
Research Article
Effects of Wall Shear Stress on MHD Conjugate
Flow over an Inclined Plate in a Porous Medium with
Ramped Wall Temperature

Arshad Khan,1 Ilyas Khan,2 Farhad Ali,1 and Sharidan Shafie1

1 Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia,
(UTM) 81310 Johor Bahru, Johor, Malaysia

2 College of Engineering Majmaah University, P.O. Box 66, Majmaah 11952, Saudi Arabia

Correspondence should be addressed to Sharidan Shafie; sharidan@utm.my

Received 3 December 2013; Accepted 22 February 2014; Published 2 April 2014

Academic Editor: Zhijun Zhang

Copyright © 2014 Arshad Khan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This study investigates the effects of an arbitrary wall shear stress on unsteady magnetohydrodynamic (MHD) flow of a Newtonian
fluid with conjugate effects of heat andmass transfer.The fluid is considered in a porousmedium over an inclined plate with ramped
temperature.The influence of thermal radiation in the energy equations is also considered.The coupled partial differential equations
governing the flow are solved by using the Laplace transform technique. Exact solutions for velocity and temperature in case of both
ramped and constant wall temperature as well as for concentration fields are obtained. It is found that velocity solutions are more
general and can produce a huge number of exact solutions correlative to various fluid motions. Graphical results are provided for
various embedded flow parameters and discussed in detail.

1. Introduction

The study of the natural convection heat transfer from
different geometries of the surfaces has received much atten-
tion in recent years both analytically and experimentally.
Amongst them a very little attention has been given to the
problem of natural convection over an inclined plate as
shown in Figure 1. Free convection heat transfer from an
inclined surface has important role in making engineering
devices and natural environment. Natural convection over
an inclined plate was first studied experimentally by Rich
[1]. A solution for the boundary layer on a horizontal plate
showing that if the plate is heated and faces downwards or
is cooled and faces upwards was presented by Stewartson
[2]. Free convection heat transfer from an isothermal plate
with arbitrary inclination was investigated by [3]. Chen et
al. [4] have obtained a numerical solution for the problem
of natural convection over an inclined plate with variable
surface temperature. Ganesan and Ekambavanan [5] solved
the unsteady natural convection boundary layer flow over a
semi-infinite inclined plate with the wall temperature varying

as the axial coordinate using an implicit finite difference
scheme. The results of an experimental study on natural
convection between inclined plates were presented by [6].
MHD natural convection from a nonisothermal inclined
surface with multiple suction/injection slots embedded in a
thermally stratified high porosity medium has been studied
by [7]. A numerical solution of the transient free convection
MHD flow of an incompressible viscous fluid past a semi-
infinite inclined plate with variable surface heat andmass flux
is presented by [8]. Unsteady free convection flow of water
at its maximum density past a semi-infinite inclined plate
with variable surface temperature of the plate was studied
by [9]. An investigation deals with study of laminar natural
convection flow of a viscous fluid over a semi-infinite flat
plate inclined at a small angle to the horizontal with internal
heat generation and variable viscosity was presented by [10].
Pressure effects on unsteady free convection and heat transfer
flow of an incompressible fluid past a semi-infinite inclined
plate with impulsive and uniformly accelerated motion were
analyzed by [11]. Chemical reaction effects on MHD free
convection flow through a porous medium bounded by
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an inclined surface were studied by [12]. An analysis to
study the heat and mass transfer characteristics of natural
convection flow along horizontal and inclined plates with
variable surface temperature/concentration or heat/mass flux
under the combined buoyancy effects of thermal and mass
diffusion was presented by [13]. A steady two dimensional
MHD free convection andmass transfer flow past an inclined
semi-infinite surface in the presence of heat generation has
been studied numerically in [14]. A two-dimensional steady
MHD mixed convection and mass transfer flow over a semi-
infinite porous inclined plate in the presence of thermal
radiation with variable suction and thermophoresis has been
analyzed numerically by [15]. Heat and mass transfer of an
incompressible viscous fluid past a semi-infinite inclined
surface with first-order homogeneous chemical reaction by
Lie group analysis had been presented by [16]. Recently,
the exact analysis of combined effects of radiation and
chemical reaction on the MHD free convection flow of an
electrically conducting incompressible viscous fluid over an
inclined plate embedded in a porous medium was studied
by [17]. The inherent irreversibility and thermal stability in a
gravity driven temperature dependent variable viscosity thin
liquid film along an inclined heated plate with convective
cooling were investigated by Makinde [18]. The inherent
irreversibility in hydromagnetic boundary layer flow of vari-
able viscosity fluid over a semi-infinite flat plate under the
influence of thermal radiation and Newtonian heating was
analyzed by [19]. Saha et al. [20] investigated that a natural
convection boundary layer adjacent to an inclined semi-
infinite plate subject to a temperature boundary condition
which follows a ramped function up until some specified time
and then remains constant. Saha et al. [21] also performed a
scaling analysis for the transient boundary layer established
adjacent to an inclined flat plate following a ramp cooling
boundary condition. Recently, Ismail et al. [22] conducted the
combined effects of heat andmass transfer on unsteadyMHD
free convection flow in a porous medium past an infinite
inclined plate with ramped wall temperature. Fetecau et al.
[23] investigated free convection flownear a vertical plate that
applies arbitrary shear stress to the fluid when the thermal
radiation and porosity effects are taken into consideration.
However, from the literature, it is found that no study has
been presented to investigate the unsteady MHD conjugate
flow of an incompressible viscous fluid in a porous medium
past over an inclined plate with ramped temperature in the
presence of radiation under the boundary condition of wall
shear stress.

Therefore, the aim of the present investigation is to pro-
vide exact solutions for MHD conjugate flow of a Newtonian
fluid past an infinite plate that applies arbitrary shear stress
to the fluid. More exactly, we consider the inclined plate
situated in the (𝑥, 𝑧) plane of a Cartesian coordinate system
𝑂𝑥𝑦𝑧, the domain of the flow is the porous half-space 𝑦 >
0, and the arbitrary shear stress on the plate is given by
𝑓(𝑡)/𝜇, where 𝑓(𝑡) is an arbitrary function and 𝜇 is the
viscosity. Closed form solutions of the initial and boundary
value problems that govern the flow are obtained bymeans of
the Laplace transform. Some special cases are extracted from
the general solutions together with some limiting solutions
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Figure 1: Physical configuration of the problem.

in the literature. The results for velocity, temperature, and
concentration profiles are plotted graphically and discussed
for the embedded flow parameters.

2. Mathematical Formulation

Let us consider the unsteady MHD free convection flow
of an incompressible viscous fluid over an infinite inclined
plate. The physical configuration of the problem is shown in
Figure 1. The 𝑥-axis is taken along the plate and the 𝑦-axis
is taken normal to it. Initially, both the plate and fluid are
at stationary conditions with the constant temperature 𝑇

∞

and concentration 𝐶
∞
. After time 𝑡 = 0+, the plate applies

a time dependent shear stress 𝑓(𝑡) to the fluid along the 𝑥-
axis. Meanwhile, the temperature of the plate is raised or
lowered to𝑇

∞
+(𝑇
𝑤
−𝑇
∞
)(𝑡/𝑡
0
) when 𝑡 ≤ 𝑡

0
, and, thereafter,

for 𝑡 > 𝑡
0
, is maintained at constant temperature 𝑇

𝑤
and

concentration is raised to 𝐶
𝑤
. The radiation term is also

considered in the energy equation. However, the radiative
heat flux is considered negligible in 𝑥-direction compared
to 𝑦-direction. We assume that the flow is laminar and the
fluid is grey absorbing-emitting radiation but no scattering
medium. Using Boussinesq’s approximation and neglecting
the viscous dissipation, the equations governing the flow are
given by [22]

𝜕𝑢

𝜕𝑡
= ]
𝜕
2𝑢

𝜕𝑦2
+ 𝑔𝛽
𝑇
(𝑇 − 𝑇

∞
) cos (𝛼)

+ 𝑔𝛽
𝐶
(𝐶−𝐶

∞
) cos (𝛼)− ]

𝐾
𝑢−
𝜎𝐵
2

0

𝜌
𝑢; 𝑦, 𝑡 > 0,

(1)
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𝜌𝐶
𝑝

𝜕𝑇

𝜕𝑡
= 𝑘
𝜕
2𝑇

𝜕𝑦2
−
𝜕𝑞
𝑟

𝜕𝑦
𝑦, 𝑡 > 0, (2)

𝜕𝐶

𝜕𝑡
= 𝐷

𝜕
2𝐶

𝜕𝑦2
𝑦, 𝑡 > 0, (3)

where 𝑢, 𝑇, 𝐶, ], 𝜌, 𝑔, 𝛽
𝑇
, 𝛽
𝐶
, 𝐾, 𝜎, 𝐵

0
, 𝐶
𝑝
, 𝑘, 𝑞
𝑟
, and 𝐷 are

the velocity of the fluid in 𝑥-direction, its temperature and
concentration, the kinematic viscosity, the constant density,
the gravitational acceleration, the heat transfer coefficient,
the mass transfer coefficient, the permeability of the porous
medium, the electric conductivity of the fluid, the applied
magnetic field, the heat capacity at constant pressure, the
thermal conductivity, the radiative heat flux, and mass dif-
fusivity.

The corresponding initial and boundary conditions are

𝑢 (𝑦, 0) = 0, 𝑇 (𝑦, 0) = 𝑇
∞
,

𝐶 (𝑦, 0) = 𝐶
∞
; ∀𝑦 ⩾ 0,

𝜕𝑢 (0, 𝑡)

𝜕𝑦
=
𝑓 (𝑡)

𝜇
, 𝐶 (0, 𝑡) = 𝐶

𝑤
; 𝑡 > 0,

𝑇 (0, 𝑡) = 𝑇
∞
+ (𝑇
𝑤
− 𝑇
∞
)
𝑡

𝑡
0

, 0 < 𝑡 < 𝑡
0
,

𝑇 (0, 𝑡) = 𝑇
𝑤
; 𝑡 ≥ 𝑡

0
,

𝑢 (∞, 𝑡) = 0, 𝑇 (∞, 𝑡) = 𝑇
∞
,

𝐶 (∞, 𝑡) = 𝐶
∞
; 𝑡 > 0.

(4)

The radiation heat flux under Rosseland approximation for
optically thick fluid [24–26] is given by

𝑞
𝑟
= −

4𝜎∗

3𝑘
𝑅

𝜕𝑇4

𝜕𝑦
, (5)

where 𝜎∗ and 𝑘
𝑅
is the Stefan-Boltzman constant and the

mean absorption coefficient, respectively.We can see from (5)
that the radiation term is nonlinear. Recently David Maxim
Gururaj and Anjali Devi [27] used nonlinear radiation
effects and studied MHD boundary layer flow with forced
convection past a nonlinearly stretching surface with variable
temperature. Therefore, we follow David Maxim Gururaj
and Anjali Devi [27] and assume that the temperature
differences within the flow are sufficiently small; that is, the
difference between the fluid temperature and the free stream
temperature is negligible, so that (5) can be linearized by
expanding 𝑇 into the Taylor series about 𝑇

∞
, which after

neglecting higher order terms takes the form

𝑇
4

≈ 4𝑇
3

∞
𝑇 − 3𝑇

4

∞
. (6)

Substituting (6) into (5) and then putting the obtained result
in (2), we get

Pr𝜕𝑇
𝜕𝑡
= ] (1 + 𝑁

𝑟
)
𝜕2𝑇

𝜕𝑦2
; 𝑦, 𝑡 > 0, (7)

where Pr, ], and𝑁
𝑟
are defined by

Pr =
𝜇𝐶
𝑝

𝑘
, ] =

𝜇

𝜌
, 𝑁

𝑟
=
16𝜎𝑇3
∞

3𝑘𝑘
𝑅

. (8)

By introducing the following dimensionless variables

𝑢
∗

= 𝑢√
𝑡
0

]
, 𝑇

∗

=
𝑇 − 𝑇
∞

𝑇
𝑤
− 𝑇
∞

,

𝐶
∗

=
𝐶 − 𝐶

∞

𝐶
𝑤
− 𝐶
∞

, 𝑦
∗

=
𝑦

√]𝑡
0

,

𝑡
∗

=
𝑡

𝑡
0

, 𝑓
∗

(𝑡
∗

) =
𝑡
0

𝜇
𝑓 (𝑡
0
𝑡
∗

) ,

(9)

into (1), (3) and (7) and eleminating the star notations, we get

𝜕𝑢

𝜕𝑡
=
𝜕
2𝑢

𝜕𝑦2
+ Gr𝑇 cos𝛼 + Gm𝐶 cos𝛼 − 𝐾

𝑝
𝑢 −𝑀𝑢, (10)

Preff
𝜕𝑇

𝜕𝑡
=
𝜕
2𝑇

𝜕𝑦2
, (11)

𝜕𝐶

𝜕𝑡
=
1

Sc
𝜕2𝐶

𝜕𝑦2
, (12)

where Preff = Pr/(1 +𝑁
𝑟
) is the effective Prandtl number [24,

(10)] and

Gr =
𝑔𝛽
𝑇
(𝑇
𝑤
− 𝑇
∞
) ]

𝑈3
0

, Gm =
𝑔𝛽
𝑐
(𝐶
𝑤
− 𝐶
∞
) ]

𝑈3
0

,

𝑀 =
𝜎𝐵2
0
𝑡
0

𝜌
, Sc = ]

𝐷
, 𝐾

𝑝
=
]𝑡
0

𝐾
, 𝑡

0
=

]
𝑈2
0

,

(13)

are the Grashof number, modified Grashof number, mag-
netic parameter, Schmidt number, the inverse permeability
parameter for the porous medium, and the characteristic
time, respectively.

The corresponding dimensionless initial and boundary
conditions are

𝑢 (𝑦, 0) = 0, 𝑇 (𝑦, 0) = 0, 𝐶 (𝑦, 0) = 0; ∀𝑦 ≥ 0,

𝜕𝑢

𝜕𝑦

𝑦=0
= 𝑓 (𝑡) , 𝑇 (0, 𝑡) = 𝑡; 0 < 𝑡 ≤ 1,

𝑇 (0, 𝑡) = 1; 𝑡 > 1,

𝐶 (0, 𝑡) = 1, 𝐶 (∞, 𝑡) = 0, 𝑇 (∞, 𝑡) = 0,

𝑢 (∞, 𝑡) = 0; 𝑡 > 0.

(14)
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3. Solution of the Problem

In order to solve (10)–(12) under conditions (14), we use the
Laplace transform technique and get the following differen-
tial equations:

𝑞�̄� (𝑦, 𝑞) =
𝜕
2�̄� (𝑦, 𝑞)

𝜕𝑦2
+ Gr�̄� (𝑦, 𝑞) cos (𝛼)

+ Gm�̄� (𝑦, 𝑞) cos (𝛼) − 𝐾
𝑝
�̄� (𝑦, 𝑞) − 𝑀�̄� (𝑦, 𝑞) ,

(15)

�̄� (𝑦, 𝑞) =
1

Preff𝑞
𝜕2�̄� (𝑦, 𝑞)

𝜕𝑦2
, (16)

�̄� (𝑦, 𝑞) =
1

Sc𝑞
𝜕2�̄� (𝑦, 𝑞)

𝜕𝑦2
, (17)

with boundary conditions

�̄� (∞, 𝑞) = 0, �̄� (0, 𝑞) =
1

𝑞
, �̄� (∞, 𝑞) = 0,

�̄� (∞, 𝑞) = 0,
𝜕�̄� (𝑦, 𝑞)

𝜕𝑦

𝑦=0
= 𝐹 (𝑞) ,

𝑇 (0, 𝑞) =
1 − 𝑒−𝑞

𝑞2
.

(18)

Solving (16) in view of (18), we get

�̄� (𝑦, 𝑞) =
1

𝑞2
𝑒
−𝑦√𝑞Preff −

𝑒−𝑞

𝑞2
𝑒
−𝑦√𝑞Preff , (19)

which upon inverse Laplace transform gives

𝑇 (𝑦, 𝑡) = 𝑓 (𝑦, 𝑡) − 𝑓 (𝑦, 𝑡 − 1)𝐻 (𝑡 − 1) , (20)

where

𝑓 (𝑦, 𝑡) = (
Preff𝑦

2

2
+ 𝑡) erf 𝑐 (

√Preff𝑦
2√𝑡

)

− √
Preff𝑡
𝜋
𝑦 exp(

−Preff𝑦
2

4𝑡
) ,

(21)

𝜕𝑇 (𝑦, 𝑡)

𝜕𝑦

𝑦=0
=
2√Preff
√𝜋

(√𝑡 − √𝑡 − 1𝐻 (𝑡 − 1)) , (22)

is the corresponding heat transfer rate also known as Nusselt
number. Here erf(⋅) and erf 𝑐(⋅) denote the error function
and complementary error function of Gauss.

Solution of (17) using boundary conditions from (18)
yields

𝐶 (𝑦, 𝑞) =
1

𝑞
𝑒
−𝑦√Sc𝑞

, (23)

which upon inverse Laplace transform gives

𝐶 (𝑦, 𝑡) = erf 𝑐 (
𝑦√Sc
2√𝑡

) , (24)

𝜕𝐶 (𝑦, 𝑡)

𝜕𝑦

𝑦=0
= −

√Sc
√𝜋𝑡

, (25)

that is the corresponding mass transfer rate also known as
Sherwood number.

The solution of (15) under boundary conditions (18) gives

�̄� (𝑦, 𝑞) =
𝑎
1√𝑞

𝑞2 (𝑞 − 𝑎
2
)√𝑞 + 𝐻

1

𝑒
−𝑦√𝑞+𝐻

1

−
𝑎
1√𝑞𝑒
−𝑞

𝑞2 (𝑞−𝑎
2
)√𝑞+𝐻

1

𝑒
−𝑦√𝑞+𝐻

1−
𝐹 (𝑞)

√𝑞+𝐻
1

𝑒
−𝑦√𝑞+𝐻

1

−
𝑎
3

𝑞2 (𝑞 − 𝑎
2
)
𝑒
−𝑦√𝑞Preff +

𝑎
3
𝑒−𝑞

𝑞2 (𝑞 − 𝑎
2
)
𝑒
−𝑦√𝑞Preff

+
𝑎
4√𝑞

𝑞 (𝑞−𝑎
5
)√𝑞+𝐻

1

𝑒
−𝑦√𝑞+𝐻

1−
𝑎
6

𝑞 (𝑞 − 𝑎
5
)
𝑒
−𝑦√𝑞Sc

,

(26)

which upon inverse Laplace transform gives

𝑢 (𝑦, 𝑡) = 𝑢
𝑐
(𝑦, 𝑡) + 𝑢

𝑚
(𝑦, 𝑡) , (27)

where

𝑢
𝑐
(𝑦, 𝑡)

= 𝑎
1
∫
𝑡

0

(
𝑒𝑎2(𝑡−𝑠) erf (√𝑎

2
(𝑡 − 𝑠))

(𝑎
2
)
3/2

−
2√𝑡 − 𝑠

√𝜋𝑎
2

)

×
𝑒
−𝐻
1
𝑠−𝑦
2
/4𝑠

√𝜋𝑠
𝑑𝑠

+ [

[

𝑎
1

𝑎
2
𝜋
∫
𝑡−1

0

(2√𝑡 − 1 − 𝑠) 𝑒
−𝐻
1
𝑠−𝑦
2
/4𝑠

√𝑠
𝑑𝑠]

]

× 𝐻 (𝑡 − 1)

− [
𝑎
1

(𝑎
2
)
3/2

√𝜋
∫
𝑡−1

0

((𝑒
𝑎
2
(𝑡−1−𝑠)−𝐻

1
𝑠−𝑦
2
/4𝑠 erf

× (√𝑎
2
(𝑡 − 1 − 𝑠)))

× (√𝑠)
−1

) 𝑑𝑠]
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× 𝐻 (𝑡 − 1)

+ 𝑎
4
∫
𝑡

0

(
𝑒
𝑎
5
(𝑡−𝑠) erf (√𝑎

5
(𝑡 − 𝑠))

√𝑎5
−
2√𝑡 − 𝑠

√𝜋𝑎
2

)

×
𝑒
−𝐻
1
𝑠−𝑦
2
/4𝑠

√𝜋𝑠
𝑑𝑠

+
𝑎
3

𝑎
2

(𝑡 +
Preff𝑦

2

2
) erf 𝑐 (

𝑦√Preff
2√𝑡

)

−
𝑎
3

𝑎
2

𝑦√Preff√𝑡
√𝜋

𝑒
−𝑦
2Preff/4𝑡 +

𝑎
3

𝑎2
2

erf 𝑐 (
𝑦√Preff
2√𝑡

)

−
𝑎
3
𝑒𝑎2𝑡+𝑦
√Preff𝑎2

2𝑎2
2

erf 𝑐 (
𝑦√Preff
2√𝑡

+ √𝑎
2
𝑡)

−
𝑎
3
𝑒𝑎2𝑡−𝑦
√Preff𝑎2

2𝑎2
2

erf 𝑐 (
𝑦√Preff
2√𝑡

− √𝑎
2
𝑡)

−
𝑎
3

𝑎
2

((𝑡 − 1) +
Preff𝑦

2

2
) erf 𝑐 (

𝑦√Preff
2√𝑡 − 1

)𝐻 (𝑡 − 1)

+
𝑎
3

𝑎
2

𝑦√Preff√𝑡 − 1
√𝜋

𝑒
−𝑦
2Preff/4(𝑡−1)𝐻(𝑡 − 1)

−
𝑎
3

𝑎2
2

erf 𝑐 (
𝑦√Preff
2√𝑡 − 1

)𝐻 (𝑡 − 1) +
𝑎
6

𝑎
5

erf 𝑐 (
𝑦√Sc
2√𝑡

)

+
𝑎
3
𝑒𝑎2(𝑡−1)+𝑦

√Preff𝑎2

2𝑎2
2

erf 𝑐 (
𝑦√Preff
2√𝑡 − 1

+ √𝑎
2
(𝑡 − 1))

× 𝐻 (𝑡 − 1)

+
𝑎
3
𝑒𝑎2(𝑡−1)−𝑦

√Preff𝑎2

2𝑎2
2

erf 𝑐 (
𝑦√Preff
2√𝑡 − 1

− √𝑎
2
(𝑡 − 1))

× 𝐻 (𝑡 − 1)

−
𝑎
6
𝑒𝑎5𝑡−𝑦
√𝑎
5
Sc

2𝑎
5

erf 𝑐 (
𝑦√Sc
2√𝑡

− √𝑎
5
𝑡)

−
𝑎
6
𝑒
𝑎
5
𝑡+𝑦√𝑎

5
Sc

2𝑎
5

erf 𝑐 (
𝑦√Sc
2√𝑡

+ √𝑎
5
𝑡) ,

(28)

𝑢
𝑚
(𝑦, 𝑡) = −

1

√𝜋
∫
𝑡

0

𝑓 (𝑡 − 𝑠) 𝑒
−𝐻
1
𝑠−𝑦
2
/4𝑠

√𝑠
, (29)

correspond to the convective and mechanical parts of veloc-
ity.

It is noted from (20) and (28) that 𝑇(𝑦, 𝑡) is valid for all
positive values of Preff while the 𝑢𝑐(𝑦, 𝑡) is not valid for Preff =
1.Therefore, to get 𝑢

𝑐
(𝑦, 𝑡)when the effective Prandtl number

is not equal to one, we make Preff = 1 into (11), use a similar
procedure as discussed above, and obtain

�̄� (𝑦, 𝑞) =
−𝑎
14

𝑞3/2√𝑞 + 𝐻
1

𝑒
−𝑦√𝑞+𝐻

1 +
𝑎
14
𝑒−𝑞

𝑞3/2√𝑞 + 𝐻
1

𝑒
−𝑦√𝑞+𝐻

1

−
𝐹 (𝑞)

√𝑞 + 𝐻
1

𝑒
−𝑦√𝑞+𝐻

1 +
𝑎
14

𝑞2
𝑒
−𝑦√𝑞 −

𝑎
14
𝑒−𝑞

𝑞2
𝑒
−𝑦√𝑞

+
𝑎
4√𝑞

𝑞 (𝑞−𝑎
5
)√𝑞+𝐻

1

𝑒
−𝑦√𝑞+𝐻

1−
𝑎
6

𝑞 (𝑞 − 𝑎
5
)
𝑒
−𝑦√𝑞Sc

.

(30)

By taking inverse Laplace transform, we find that

𝑢 (𝑦, 𝑡) = −
2𝑎
14

𝜋
∫
𝑡

0

√𝑡 − 𝑠𝑒−𝐻1𝑠−𝑦
2
/4𝑠

√𝑠
𝑑𝑠

+ (
2𝑎
14

𝜋
∫
𝑡−1

0

√𝑡 − 1 − 𝑠𝑒
−𝐻
1
𝑠−𝑦
2
/4𝑠

√𝑠
𝑑𝑠)𝐻 (𝑡 − 1)

+ 𝑎
4
∫
𝑡

0

(
𝑒𝑎5(𝑡−𝑠) erf (√𝑎

5
(𝑡 − 𝑠))

√𝑎5
−
2√𝑡 − 𝑠

√𝜋𝑎
2

)

×
𝑒
−𝐻
1
𝑠−𝑦
2
/4𝑠

√𝜋𝑠
𝑑𝑠

+ 𝑎
14
[(𝑡 +

𝑦2

2
) erf 𝑐 (

𝑦

2√𝑡
) −

𝑦√𝑡

√𝜋
𝑒
−𝑦
2
/4𝑡

]

−
𝑎
6
𝑒𝑎5𝑡−𝑦
√𝑎
5
Sc

2𝑎
5

erf 𝑐 (
𝑦√Sc
2√𝑡

− √𝑎
5
𝑡)

− 𝑎
14
[(𝑡 − 1 +

𝑦2

2
) erf 𝑐 (

𝑦

2√𝑡 − 1
)

−
𝑦√𝑡 − 1

√𝜋
𝑒
−𝑦
2
/4(𝑡−1)

]𝐻 (𝑡 − 1)

+
𝑎
6

𝑎
5

erf 𝑐 (
𝑦√Sc
2√𝑡

)

−
1

√𝜋
∫
𝑡

0

𝑓 (𝑡 − 𝑠) 𝑒
−𝐻
1
𝑠−𝑦
2
/4𝑠

√𝑠
𝑑𝑠

−
𝑎
6
𝑒𝑎5𝑡+𝑦
√𝑎
5
Sc

2𝑎
5

erf 𝑐 (
𝑦√Sc
2√𝑡

+ √𝑎
5
𝑡) ,

(31)

where

𝑎
1
=

cos𝛼Gr√Preff
Preff − 1

, 𝑎
2
=

𝐻
1

Preff−1
, 𝑎

3
=
Grcos𝛼
Preff−1

,

𝑎
4
=

cos𝛼Gm√Sc
Sc − 1

, 𝑎
5
=

𝐻
1

Sc − 1
, 𝑎

6
=
cos𝛼Gm
Sc − 1

,
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𝑎
7
=

cos𝛼Gr√Pr
Pr − 1

, 𝑎
8
=

𝐻
1

Pr − 1
, 𝑎

9
=
cos𝛼Gr
Pr − 1

,

𝑎
10
=

𝐾
𝑝

Preff − 1
, 𝑎

11
=

𝐾
𝑝

Sc − 1
, 𝑎

12
=

𝑀

Preff − 1
,

𝑎
13
=

𝑀

Sc − 1
, 𝑎

14
=
cos𝛼Gr
𝐻
1

, 𝐻
1
= 𝐾
𝑝
+𝑀.

(32)

4. Plate with Constant Temperature

Equations (20) and (27) give analytical expressions for the
temperature and velocity near an inclined plate with ramped
temperature. In order to highlight the effect of the ramped
temperature distribution of the boundary on the flow, it
is important to compare such a flow with the one near a
plate with constant temperature. It can be shown that the
temperature, rate of heat transfer, and velocity for the flow
near an isothermal plate are

𝑇 (𝑦, 𝑡) = erf 𝑐 (
𝑦√Preff
2√𝑡

) , (33)

𝜕𝑇 (0, 𝑡)

𝜕𝑦
= −

√Preff
√𝜋𝑡

, (34)

𝑢
𝑐
(𝑦, 𝑡)

=
𝑎
1

√𝜋𝑎2
∫
𝑡

0

𝑒𝑎2(𝑡−𝑠)−𝐻1𝑠−𝑦
2
/4𝑠 erf (√𝑎

2
(𝑡 − 𝑠))

√𝑠
𝑑𝑠

+
𝑎
4

√𝜋𝑎5
∫
𝑡

0

𝑒
𝑎
5
(𝑡−𝑠)−𝐻

1
𝑠−𝑦
2
/4𝑠 erf (√𝑎

5
(𝑡 − 𝑠))

√𝑠
𝑑𝑠

−
𝑎
3

2𝑎
2

𝑒
𝑎
2
𝑡+𝑦√𝑎

2
Preff erf 𝑐 (

𝑦√Preff
2√𝑡

+ √𝑎
2
𝑡)

−
𝑎
3

2𝑎
2

𝑒
𝑎
2
𝑡−𝑦√𝑎

2
Preff erf 𝑐 (

𝑦√Preff
2√𝑡

− √𝑎
2
𝑡)

−
𝑎
6

2𝑎
5

𝑒
𝑎
5
𝑡−𝑦√𝑎

5
Sc erf 𝑐 (

𝑦√Sc
2√𝑡

− √𝑎
5
𝑡)

+
𝑎
3

𝑎
2

erf 𝑐 (
𝑦√Preff
2√𝑡

) +
𝑎
6

𝑎
5

erf 𝑐 (
𝑦√Sc
2√𝑡

)

−
𝑎
6

2𝑎
5

𝑒
𝑎
5
𝑡+𝑦√𝑎

5
Sc erf 𝑐 (

𝑦√Sc
2√𝑡

+ √𝑎
5
𝑡) ,

(35)

𝑢
𝑚
(𝑦, 𝑡) = −

1

√𝜋
∫
𝑡

0

𝑓 (𝑡 − 𝑠) 𝑒
−𝐻
1
𝑠−𝑦
2
/4𝑠

√𝑠
𝑑𝑠. (36)

As previously, (36) is not valid for Preff = 1. Therefore we
calculate separately solution for velocity by taking Preff = 1
into (11) and finally get

𝑢 (𝑦, 𝑡)

= 𝑎
14
erf 𝑐 (

𝑦

2√𝑡
) −

𝑎
14

√𝜋
∫
𝑡

0

𝑒−𝐻1𝑠−𝑦
2
/4𝑠

√(𝑡 − 𝑠) 𝑠
𝑑𝑠

+
𝑎
4

√𝜋𝑎5
∫
𝑡

0

𝑒𝑎5(𝑡−𝑠)−𝐻1𝑠−𝑦
2
/4𝑠 erf (√𝑎

5
(𝑡 − 𝑠))

√𝑠
𝑑𝑠

+
𝑎
6

𝑎
5

erf 𝑐 (
𝑦√Sc
2√𝑡

) −
1

√𝜋
∫
𝑡

0

𝑓 (𝑡 − 𝑠) 𝑒
−𝐻
1
𝑠−𝑦
2
/4𝑠

√𝑠
𝑑𝑠

−
𝑎
6

2𝑎
5

𝑒
𝑎
5
𝑡+𝑦√𝑎

5
Sc erf 𝑐 (

𝑦√Sc
2√𝑡

+ √𝑎
5
𝑡)

−
𝑎
6

2𝑎
5

𝑒
𝑎
5
𝑡−𝑦√𝑎

5
Sc erf 𝑐 (

𝑦√Sc
2√𝑡

− √𝑎
5
𝑡) .

(37)

5. Limiting Cases

In this section, we discuss few limiting cases of our general
solutions.

5.1. Solution in the Absence of Porous Effects for Ramped and
Constant Wall Temperature (𝐾

𝑝
→ 0). Consider

𝑢 (𝑦, 𝑡)

= 𝑎
1
∫
𝑡

0

(
𝑒𝑎12(𝑡−𝑠) erf (√𝑎

12
(𝑡 − 𝑠))

(𝑎
12
)
3/2

−
2√𝑡 − 𝑠

√𝜋𝑎
12

)

×
𝑒
−𝑀𝑠−𝑦

2
/4𝑠

√𝜋𝑠
𝑑𝑠

+ [

[

𝑎
1

𝑎
12
𝜋
∫
𝑡−1

0

(2√𝑡 − 1 − 𝑠) 𝑒−𝑀𝑠−𝑦
2
/4𝑠

√𝑠
𝑑𝑠]

]

𝐻 (𝑡 − 1)

− [
𝑎
1

(𝑎
12
)
3/2

√𝜋
∫
𝑡−1

0

((𝑒
𝑎
12
(𝑡−1−𝑠)−𝑀𝑠−𝑦

2
/4𝑠 erf

× (√𝑎
12
(𝑡 − 1 − 𝑠)))

× (√𝑠)
−1

) 𝑑𝑠]

× 𝐻 (𝑡 − 1)

+ 𝑎
4
∫
𝑡

0

(
𝑒𝑎13(𝑡−𝑠) erf (√𝑎

13
(𝑡 − 𝑠))

√𝑎13
−
2√𝑡 − 𝑠

√𝜋𝑎
12

)

×
𝑒
−𝑀𝑠−𝑦

2
/4𝑠

√𝜋𝑠
𝑑𝑠
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+
𝑎
3

𝑎
12

(𝑡 +
Preff𝑦

2

2
) erf 𝑐 (

𝑦√Preff
2√𝑡

)

−
1

√𝜋
∫
𝑡

0

𝑓 (𝑡 − 𝑠) 𝑒
−𝑀𝑠−𝑦

2
/4𝑠

√𝑠
𝑑𝑠

−
𝑎
3

𝑎
12

𝑦√Preff√𝑡
√𝜋

𝑒
−𝑦
2Preff/4𝑡 +

𝑎
3

𝑎2
12

erf 𝑐 (
𝑦√Preff
2√𝑡

)

−
𝑎
3
𝑒𝑎12𝑡+𝑦

√Preff𝑎12

2𝑎2
12

erf 𝑐 (
𝑦√Preff
2√𝑡

+ √𝑎
12
𝑡)

−
𝑎
3
𝑒𝑎12𝑡−𝑦

√Preff𝑎12

2𝑎2
12

erf 𝑐 (
𝑦√Preff
2√𝑡

− √𝑎
12
𝑡)

−
𝑎
3

𝑎
12

((𝑡 − 1)+
Preff𝑦

2

2
) erf 𝑐 (

𝑦√Preff
2√𝑡 − 1

)𝐻 (𝑡−1)

+
𝑎
3

𝑎
12

𝑦√Preff√𝑡 − 1
√𝜋

𝑒
−𝑦
2Preff/4(𝑡−1)𝐻(𝑡 − 1)

−
𝑎
6
𝑒𝑎13𝑡−𝑦

√𝑎
13
Sc

2𝑎
13

erf 𝑐 (
𝑦√Sc
2√𝑡

−√𝑎
13
𝑡)

−
𝑎
3

𝑎2
12

erf 𝑐 (
𝑦√Preff
2√𝑡 − 1

)𝐻 (𝑡 − 1)+
𝑎
6

𝑎
13

erf 𝑐 (
𝑦√Sc
2√𝑡

)

+
𝑎
3
𝑒𝑎12(𝑡−1)+𝑦

√Preff𝑎12

2𝑎2
12

erf 𝑐 (
𝑦√Preff
2√𝑡 − 1

+√𝑎
12
(𝑡 − 1))

× 𝐻 (𝑡 − 1)

+
𝑎
3
𝑒𝑎12(𝑡−1)−𝑦

√Preff𝑎12

2𝑎2
12

erf 𝑐 (
𝑦√Preff
2√𝑡 − 1

− √𝑎
12
(𝑡 − 1))

× 𝐻 (𝑡 − 1)

−
𝑎
6
𝑒𝑎13𝑡+𝑦

√𝑎
13
Sc

2𝑎
13

erf 𝑐 (
𝑦√Sc
2√𝑡

+ √𝑎
13
𝑡) ,

𝑢 (𝑦, 𝑡)

=
𝑎
1

√𝜋𝑎12
∫
𝑡

0

𝑒𝑎12(𝑡−𝑠)−𝑀𝑠−𝑦
2
/4𝑠 erf (√𝑎

12
(𝑡 − 𝑠))

√𝑠
𝑑𝑠

+
𝑎
4

√𝜋𝑎13
∫
𝑡

0

𝑒𝑎13(𝑡−𝑠)−𝑀𝑠−𝑦
2
/4𝑠 erf (√𝑎

13
(𝑡 − 𝑠))

√𝑠
𝑑𝑠

−
𝑎
6

2𝑎
13

𝑒
𝑎
13
𝑡−𝑦√𝑎

13
Sc erf 𝑐 (

𝑦√Sc
2√𝑡

− √𝑎
13
𝑡)

−
𝑎
3

2𝑎
12

𝑒
𝑎
12
𝑡+𝑦√𝑎

12
Preff erf 𝑐 (

𝑦√Preff
2√𝑡

+ √𝑎
12
𝑡)

−
𝑎
3

2𝑎
12

𝑒
𝑎
12
𝑡−𝑦√𝑎

12
Preff erf 𝑐 (

𝑦√Preff
2√𝑡

− √𝑎
12
𝑡)

+
𝑎
3

𝑎
12

erf 𝑐 (
𝑦√Preff
2√𝑡

) +
𝑎
6

𝑎
13

erf 𝑐 (
𝑦√Sc
2√𝑡

)

−
𝑎
6

2𝑎
13

𝑒
𝑎
13
𝑡+𝑦√𝑎

13
Sc erf 𝑐 (

𝑦√Sc
2√𝑡

+ √𝑎
13
𝑡) .

(38)

5.2. Solution in the Absence of Thermal Radiation (𝑁
𝑟
→

0). In the absence of thermal radiation, the corresponding
solutions for ramped and constant wall temperature are
directly obtained from the general solutions (20), (22), (27),
and (33)–(36) by taking 𝑁

𝑟
→ 0 and replacing Preff by Pr;

that is,

𝑢 (𝑦, 𝑡)

= 𝑎
7
∫
𝑡

0

(
𝑒𝑎8(𝑡−𝑠) erf (√𝑎

8
(𝑡 − 𝑠))

(𝑎
8
)
3/2

−
2√𝑡 − 𝑠

√𝜋𝑎
8

)

×
𝑒−𝐻1𝑠−𝑦

2
/4𝑠

√𝜋𝑠
𝑑𝑠

+ [
𝑎
7

𝜋𝑎
8

∫
𝑡−1

0

2√𝑡 − 1 − 𝑠𝑒−𝐻1𝑠−𝑦
2
/4𝑠

√𝑠
𝑑𝑠]

× 𝐻 (𝑡 − 1)

− [
𝑎
7

(𝑎
8
)
3/2

√𝜋
∫
𝑡−1

0

((erf (√𝑎
8
(𝑡 − 1 − 𝑠))

× 𝑒
𝑎
8
(𝑡−1−𝑠)−𝐻

1
𝑠−𝑦
2
/4𝑠

)

× (√𝑠)
−1

)𝑑𝑠]

× 𝐻 (𝑡 − 1𝑠)

+ 𝑎
4
∫
𝑡

0

(
𝑒𝑎5(𝑡−𝑠) erf (√𝑎

5
(𝑡 − 𝑠))

√𝑎5
−
2√𝑡 − 𝑠

√𝜋𝑎
8

)

×
𝑒
−𝐻
1
𝑠−𝑦
2
/4𝑠

√𝜋𝑠
𝑑𝑠

+
𝑎
9

𝑎
8

(𝑡 +
Pr𝑦2

2
) erf 𝑐 (

𝑦√Pr
2√𝑡

)

−
1

√𝜋
∫
𝑡

0

𝑓 (𝑡 − 𝑠) 𝑒
−𝐻
1
𝑠−𝑦
2
/4𝑠

√𝑠
𝑑𝑠

−
𝑎
9

𝑎
8

𝑦√Pr√𝑡
√𝜋

𝑒
−𝑦
2Pr/4𝑡

+
𝑎
9

𝑎2
8

erf 𝑐 (
𝑦√Pr
2√𝑡

)

−
𝑎
9
𝑒𝑎8𝑡+𝑦
√Pr𝑎
8

2𝑎2
8

erf 𝑐 (
𝑦√Pr
2√𝑡

+ √𝑎
8
𝑡)
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−
𝑎
9
𝑒𝑎8𝑡−𝑦
√Pr𝑎
8

2𝑎2
8

erf 𝑐 (
𝑦√Pr
2√𝑡

− √𝑎
8
𝑡)

−
𝑎
9

𝑎
8

((𝑡 − 1) +
Pr𝑦2

2
) erf 𝑐 (

𝑦√Pr
2√𝑡 − 1

)𝐻 (𝑡 − 1)

−
𝑎
9

𝑎
8

erf 𝑐 (
𝑦√Pr
2√𝑡 − 1

)𝐻 (𝑡 − 1)

+
𝑎
9

𝑎
8

𝑦√Pr√𝑡 − 1
√𝜋

𝑒
−𝑦
2Pr/4(𝑡−1)

𝐻(𝑡 − 1)

+
𝑎
9
𝑒𝑎8(𝑡−1)+𝑦

√Pr𝑎
8

2𝑎2
8

erf 𝑐 (
𝑦√Pr
2√𝑡 − 1

+ √𝑎
8
(𝑡 − 1))

× 𝐻 (𝑡 − 1)

+
𝑎
9
𝑒𝑎12(𝑡−1)−𝑦

√Pr𝑎
12

2𝑎2
8

erf 𝑐 (
𝑦√Pr
2√𝑡 − 1

− √𝑎
8
(𝑡 − 1))

× 𝐻 (𝑡 − 1)

−
𝑎
6
𝑒𝑎5𝑡+𝑦
√𝑎
5
Sc

2𝑎
5

erf 𝑐 (
𝑦√Sc
2√𝑡

+ √𝑎
5
𝑡)

+
𝑎
6

𝑎
5

erf 𝑐 (
𝑦√Sc
2√𝑡

)

−
𝑎
6
𝑒𝑎5𝑡−𝑦
√𝑎
5
Sc

2𝑎
5

erf 𝑐 (
𝑦√Sc
2√𝑡

− √𝑎
5
𝑡) ,

𝑇 (𝑦, 𝑡) = 𝑓
1
(𝑦, 𝑡) − 𝑓

1
(𝑦, 𝑡 − 1)𝐻 (𝑡 − 1) ,

(39)

where

𝑓
1
(𝑦, 𝑡) = (

Pr𝑦2

2
+ 𝑡) erf 𝑐 (

√Pr𝑦
2√𝑡

)

− √
Pr𝑡
𝜋
𝑦 exp(

−Pr𝑦2

4𝑡
) ,

𝜕𝑇 (𝑦, 𝑡)

𝜕𝑦

𝑦=0
=
2√Pr
√𝜋

(√𝑡 − √𝑡 − 1𝐻 (𝑡 − 1)) ,

𝑢 (𝑦, 𝑡)

=
𝑎
7

√𝜋𝑎8
∫
𝑡

0

𝑒𝑎8(𝑡−𝑠)−𝐻1𝑠−𝑦
2
/4𝑠 erf (√𝑎

8
(𝑡 − 𝑠))

√𝑠
𝑑𝑠

+
𝑎
4

√𝜋𝑎5
∫
𝑡

0

𝑒𝑎5(𝑡−𝑠)−𝐻1𝑠−𝑦
2
/4𝑠 erf (√𝑎

5
(𝑡 − 𝑠))

√𝑠
𝑑𝑠

−
𝑎
9

2𝑎
8

𝑒
𝑎
8
𝑡+𝑦√𝑎

8
Pr erf 𝑐 (

𝑦√Pr
2√𝑡

+ √𝑎
8
𝑡)

−
𝑎
9

2𝑎
8

𝑒
𝑎
8
𝑡−𝑦√𝑎

8
Pr erf 𝑐 (

𝑦√Pr
2√𝑡

− √𝑎
8
𝑡)

+
𝑎
9

𝑎
8

erf 𝑐 (
𝑦√Pr
2√𝑡

) +
𝑎
6

𝑎
5

erf 𝑐 (
𝑦√Sc
2√𝑡

)

−
𝑎
6

2𝑎
5

𝑒
𝑎
5
𝑡+𝑦√𝑎

5
Sc erf 𝑐 (

𝑦√Sc
2√𝑡

+ √𝑎
5
𝑡)

−
𝑎
6

2𝑎
5

𝑒
𝑎
5
𝑡−𝑦√𝑎

5
Sc erf 𝑐 (

𝑦√Sc
2√𝑡

− √𝑎
5
𝑡)

−
1

√𝜋
∫
𝑡

0

𝑓 (𝑡 − 𝑠) 𝑒
−𝐻
1
𝑠−𝑦
2
/4𝑠

√𝑠
𝑑𝑠,

𝑇 (𝑦, 𝑡) = erf 𝑐 (
𝑦√Pr
2√𝑡

) ,

𝜕𝑇 (0, 𝑡)

𝜕𝑦
= −

√Pr
√𝜋𝑡

.

(40)

5.3. Solutions in theAbsence of FreeConvection. Let us assume
that the flow is caused only due to bounding plate and the
corresponding buoyancy forces are zero equivalently it shows
the absence of free convection due to the differences in
temperature andmass gradients that is, the terms Gr and Gm
are zero.This shows that the convective parts of velocities are
zero in both cases of ramped wall and constant temperature
and the flow is only governed by the mechanical part of
velocities given by (29) and (36).

5.4. Solutions in the Absence of Mechanical Effects. In this
case we assume that the infinite plate is in static position at
every time; that is, the function 𝑓(𝑡) is zero for all values of
𝑡 and the mechanical parts for both ramped and constant
wall temperature are equivalently zero. In such a situation, the
motion in the fluid is induced only due to the free convection.
Therefore, the velocities of the fluid in both cases of ramped
and constant wall temperature are only represented by their
convective parts given by (28) and (36).

5.5. Solution in the Absence of Magnetic Parameter (𝑀 →

0). It is clear from (20) and (24) that the temperature
and concentration distributions are not influenced by the
magnetic parameter 𝑀, and the velocities with𝑀 = 0 for
both ramped and constant wall temperature are given by

𝑢 (𝑦, 𝑡)

= 𝑎
1
∫
𝑡

0

(
𝑒𝑎10(𝑡−𝑠) erf (√𝑎

10
(𝑡 − 𝑠))

(𝑎
10
)
3/2

−
2√𝑡 − 𝑠

√𝜋𝑎
10

)

×
𝑒
−𝐾
𝑝
𝑠−𝑦
2
/4𝑠

√𝜋𝑠
𝑑𝑠

+ [
𝑎
1

𝜋𝑎
10

∫
𝑡−1

0

2√𝑡 − 1 − 𝑠𝑒−𝐾𝑝𝑠−𝑦
2
/4𝑠

√𝑠
𝑑𝑠]𝐻 (𝑡 − 1)
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− [
𝑎
1

(𝑎
10
)
3/2

√𝜋
∫
𝑡−1

0

((erf (√𝑎
10
(𝑡 − 1 − 𝑠))

× 𝑒
𝑎
10
(𝑡−1−𝑠)−𝐾

𝑝
𝑠−𝑦
2
/4𝑠

)

× (√𝑠)
−1

)𝑑𝑠]

× 𝐻 (𝑡 − 1)

+ 𝑎
4
∫
𝑡

0

(
𝑒𝑎11(𝑡−𝑠) erf (√𝑎

11
(𝑡 − 𝑠))

√𝑎11
−
2√𝑡 − 𝑠

√𝜋𝑎
10

)

×
𝑒−𝐾𝑝𝑠−𝑦

2
/4𝑠

√𝜋𝑠
𝑑𝑠

+
𝑎
3

𝑎
10

(𝑡 +
Preff𝑦

2

2
) erf 𝑐 (

𝑦√Preff
2√𝑡

)

−
𝑎
3

𝑎
10

𝑦√Preff√𝑡
√𝜋

𝑒
−𝑦
2Preff/4𝑡 +

𝑎
3

𝑎2
10

erf 𝑐 (
𝑦√Preff
2√𝑡

)

−
1

√𝜋
∫
𝑡

0

𝑓 (𝑡 − 𝑠) 𝑒
−𝐾
𝑝
𝑠−𝑦
2
/4𝑠

√𝑠
𝑑𝑠

−
𝑎
3
𝑒𝑎10𝑡+𝑦

√Preff𝑎10

2𝑎2
10

erf 𝑐 (
𝑦√Preff
2√𝑡

+ √𝑎
10
𝑡)

−
𝑎
3
𝑒𝑎10𝑡−𝑦

√Preff𝑎10

2𝑎2
10

erf 𝑐 (
𝑦√Preff
2√𝑡

− √𝑎
10
𝑡)

−
𝑎
3

𝑎
10

((𝑡 − 1) +
Preff𝑦

2

2
) erf 𝑐 (

𝑦√Preff
2√𝑡 − 1

)

× 𝐻 (𝑡 − 1)

+
𝑎
3

𝑎
10

𝑦√Preff√𝑡 − 1
√𝜋

𝑒
−𝑦
2Preff/4(𝑡−1)𝐻(𝑡 − 1)

−
𝑎
6
𝑒𝑎11𝑡−𝑦

√𝑎
11
Sc

2𝑎
11

erf 𝑐 (
𝑦√Sc
2√𝑡

− √𝑎
11
𝑡)

−
𝑎
3

𝑎2
10

erf 𝑐 (
𝑦√Preff
2√𝑡 − 1

)𝐻 (𝑡 − 1)+
𝑎
6

𝑎
11

erf 𝑐 (
𝑦√Sc
2√𝑡

)

+
𝑎
3
𝑒𝑎10(𝑡−1)+𝑦

√Preff𝑎10

2𝑎2
10

erf 𝑐 (
𝑦√Preff
2√𝑡 − 1

+√𝑎
10
(𝑡 − 1))

× 𝐻 (𝑡 − 1)

+
𝑎
3
𝑒𝑎10(𝑡−1)−𝑦

√Preff𝑎10

2𝑎2
10

erf 𝑐 (
𝑦√Preff
2√𝑡 − 1

−√𝑎
10
(𝑡 − 1))

× 𝐻 (𝑡 − 1)

−
𝑎
6
𝑒𝑎11𝑡+𝑦

√𝑎
11
Sc

2𝑎
11

erf 𝑐 (
𝑦√Sc
2√𝑡

+ √𝑎
11
𝑡) ,

𝑢 (𝑦, 𝑡)

=
𝑎
1

√𝜋𝑎10
∫
𝑡

0

𝑒𝑎10(𝑡−𝑠)−𝐾𝑝𝑠−𝑦
2
/4𝑠 erf (√𝑎

10
(𝑡 − 𝑠))

√𝑠
𝑑𝑠

+
𝑎
4

√𝜋𝑎11
∫
𝑡

0

𝑒𝑎11(𝑡−𝑠)−𝐾𝑝𝑠−𝑦
2
/4𝑠 erf (√𝑎

11
(𝑡 − 𝑠))

√𝑠
𝑑𝑠

−
𝑎
3

2𝑎
10

𝑒
𝑎
10
𝑡+𝑦√𝑎

10
Preff erf 𝑐 (

𝑦√Preff
2√𝑡

+ √𝑎
10
𝑡)

−
𝑎
3

2𝑎
10

𝑒
𝑎
10
𝑡−𝑦√𝑎

10
Preff erf 𝑐 (

𝑦√Preff
2√𝑡

− √𝑎
10
𝑡)

+
𝑎
3

𝑎
10

erf 𝑐 (
𝑦√Preff
2√𝑡

) +
𝑎
6

𝑎
11

erf 𝑐 (
𝑦√Sc
2√𝑡

)

−
𝑎
6

2𝑎
11

𝑒
𝑎
11
𝑡+𝑦√𝑎

11
Sc erf 𝑐 (

𝑦√Sc
2√𝑡

+ √𝑎
11
𝑡)

−
1

√𝜋
∫
𝑡

0

𝑓 (𝑡 − 𝑠) 𝑒
−𝐾
𝑝
𝑠−𝑦
2
/4𝑠

√𝑠
𝑑𝑠

−
𝑎
6

2𝑎
11

𝑒
𝑎
11
𝑡−𝑦√𝑎

11
Sc erf 𝑐 (

𝑦√Sc
2√𝑡

− √𝑎
11
𝑡) .

(41)

6. Special Cases

We noted that the solutions for velocity obtained in Section 3
are more general. Therefore, we want to discuss some special
cases of the present solutions together with some limiting
solutions in order to know more about the physical insight
of the problem. Hence, we discuss the following important
special cases in the case of ramped wall temperature whose
technical relevance is well known in the literature. Similarly
we can discuss some special cases of constant wall tempera-
ture solutions.

6.1. Case-I: 𝑓(𝑡) = 𝑓𝐻(𝑡). In this first case we take the arbi-
trary function 𝑓(𝑡) = 𝑓𝐻(𝑡), where 𝑓(⋅) is a dimensionless
constant and𝐻(⋅) denotes the unit step function. After time
𝑡 = 0, the infinite inclined plate applies a constant shear
stress to the fluid.The convective part of the velocity remains
unchanged while the mechanical part takes the following
form:

𝑢
𝑚
(𝑦, 𝑡) = −

𝑓

√𝜋
∫
𝑡

0

𝑒−𝑦
2
/4𝑠−𝐻

1
𝑠

√𝑠
𝑑𝑠, (42)

equivalently

𝑢
𝑚
(𝑦, 𝑡) = −

𝑓

√𝐻
1

𝑒
−𝑦√𝐻

1 +
2𝑓

√𝜋
∫
∞

√𝑡

𝑒
−𝑦
2
/4𝑧
2
−𝐻
1
𝑧
2

𝑑𝑧, (43)

for 𝐾
𝑝
̸= 0,𝑀 ̸= 0. Moreover, if we take𝑀 = 0, (42) reduces

to the form

𝑢
𝑚
(𝑦, 𝑡) = −

𝑓

√𝐾
𝑝

𝑒
−𝑦√𝐾𝑝 +

2𝑓

√𝜋
∫
∞

√𝑡

𝑒
−𝑦
2
/4𝑧
2
−𝐾
𝑝
𝑧
2

𝑑𝑧, (44)
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Figure 2: Velocity profiles for Preff = 0.350 (𝑁𝑟 = 1, Pr = 0.7),
𝐾
𝑝
= 0.7, 𝑡 = 1.2 and different values of Gr when the plate applies

a constant shear stress 𝑓 = −1.

which is equivalent to [28, Equation (28)] with the correction
of√𝐾

𝑝
.

Furthermore, in the absence of both𝐾
𝑝
= 0 and𝑀 = 0,

(42) is identical with [23, Equation (23)]

𝑢
𝑚
(𝑦, 𝑡) = −

𝑓

√𝜋
∫
𝑡

0

𝑒−𝑦
2
/4𝑠

√𝑠
𝑑𝑠. (45)

6.2. Case-II: 𝑓(𝑡) = 𝑓sin(𝜔𝑡). In the second case, we take the
arbitrary function of the form 𝑓(𝑡) = 𝑓 sin(𝜔𝑡) in which the
plate applies an oscillating shear stress to the fluid. Here 𝜔
denotes the dimensionless frequency of the shear stress. As
previously, the convective part of velocity remains the same
whereas the mechanical part takes the form

𝑢
𝑚
(𝑦, 𝑡) = −

𝑓

√𝜋
∫
𝑡

0

sin (𝜔𝑡 − 𝜔𝑠) 𝑒−𝑦
2
/4𝑠−𝐻

1
𝑠

√𝑠
𝑑𝑠. (46)

It can be further written as a sum of the steady-state and
transient solutions

𝑢
𝑚
(𝑦, 𝑡) = 𝑢

𝑚𝑠
(𝑦, 𝑡) + 𝑢

𝑚𝑡
(𝑦, 𝑡) , (47)

where

𝑢
𝑚𝑠
(𝑦, 𝑡) = −

𝑓

√𝜋
∫
𝑡

0

sin (𝜔𝑡 − 𝜔𝑠) 𝑒−𝑦
2
/4𝑠−𝐻

1
𝑠

√𝑠
𝑑𝑠,

𝑢
𝑚𝑡
(𝑦, 𝑡) =

𝑓

√𝜋
∫
∞

𝑡

sin (𝜔𝑡 − 𝜔𝑠) 𝑒−𝑦
2
/4𝑠−𝐻

1
𝑠

√𝑠
𝑑𝑠.

(48)

By taking𝑀 = 0, the steady-state component reduces to [28,
Equation (35)]

𝑢
𝑚𝑠
(𝑦, 𝑡) = −

𝑓

√𝜋
∫
𝑡

0

sin (𝜔𝑡 − 𝜔𝑠) 𝑒−𝑦
2
/4𝑠−𝐾

𝑝
𝑠

√𝑠
𝑑𝑠. (49)

In addition when 𝐾
𝑝
= 0, physically it corresponds to the

absence of porous effects and (49) results in

𝑢
𝑚𝑠
(𝑦, 𝑡) = −

𝑓

√𝜋
∫
𝑡

0

sin (𝜔𝑡 − 𝜔𝑠) 𝑒−𝑦
2
/4𝑠

√𝑠
𝑑𝑠, (50)
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Figure 3: Velocity profiles for Preff = 0.350 (𝑁𝑟 = 1, Pr = 0.7),
𝐾
𝑝
= 0.7, 𝑡 = 0.9 and different values of Gr when the plate applies a

constant shear stress 𝑓 = −1.

which can be written in simplified form as

𝑢
𝑚𝑠
(𝑦, 𝑡) =

𝑓

√𝜔
exp(−𝑦√𝜔

2
) cos(𝜔𝑡 − 𝑦√𝜔

2
+
𝜋

4
) ,

(51)

equivalent to [23, Equation (33)].

6.3. Case-III: 𝑓(𝑡) = 𝑓𝑡𝑎 (𝑎 > 0). In the final case, we take
𝑓(𝑡) = 𝑓𝑡𝑎, in which the plate applies an accelerating
shear stress to the fluid where the mechanical part takes the
following form:

𝑢
𝑚
(𝑦, 𝑡) = −

𝑓

√𝜋
∫
𝑡

0

(𝑡 − 𝑠)
𝑎

𝑒−𝑦
2
/4𝑠−𝐻

1
𝑠

√𝑠
𝑑𝑠. (52)

The corresponding solution for𝑀 = 0, namely,

𝑢
𝑚
(𝑦, 𝑡) = −

𝑓

√𝜋
∫
𝑡

0

(𝑡 − 𝑠)
𝑎

𝑒−𝑦
2
/4𝑠−𝐾

𝑝
𝑠

√𝑠
𝑑𝑠, (53)

is identical with [28, Equation (32)].
Additionally, if we take𝐾

𝑝
= 0, (53) yields

𝑢
𝑚
(𝑦, 𝑡) = −

𝑓

√𝜋
∫
𝑡

0

(𝑡 − 𝑠)
𝑎

𝑒−𝑦
2
/4𝑠

√𝑠
𝑑𝑠. (54)

7. Results and Discussion

In order to understand the physical aspects of the problem,
the numerical results for velocity, temperature, and concen-
tration are computed and plotted for various parameters of
interest such as magnetic parameter 𝑀, porosity parameter
𝐾
𝑝
, effective Prandtl number Preff, Grashof numberGr,mod-

ified Grashof number Gm, dimensionless time 𝑡, Schmidt
number Sc, and shear stress 𝑓. The graphs for velocity are
shown in Figures 2–17, where 𝑡 = 1.2 corresponds to isother-
mal velocity and 𝑡 = 0.9 is for ramped velocity. Figures 18–21
are plotted to show the temperature variations for two types
of boundary conditions, namely, ramped and constant wall
temperatures. Furthermore, Figure 22 is displayed to show
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Figure 4: Velocity profiles for Preff = 0.350 (𝑁𝑟 = 1, Pr = 0.7),
𝐾
𝑝
= 0.7, 𝑡 = 1.2 and different values of Gm when the plate applies

a constant shear stress 𝑓 = −1.
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Figure 5: Velocity profiles for Preff = 0.350 (𝑁𝑟 = 1, Pr = 0.7),
𝐾
𝑝
= 0.7, and 𝑡 = 0.9 and different values of Gm when the plate

applies a constant shear stress 𝑓 = −1.
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Figure 6: Velocity profiles for Preff = 0.350 (𝑁𝑟 = 1, Pr = 0.7),
𝐾
𝑝
= 0.7, and 𝑡 = 1.2 and different values of Sc when the plate

applies a constant shear stress 𝑓 = −1.

variations in fluid concentration. Figures 2 and 3 illustrate the
influence of Grashof number Gr on the velocity. It is observed
that velocity increases with increasing Gr. This implies that
thermal buoyancy force tends to accelerate velocity for both
ramped temperature and isothermal plates. In Figures 4 and
5, the velocity profiles for different values modified Grashof
number Gm are shown. It is found that velocity increases on
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Figure 7: Velocity profiles for Preff = 0.350 (𝑁𝑟 = 1, Pr = 0.7),
𝐾
𝑝
= 0.7, and 𝑡 = 0.9 and different values of Sc when the plate

applies a constant shear stress 𝑓 = −1.
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Figure 8: Velocity profiles for Preff = 0.350 (𝑁𝑟 = 1, Pr = 0.7),
𝐾
𝑝
= 0.7, and 𝑡 = 1.2 and different values of 𝑀 when the plate

applies a constant shear stress 𝑓 = −1.

increasing Gm for both ramped temperature and isothermal
plate. Further, it can be observed that the velocity and
boundary layer thickness decrease along 𝑦 with increasing
distance from the leading edge. Moreover, from Figures 4
and 5, we observed that the amplitude of velocity in case of
isothermal plate is greater and converges slowly as compared
to ramped velocity. In Figures 6 and 7, the velocity profiles
are shown for different values of Schmidt number Sc. Here
the values of Sc are chosen 0.22, 0.60, and 0.96. to represent
the presence of species by hydrogen, water vapor, and carbon
dioxide respectively. It is observed that the velocity decreases
with increasing Schmidt number. Physically, this refers to the
phenomenon that increasing Schmidt number implies the
dominance of the viscous forces over the diffusional effects.
As a result, the flow will be therefore decelerated with a rise
in Schmidt number. The velocity profiles for different values
of magnetic parameter 𝑀 are shown in Figures 8 and 9.
The range of magnetic field is taken from 0 to 2. It is found
that the velocity is decreasing with increasing values of𝑀 in
both cases of ramped and isothermal plates. Physically, it is
true due to the fact that increasing values of 𝑀 causes the
frictional force to increase which tends to resist the fluid flow,
thus reducing its velocity. It is further observed that when
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Figure 9: Velocity profiles for Preff = 0.350 (𝑁𝑟 = 1, Pr = 0.7),
𝐾
𝑝
= 0.7, and 𝑡 = 0.9 and different values of 𝑀 when the plate

applies a constant shear stress 𝑓 = −1.
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Figure 10: Velocity profiles for Preff = 0.350 (𝑁𝑟 = 1, Pr = 0.7) and
𝐾
𝑝
= 0.7 and different values of 𝑡 when the plate applies a constant

shear stress 𝑓 = −1.

the magnetic field imposed on the flow is zero (𝑀 = 0), the
MHD effect vanishes and the flow is termed as hydrodynamic
flow. Physically, it is true due to the fact that increasing values
of 𝑀 causes the frictional force to increase which tends to
resist the fluid flow, thus reducing its velocity. Figures 10 and
11 are plotted to see the difference between the ramped and
isothermal plate velocities. The values of 𝑡 < 1 correspond
to ramp velocity whereas 𝑡 > 1 is for isothermal plate. It
is found that ramp velocity is less than isothermal plate and
converges faster. Further velocity in both cases increases with
increasing time.The effects of inverse permeability parameter
𝐾
𝑝
on the velocity profiles are presented in Figures 12 and

13. It is found that velocity decreases with increasing 𝐾
𝑝

in both cases of ramp and isothermal plate. Physically, it is
due to the fact that increasing permeability of the porous
medium increases the resistance and consequently velocity
decreases.This observation is an excellent agreementwith the
previous study [28, Figure 3]. The effects of the shear stress
𝑓 induced by the bounding plate on the nondimensional
velocity profiles are shown in Figures 14 and 15. The velocity
of fluid is found to decrease with increasing 𝑓 in both cases
of ramped velocity and isothermal plate. Graphical results
to show the influence of the effective Prandtl number Preff
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Figure 11: Velocity profiles for Preff = 0.350 (𝑁𝑟 = 1, Pr = 0.7) and
𝐾
𝑝
= 0.7 and different values of 𝑡 when the plate applies a constant

shear stress 𝑓 = −1.
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Figure 12: Velocity profiles for Preff = 0.350 (𝑁𝑟 = 1, Pr = 0.7) and
𝑡 = 1.2 and different values of 𝐾

𝑝
when the plate applies a constant

shear stress 𝑓 = −1.

on velocity profiles are presented in Figures 16 and 17. It
is observed that the velocity is a decreasing function with
respect to Preff. These graphical results are in accordance
with [28, Figure 2]. The temperature variations against 𝑦 for
various values of effective Prandtl number are highlighted in
Figures 18 and 19.The significant decrease of the temperature
is found as a result of an increase of the effective Prandtl
number. The fluid temperature decreases from maximum at
the boundary to a minimum value as far from the plate in
both cases of ramped and constant temperature. In Figures
20 and 21, we have shown the temperature variations for
two types of boundary conditions ramped and constant plate
temperatures. It is noted that the fluid temperature is greater
in the case of isothermal plate than in the case of ramped
temperature at the plate. This should be expected since, in
the latter case, the heating of the fluid takes place more
gradually than in the isothermal case [29]. Moreover, with
increasing time, the temperature is found to increase in
both cases of ramped and constant wall temperature. The
concentration profiles for different values of Schmidt number
Sc are shown in Figure 22. It is clear from this figure that the
concentration profiles and the concentration boundary layer
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Figure 13: Velocity profiles for Preff = 0.350 (𝑁𝑟 = 1, Pr = 0.7) and
𝑡 = 0.9 and different values of 𝐾

𝑝
when the plate applies a constant

shear stress 𝑓 = −1.
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Figure 14: Velocity profiles for Preff = 0.350 (𝑁𝑟 = 1, Pr = 0.7),
𝐾
𝑝
= 0.7, and 𝑡 = 1.2 and different values of constant shear stress 𝑓.
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Figure 15: Velocity profiles for Preff = 0.350 (𝑁𝑟 = 1, Pr = 0.7),
𝐾
𝑝
= 0.7, and 𝑡 = 0.9 and different values of constant shear stress 𝑓.

thickness decrease with increasing values of Sc. Physically, it
is true, since increase of Scmeans decrease ofmolecular diffu-
sivity which results in a decrease of concentration boundary
layer.
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Figure 16: Velocity profiles for 𝐾
𝑝
= 0.7 and 𝑡 = 1.2 and different

values of Preff when the plate applies a constant shear stress 𝑓 = −1.
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Figure 17: Velocity profiles for 𝐾
𝑝
= 0.7 and 𝑡 = 0.9 and different

values of Preff when the plate applies a constant shear stress 𝑓 = −1.

8. Conclusions

The purpose of this work was to analyze the unsteady MHD
free convection flow of an incompressible viscous fluid over
an infinite inclined plate with ramped wall temperature and
applies an arbitrary shear stress to the fluid. Exact solutions
for velocity, temperature (for both cases of ramped and
constant wall temperature), and concentration are obtained
using the Laplace transform technique and expressed in
terms of the complementary error function. They satisfy all
imposed initial and boundary conditions.These solutions are
plotted in various figures for different parameters of interest.
The following conclusions are extracted from this study.

(i) The velocity of the fluid 𝑢(𝑦, 𝑡) can bewritten as a sum
of its convective and thermal components.

(ii) For the velocity solution in which the plate applies
an oscillating shear stress to the fluid 𝑓(𝑡) =

𝑓 sin(𝜔𝑡), the mechanical part can be further written
as a sum of the steady-state and transient solutions.

(iii) The concentration boundary layer thickness
decreases with increasing values of Sc.
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Figure 18: Temperature profile for 𝑡 = 1.2 and different values of
Preff.
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Figure 19: Temperature profile for 𝑡 = 0.9 and different values of
Preff.
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Figure 20: Temperature profiles for Preff = 0.350 (𝑁𝑟 = 1, Pr = 0.7)
and different values of 𝑡.

(iv) The thermal boundary layer thickness in case of
ramped wall temperature is less than isothermal wall
temperature.

(v) The magnetic parameter𝑀 develops shear resistance
which retards the fluid whereas the inverse perme-
ability parameter𝐾

𝑝
enhances the fluid motion.
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Figure 21: Temperature profiles for Preff = 0.350 (𝑁𝑟 = 1, Pr = 0.7)
and different values of 𝑡.
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Figure 22: Concentration profiles for 𝑡 = 1.2 and different values of
Sc.
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Stoffübertragung, vol. 23, no. 4, pp. 203–211, 1988.

[4] T. S. Chen, H. C. Tien, and B. F. Armaly, “Natural convection
on horizontal, inclined, and vertical plates with variable surface
temperature or heat flux,” International Journal ofHeat andMass
Transfer, vol. 29, no. 10, pp. 1465–1478, 1986.



Mathematical Problems in Engineering 15

[5] P. Ganesan and K. Ekambavanan, “Finite difference solution
of unsteady natural convection boundary layer flow over an
inclined plate with variable surface temperature,” Wärme- und
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