The MgO curve shows a broad absorption with the 

absorption peak of 3435 cm -1 , which is the characteristic 

stretching vibration of hydroxylate (�OH). Peaks localized 

Brought to you by | Universiti Teknologi Malaysia
Authenticated | azmanh@cheme.utm.my author's copy

Download Date | 5/30/13 6:23 AM



232      I.M. Alwaan and A. Hassan: Metallocene linear low-density polyethylene/rubbers composite 

at 1636 cm -1  are assigned to the asymmetrical vibration 

of carboxylate (O�C � O). A characteristic band of nitrate 

ions at 1448 cm -1  is observed from the FTIR spectra. The 

absorption bands at 879.73 cm -1  are attributed to the char-

acteristic absorption peaks of cubic MgO. The absorption 

bands of the NO 
3
  group at 640.39 cm -1  are shown in Figure 

1 on the MgO curve. The groups of �OH, O�C � O, and NO 
3
  -  

may be used in the raw materials ’  structure to prepare 

MgO. 

 The FTIR spectrum of A2, B1, B2, B3, and B4 composites 

are presented in Figure 1: 2919 – 2923 cm -1  (�C�H aliphatic 

stretching), 1465 cm -1  (�CH 
2
  rocking), 1375.64 – 1371.77 cm -1  

(�CH 
3
  symmetric bending), and 719 cm -1  [�(CH 

2
 ) 

 n 
 � wagging]. 

A band at 828 – 838 cm -1  was due to the epoxide group of 

ENR-50 (C�O�C). 

 Meanwhile, the C�O�C and C � C bands of the ENR-50 

at 1250.56 and 1660 cm -1 , respectively, were found to be 

absent in all blends. Therefore, it can be assumed that the 

opening of the double bond in NR and ENR-50 may be due 

to the formation of an interchain cross-link in the system. 

However, the �C � O band appeared at 1718 cm -1  in all com-

pounds and the B1 blend has a stronger band than others. 

Moreover, in the B4 blend, it was observed that �OH group 

appeared at band 3422.1. 

 In the rubber industry, MgO is used as an activator, 

and its role in the mechanism of accelerated sulfur vul-

canization has been studied  [34, 35] . It was clear from 

the FTIR that the MgO loading and the �C � O band at 

1718 cm -1  has an inverse relationship, i.e., an increase 

in the concentration of MgO in the blends will result in 

A2

B2

B1

B3

B4

A1

cm-1

T 
(%

) 

Pure NR

Pure ENR

Pure MgO

2918.70

2850.10 1465.27

719.47

2919.12 2849.95 1718.02

1465.26

1375.64 719.44
831.26

2345.60

3465.54

2963.28

2926.37

2860.72

1450.07

1378.23

1250.56

1063.34 875.48

3435.83

2960.99

2927.83

2854.89

1662.59

1448.60

1375.92

1242.77

1127.58

1092.78 836.33 572.02

3752.13

3699.90

3642.42 3435.04

1636.00

1448.04

879.73

640.39

2923.51 2849.85

1717.01

1465.15

718.07
828.43

1374.60

2917.01

718.07834.09

1465.15
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2917.29

1464.58
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1371.77

836.92
1717.01
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1168.02
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 Figure 1    FTIR results for pure mLLDPE (A1), ENR-50, NR, and A2, B1, B2, B3, and B4 blends.    
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a decrease in the concentration of �C � O group in the 

blends, as revealed by a continuously reducing intensity 

of �C � O peak  [36]  with increased MgO loading. It may be 

concluded that MgO worked as an activator for HVA-2 to 

change the reaction mechanism by reducing the concen-

tration of the �C � O group in the blends. Therefore, it is 

possible that the B1 blend has a stronger band than others 

because the loading of the 5-phr MgO was insufficient in 

bringing about a reduction in the concentration of the car-

bonyl group by the HVA-2. 

 The �OH group in the B4 blend represents the alco-

holic (OH) group because the C�O group appeared near 

1300 – 1000 cm -1   [37]  (in our case, 1168 cm -1 ). It is possible 

that increasing the concentration of the activator (MgO) 

up to 20 phr causes a new reaction mechanism in the 

B4 blend to produce �OH alcoholic group, where such 

beha vior of materials reaction is related to catalyst con-

centration  [38] .  

3.2     Effect of MgO on the crystallization of 
mLLDPE/10 %  rubber 

 The thermal and crystallization behaviors of the virgin 

mLLDPE and 10 %  rubber/mLLDPE with and without MgO 

(5 – 20 phr) blends with the compatibilizer HVA-2 under 

nonisothermal conditions have been studied using DSC. 

The crystallinity of the A2 blend was reduced from a neat 

polymer and shows the largest reduction compared with 

all other blends, as shown in Figure  2  . The reduction in 
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 Figure 2    Crystallinity of pure mLLDPE (A1) and A2, B1, B2, B3, and 

B4 blends.    

the degree of crystallinity indicates an interference in 

the form of NR molecular incorporation into the LLDPE 

part  [39] . Dahlan et al.  [39]  suggested that these interac-

tions are in the form of physical cross-links between the 

amorphous parts of NR and LLDPE and that compatibil-

ity is created by the interfacial penetration between the 

separated phases of the blends. Therefore, in blend A2, 

the physical cross-links increased to the point that more 

cross-links appeared in this blend than any other. 

 The reduction of the crystallinity of mLLDPE in the A2 

blend compared with a neat mLLDPE may be due to an 

increase in the chemical cross-linking density by rubber 

loading to the mLLDPE. A similar observation was also 

reported by Moly et al.  [40] . They studied the crystalliza-

tion of the LLDPE/EVA blends with and without dicumyl 

peroxide as the cross-linking agent. They found that the 

increase in cross-linkings was caused by decreasing crys-

tallinity. Inoue and Suzuki  [41]  investigated the effects of 

the cross-linking of ethylene-propylenediene terpolymer 

(EPDM) particles in the polypropylene (PP) matrix on 

crystallinity behavior. They also found that an increased 

cross-linking of the EPDM caused a decrease in the crys-

tallinity of PP. The decrease in crystallinity as a result of 

cross-linking is due to the fact that cross-linking hinders 

the ordered arrangement of the polymer chains  [40] . 

 Meanwhile, as shown in Figure 2, the crystallinity 

of B1 and B3 blends was reduced from a neat polymer, 

respectively, therefore the physical cross-links of B1 and 

B3 blends would increase. Moreover, the crystallinity of B2 

and B4 blends increased from a virgin polymer (mLLDPE), 

and the maximum crystallinity was observed in B4 

blend. As a result, the interfacial adhesion and interac-

tion between the stress concentrate zones in the mLLDPE 

matrix for both of blends decreased  [39, 42] . 

 Furthermore, the increase of the crystallization in B2 

and B4 composites was attributed to the heterogeneous 

nucleation of MgO in the blends. When the crystallinity 

of the B1, B2, B3, and B4 blends were compared with the 

A2 blend without MgO, it was found that the crystallin-

ity increased with an increase of MgO loading, as shown 

in Figure 2. This result can be explained by the hetero-

geneous nucleation of MgO in the blends. Therefore, the 

interfacial adhesion and interaction between the stress 

concentrate zones in the mLLDPE matrix for all blends 

decreased with the increase in MgO loading  [39, 42] . 

 Similar results were obtained by many researchers. 

Ning et al.  [43]  studied the effect of whisker (SiO 
2
 �MgO�CaO) 

nucleation ability on the interfacial crystal morphology of 

PE/whiskers composites. They found that the nucleation 

ability of the whiskers leads to a denser high density poly-

ethylene (HDPE) and that the crystal lamellae grew on the 
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surface of the whisker. Gao et al.  [44]  studied crystalline 

structures, especially the interfacial crystalline layers of 

semicrystalline polymer PP/whisker composites. They 

adopted two drawn ratios and observed that the shish- 

calabash structure was obtained at the low drawn ratio 

and the transcrystalline structure was obtained at the high 

drawn ratio. Ning et al.  [45]  found that the interfacial crys-

talline morphology has been successfully obtained in the 

injection-molded bar of the iPP/SiO 
2
 �MgO�CaO (SMCW) 

whisker composites and LLDPE/SMCW composites. 

 The crystallinity of the mLLDPE suddenly decreased 

at the B3 blend compared with the B1, B2, and B4 blends. 

This phenomenon is attributed to two competing factors: 

cross-link density and nucleation of MgO filler. The 

increasing cross-linking of rubbers caused a decrease in 

the crystallinity of mLLDPE  [40] . Meanwhile, the heteroge-

neous nucleation of MgO in the blends would result in an 

increase in the crystallinity of the mLLDPE  [43] . Thereby, 

the interaction of the cross-link density and nucleation of 

MgO filler contributes to the varied percent crystallinity of 

the mLLDPE composites. Therefore, it can be concluded 

that, compared with all other blends, the lower crystallin-

ity at the A2 blend can be attributed to the cancellation 

of one of the factors affecting the increase in crystallinity, 

which is the nucleation of MgO filler, and the remaining 

cross-linking density factor, which causes a decrease in 

crystallinity. 

 Table  3   reveals the results of onset ( T  
onset

 ), end ( T  
end

 ), 

and peak ( T  
peak

 ) temperatures of pure mLLDPE and the A2, 

B1, B2, B3 and B4 blends. The results show that they were 

constant with different blends, except that the  T  
onset

  of the 

B1 blend was slightly lower than the A2 blend. Therefore, 

the loadings of MgO between 5 and 20 phr have no effect 

on the onset, end, and peak temperatures of mLLDPE in 

the blends. 

 The percentage of crystallinity was calculated as the 

enthalpy of fusion taken from the DSC test divided by the 

enthalpy of 100 %  crystalline PE. The results, as shown in 

Figure 2, indicate that the A2 blend has the lowest percent-

age of crystallinity followed by the B1, B2, and B4 blends, 

 Table 3      Effect of different loading of MgO on  T  
onset

 ,  T  
end

 , and  T  
peak

  of 

the pure mLLDPE (A1) and the A2, B1, B2, B3, and B4 blends.  

Composition  T  onset  ( ° C)  T  end  ( ° C)  T  peak  ( ° C)

A1 104.79 120.80 115.17

A2 107.32 120.12 114.97

B1 104.38 120.05 114.87

B2 106.01 120.26 115.10

B3 107.55 120.30 114.73

B4 106.49 120.62 114.70

respectively. It should be noted that the crystallinity of the 

B3 blend has the same value as the B1 blend.  

3.3    Thermogravimetric analysis 

 The TGA and DTG curves of samples are presented in 

Figure  3  A – H. It shows that pure mLLDPE, NR, and ENR-50 

depict a single step of degradation (Figure 3A – C) during 

the thermal degradation process. The maximum ( T  
max

 ) and 

5 wt %  ( T  
5 % 

 ) decomposition temperatures of pure mLLDPE 

were higher than both pure NR and pure ENR-50, with no 

residue remaining, as shown in Table  4  , whereas the NR 

has a lower degradation temperature at both maximum 

( T  
max

 ) and 5 wt %  ( T  
5 % 

 ) decomposition temperatures (Table 

4), indicating poor thermal stability. Both the ENR-50 and 

NR show no residue remaining. It is suggested that the 

degradation of pure mLLDPE in nitrogen is mainly due 

to the decomposition of macromolecular, with a complex 

radical chain mechanism, including initiation reactions, 

propagation reactions, and termination reactions. Table 

4 shows the degradation temperature at 5 wt %  ( T  
5 % 

 ), the 

maximum temperature ( T  
max

 ) of the first peak, the start 

degradation temperature ( T  
s
 ), and  T  

max
  of second peak for 

pure and composites materials. 

 The decomposition behavior of the A2 blend is 

shown in Figure 3D. There was no overlapping region 

between the mLLDPE and the rubber. The mLLDPE 

began to decompose after the decomposition of rubber 

was completed. The thermal degradation of the A2 blend 

was shown in two steps. From the degradation of the 

pure mLLDPE and two types of pure rubber, it can be 

concluded that the first step would correspond to the 

rubber decomposition and the second step would corre-

spond to mLLDPE degradation. It was noted from Table 

4 that the degradation temperature of NR in the blend 

is significantly higher than that of pure NR, suggesting 

that the presence of mLLDPE delayed the decomposi-

tion of NR and presented one peak of rubber revealing 

a good compatibility between the two rubbers (NR/ENR-

50); therefore, the thermal stability of NR is improved. 

Another possible reason that the thermal stability of 

the A2 blend improved may be the cross-linking of the 

unsaturated part of the rubber phase, thereby result-

ing in chain stiffening and improved thermal stabi lity 

 [23] . The reason that the presence of the cross-linked 

network structure causes a higher thermal stability of 

the cross-linked blends is the number of bonds per unit 

mass of polymer, which is increased after cross-linking. 

Although the degradation process of the A2 blend started 

at a high temperature, the addition of rubbers shifted the 

Brought to you by | Universiti Teknologi Malaysia
Authenticated | azmanh@cheme.utm.my author's copy

Download Date | 5/30/13 6:23 AM



I.M. Alwaan and A. Hassan: Metallocene linear low-density polyethylene/rubbers composite       235

-50

-40

-30

-20

-10

0

-10

-5

-15

-20

-25

0

510

-20

0

20

40

60

80

100

120
A B

C D

E F

G H

0 500 1000

dw
/d

T 
(%

/C
)

-40

-30

-20

-10

0

10

dw
/d

T 
(%

/C
)

-30

-20

-10

0

10

dw
/d

T 
(%

/C
)

dw
/d

T 
(%

/C
)

-10

-5

-15

-20

-30

-25

0

5

dw
/d

T 
(%

/C
)

-10

-5

-15

-20

-25

0

5

dw
/d

T 
(%

/C
)

-10

-5

-15

-20

-25

0

5

dw
/d

T 
(%

/C
)

-10

-5

-15

-20

0

5

M
as

s 
(%

)

0

20

40

60

80

100

120

M
as

s 
(%

)

0

20

40

60

80

100

120

M
as

s 
(%

)

0

20

40

60

80

100

120

M
as

s 
(%

)

0

20

40

60

80

100

120

M
as

s 
(%

)

0

20

40

60

80

100

120

W
ei

gh
t (

%
)

0

20

40

60

80

100

120

M
as

s 
(%

)

0

20

40

60

80

100

120
M

as
s 

(%
)

Temperature (°C)
0 500 1000

Temperature (°C)

0 500 1000
Temperature (°C)

0 500 1000
Temperature (°C)

0 500 1000
Temperature (°C)

0 500 1000
Temperature (°C)

0 500 1000
Temperature (°C)

0 500 1000
Temperature (°C)

Weight % (%)
Derivative weight % (%/m)

Weight % (%)
Derivative weight % (%/m)

D
er

iv
at

iv
e 

w
ei

gh
t %

 (%
/C

)

Weight % (%)
Derivative weight % (%/m)

10 H.R.Weight % (%)

10 H.R.Derivative weight %
(%/m)

Weight % (%) (10 Phr MgO)
Derivative weight % (%/m)

% Weight loss (5 Phr MgO)
Derivative weight % (%/m)

Weight % (%) (15 Phr MgO)

Derivative weight % (%/m)
Weight % (%) (20 Phr MgO)
Derivative weight % (%/m)

 Figure 3    The TGA and DTG curves of pure (A) mLLDPE, (B) NR, and (C) ENR-50 and blend of (D) A2, (E) B1, (F) B2, (G) B3, and (H) B4, at a 

heating rate of 10 ° C/min in an N 
2
  atmosphere.    
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degradation temperature and maximum temperature of 

the mLLDPE (second step) to lower temperatures than 

pure mLLDPE as shown in Table 4. 

 The maximum ( T  
max

 ) and 5 wt %  ( T  
5 % 

 ) decomposition 

temperatures of the B1, B2, B3, B4 blends are shown in 

Figure 3E – H and Table 4. There was no overlapping region 

between the mLLDPE and rubber. The thermal degrada-

tion of the B1, B2, B3, and B4 blends were shown in two 

steps. From the degradation of pure mLLDPE and the two 

types of pure rubber, it can be concluded that the first 

step would correspond to rubber decomposition and the 

second step would correspond to mLLDPE degradation. 

It is noted that the degradation temperature of NR in the 

blends with MgO is significantly higher than that of pure 

NR and A2 blend without MgO, suggesting that the pres-

ence of MgO delayed the decomposition of NR in blends 

because it forms a nonvolatile char barrier that minimizes 

the diffusion of oxygen to the polymer substrate and also 

reduces heat transfer from the heat source to the polymer 

substrate  [46] . The presence of one peak for rubber decom-

position reveals a good compatibilization between the two 

rubbers (NR/ENR-50); therefore, the thermal stability of 

NR is improved in blends with MgO. 

 Another reason for the increase in the thermal stability 

of the B1, B2, B3, and B4 blends can be explained in terms 

of the crystallinity and morphology of the blends. It is 

known that the crystalline materials are more stable than 

the amorphous materials due to a higher energy required 

to overcome both strong intramolecular and intermolecu-

lar forces  [23] . It was observed that the crystallinity of the 

B1, B2, B3, and B4 blends increased with an increase in 

MgO loading compared with the A2 blend without MgO, as 

shown in Figure 2, resulting in the increased thermal sta-

bility of the B1, B2, B3, and B4 blends. An additional reason 

may be that there is a possibility that the cross-linking of 

 Table 4      Degradation temperature at 5 wt %  ( T  
5 % 

 ), maximum 

temperature ( T  
max

 ), and start degradation temperature ( T  
s
 ) for 

mLLDPE, NR, ENR, and their composites.  

Materials and composition First peak Second peak

 T  5 %   T  max  T  s  T  max 

Pure NR 359.51 401.42

Pure ENR-2 385.73 418.1

A1 466.41 505.1

A2 387.01 388.8 408.8 482.8

B1 399.671 401.131 431.131 500.131

B2 407.58 419.45 425.45 504.45

B3 403.62 411.938 434.938 498.938

B4 393.25 405.54 423.54 494.54

the unsaturated part of the rubber phase causes improved 

thermal stability  [23] . 

 The addition of MgO shifted the start degradation 

temperature and maximum temperatures of the B1, B2, 

B3, and B4 blends (second step) to slightly lower tempera-

tures than pure mLLDPE, as shown in Table 4. Meanwhile, 

the start degradation temperature of the mLLDPE (second 

step) in the B3 blend was higher than other blends with 

MgO. Therefore, the B3 blend was more thermally stable 

than the other blends with MgO composites. This behavior 

may be attributed to the B3 blend having a higher cross-

linking density than other blends, and this result was in 

agreement with the crystallinity result that a high cross-

linking of the B3 blend causes a crystallinity reduction in 

the B3 blend. Meanwhile, the maximum degradation tem-

perature of mLLDPE (second step) in the blends with MgO 

remained nearly constant at 500 ° C.  

3.4    Morphological studies 

 The resultant properties of polymer blends depend on 

the proportion and properties of the individual polymeric 

components and the mode of dispersion and interaction 

between the phases. The homogeneity at the microscopic 

level is necessary for the optimum performance behavior 

of the polymer blends. It is essential to study the morphol-

ogy of the polymer blends to assess the homogeneity of 

mixing and the compatibility of the polymeric compo-

nents involved. 

 The electron micrographs of the liquid nitrogen-frac-

tured surfaces of the blends, after the extraction of the 

NR/ENR-50 phase with benzene, are shown in Figure  4  A –

 D. The scanning electron micrographs of the A2 blend 

without MgO are presented in Figure 4B. In the case of 

the A2 blend, rubber is in a dispersed phase and mLLDPE 

is in continuous phase, and these are demonstrated in 

Figure 4B. In these micrographs, there are no voids as 

the dark phases are formed by the extracted rubber by 

benzene solvent. This observation indicates that HVA-2 

had caused a cross-linking reaction in the rubber phase 

and increased the interfacial adhesion resulting from 

the formation of graft copolymer  [20] . Another possible 

reason for the disappearance of voids is shown in SEM 

micrographs (in Figure 4B), in which the small NR and 

ENR-50 composite particles have fully dissolved in the 

mLLDPE matrix due to the increase in interfacial adhe-

sion. The morphology of the liquid nitrogen-fractured 

surfaces of pure mLLDPE homopolymer is shown in 

Figure 4A, which clearly shows, as expected, that no 

voids are present. 
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 Figure 4C and D shows the MgO-filled A2 blend at the 

5- and 20-phr loading of MgO. It can be clearly seen that 

the domains of the MgO are separated from the continu-

ous phase (rubber/mLLDPE). The polarity of the MgO filler 

is obviously not capable of forming a good filler-matrix 

interaction with the non-polar mLLDPE blends because 

mLLDPE has little affinity for MgO filler due to large 

surface energy differences.   

4    Conclusion 
 The effects of MgO loadings on the thermal, crystallin-

ity, and morphological properties of mLLDPE/NR/ENR-50 

blends with HVA-2 compatibilizer have been investigated. 

FTIR revealed that the HVA-2 caused cross-linking in the 

blends by opening the double bond and epoxy groups. The 

MgO plays a role in the heterogeneous nucleation of the 

blends and causes a decrease in the interfacial adhesion 

and interaction between the stress concentrate zones in 

the mLLDPE matrix. The loadings of MgO between 5 and 20 

phr have no effect on onset, end, and peak temperatures of 

mLLDPE in the blends. Pure NR has a lower thermal stabi-

lity than pure ENR-50 and mLLDPE. The presence of MgO 

delayed the decomposition of NR in blends, and a higher 

thermal stability was observed in the B3 blend than other 

blends. A good compatibilization was obtained between 

the two rubbers (NR/ENR-50) in all blends using HVA-2. 

The scanning electron micrographs of the A2, B1, B2, B3, 

and B4 blends revealed that the HVA-2 had caused a cross-

linking reaction in the rubber phase and the domains of 

the MgO are separated from the continuous phase.    

 Received January 15, 2013; accepted March 7, 2013; previously 

published online April 6, 2013 

A B
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D

 Figure 4    SEM micrographs of the liquid nitrogen-fractured surfaces. 

 (A) Pure mLLDPE, (B) A2 blend, (C) B1 blend, and (D) B4 blend.    
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