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Abstract 

     Spiking Neuron Networks (SNNs) are often referred to as the 
third generation of neural networks. Highly inspired from natural 
computing in the brain and recent advances in neurosciences, they 
derive their strength and interest from an accurate modeling of 
synaptic interactions between neurons, taking into account the time 
of spike firing. SNNs overcome the computational power of neural 
networks made of threshold or sigmoidal units. Based on dynamic 
event-driven processing, they open up new horizons for developing 
models with an exponential capacity of memorizing and a strong 
ability to fast adaptation. Today, the main challenge is to discover 
efficient learning rules that might take advantage of the specific 
features of SNNs while keeping the nice properties (general-purpose, 
easy-to-use, available simulators, etc.) of traditional connectionist 
models. This paper presents the history of the “spiking neuron”,  
summarizes the most currently-in-use models of neurons and 
synaptic plasticity, the computational power of SNNs is addressed 
and the problem of learning in networks of spiking neurons is 
tackled.  

     Keywords: Spiking neuron, artificial neural networks. 

1      Introduction 

The human brain consists of an intricate web of billions of interconnected cells 

called neurons. The study of neural networks in computer science aims to 

understand how such a large collection of connected elements can produce useful 

computations, such as vision and speech recognition. A real   neuron receives 

pulses from many other neurons. These pulses are processed in a manner that may 

result in the generation of pulses in the receiving neuron, which are then 
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transmitted to the other neurons (Fig. 1A). Neurons compute by transforming 

input pulses into output pulses. Artificial Neural Networks (ANN) try to capture 

the essence of this computation as depicted in figure 1B.   The rate at which a 

neuron fires pulses is abstracted to a scalar activity-value, or output, assigned to 

the neuron. Directional connections determine which neurons are input to other 

neurons. Each connection has a weight, and the output of a particular neuron is a 

function of the sum of the weighted outputs of the neurons it receives input from. 

The applied function is called the transfer function, F( ) which is binary  because 

thresholding force neurons have as output a "1" or a "0", depending on whether or 

not the summed input exceeds some threshold. Sigmoid neurons apply a 

sigmoidal transfer-function, and have a real-valued output (inset Fig. 1B, solid 

response in dotted line). ANNs are sets of connected artificial neurons. Its 

computational power is derived from clever choices for the values of the 

connection weights. Learning rules for neural networks prescribe how to adapt the 

weights to improve performance given some task. An example of a neural 

network is the Multi-Layer Perceptron (MLP, Fig. 1C). Learning rules like error 

back propagation [1] allow it to learn and perform many tasks associated with 

intelligent behavior, like learning, memory, pattern recognition, and classification 

[2,3]. 

 

Fig. 1. Artificial neural networks 

 

With the introduction of sigmoidal artificial neurons, and learning rules for 

training networks consisting of multiple layers of neurons [1,4], some of the 

deficiencies of the earlier neural networks were overcome.  The most prominent 

example was the ability to learn to compute the XOR function. Since then, multi-

layer networks of sigmoidal neurons have been shown to cope with many useful 

computations, such as pattern classification, pattern recognition, and unsupervised 

clustering. 

 

F(         A B C 

   

  

 

 

 

F(input

) 



  

 

 

3                                                                                         Computing with Spiking 

Neuron Networks

In 1949, Hebb hypothesized that, to achieve sufficient flexibility and productivity 

in a neural network, it would be useful to have the network dynamically linked all 

the neurons such that detection of different properties of an object can be done as 

an array or assembly. The purpose of an assembly would be to classify a signal 

from the output of the constituent neurons, each coding for different properties, 

without losing sight of the fact that they all add up as part of the same object [5]. 

Objects composed of different atomic parts could thus be efficiently detected. An 

example would be to have a neuron that detects the color red, and another neuron 

that detects the shape of an apple. When linked together in an assembly, these 

neurons would indicate the presence of a red apple. By having neurons that can 

each detect a particular atomic, property, a linking mechanism allows the system 

to be productive, in the sense that by just having a limited set of detectors for 

atomic properties, any combination of these properties can be enough to express 

the complete classification. For instance, linking separate red, green, yellow, 

apple, banana and pear, detectors allow the expression of nine differently colored 

objects [6]. 

In the presence of a single object, composed of a number of properties, a simple 

on-off detector-signal for each property is sufficient to correctly describe the 

particular composition. However, in the presence of multiple objects this simple 

compositional signaling scheme is ambiguous [7], and more powerful means of 

linking atomic elements into composite structures (like .red apple.) in neural 

networks are needed. Classification in the presence of multiple objects has so far 

remained elusive or at best sketchy [7].  Even though the usefulness of such 

schemes has been well recognized e.g. for vision [8], speech recognition [9], and 

the representation and manipulation of symbolic information [7], several 

researchers even argued that the representation of compositional information is 

impossible in neural networks [10,11]. 

The starting point of many theses on ANN is the notion originally put forward by 

Sander Bohte [12].  That is, the binding problem can be resolved by a type of 

neural network (based on the real biological model) where there is complete 

connection between all the spiking neurons.  Malsburg, 1999 [7] proposed that in 

order for neurons to be sensitive to coding for features that belong to the same 

object, these neurons would synchronize the times at which they emit spikes 

(the .synchrony-hypothesis.). Neurons coding for features belonging to different 

objects would then fire out of phase, allowing for multiple compositional objects 

to be represented simultaneously. Assembly-dependent correlation between 

neurons was interpreted as support for this idea [13], and much research into the 

temporal properties of spiking neurons (in neuroscience as well as in 

computational modeling) then followed. 
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2      Computational Process in ANNs 

Neurons for first generation ANNs send binary signals (high) only if the 

summation of the weighted received signals goes up above a threshold value. This 

implies that the activation function used is solely a step function. When connected 

as multi-layer perceptron (MLP) with one hidden layer, the signals sent (output of 

MLP) will be of the Boolean type which may be utilized to help in the 

computation which can make this first generation ANN as universal 

approximators [2]. 

The function as universal approximators can be further improved with the help of 

second generation ANN. In the second generation ANN, the activation function is 

continuous (sigmoid function or hyperbolic tangents). The output signals are 

computed as analog for the two cases, when there is input and when there is 

output. Back propagation (BP) and recurrent neural networks are used for training 

and learning purposes. Because BP is flexible and has the ability to approximate 

any continuous function, it has been used in system identification for real–time 

chemical process [4]. 

For the first generation ANNs and for second generation of ANNs, the inputs to 

each neuron consist of the sum of the incident values multiplied by some 

weightage. For the third generation ANNs (frequently referred to as Spiking 

Neural Networks- SNNs) , the inputs to each neuron consist of  pulse spikes  

arriving at random , and the values of the spikes incident onto the neurons are the 

values of the arriving spikes  multiplied by the weights of the preceptors. The 

incident signals are accepted by the neurons only at the spiking time (time 

window) of the neurons. The accepted spiking signals can be considered as a type 

of signals associated with the stabilized frequencies of the neurons. For a signal to 

be communicated through SNNs, its value has to be converted to a certain time 

scale.  This conversion is known as rate coding or pulse coding.   The neurons can 

only see spiking time or no spiking time. They do not recognize any time in 

between. Computation is carried out when all the neurons have completely fired. 

After this firing cycle, the network starts processing on the values of input and 

comparing them with the attributes to get correct classification .Hence, third 

generation ANNs (SNNs) are superior to the first generation ANNs or the second 

generation ANNs. It has been established that SNNs are more biologically 

realistic than the first generation and second generation ANNs [14,15]. 

SNNs manipulate spatial-temporal data in their calculation and communication, 

like what the real neurons actually do [16,4]. The methods of sending and 

receiving of individual pulses is called rate (pulse) coding. They permit 

multiplexing of data as amplitude and frequency [17]. Latest findings indicate that 

neurons can carry out analog calculations in the cortex at an unbelievable rate. 

As an example, visual inputs for facial recognition can be analyzed and classified 

by the brain in less than 100ms [18]. If 10 steps of synaptic excitation are applied 
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to the retina at the temporal lobe, the eye will process the signal within 10ms after 

the excitation. Therefore, time perception is very short for permitting an averaging 

method such as rate (pulse) coding [17,18]. When processing speed becomes 

important, pulse coding technique is preferred [18,19]. 

3      Spiking Neural Network (SNN) 

The third generation neural networks are Spiking Neural Networks (SNN) (Fig. 2) 

which has become an exciting topic in recent years [20]. SNNs became famous 

even before the advent of sigmoidal or perceptron neurons [21]. It has been shown 

that SNNs are suitable for parallel implementation in digital hardware [22], and in 

analog hardware [23,15]. 

Fig. 2. Spiking neural network [12](Bohte 2003) 

 

Previous generations of neural networks use analog signals to convey information 

from one neuron to another. Communications between neurons in SNNs use 

spikes similar to that used by real biological neurons. These spikes are recognized 

only at the instant they occur. Using weighted sum of the analog input values the 

previous neuron calculates a value using sum specific non- linear function. This 

value will determine the delay for the spike output which is targeted for the 

subsequent neuron. In general, the spiking neuron can be viewed as a leaky 

integrator. This is because the targeted neurons will integrate the spikes over time 

and accept the resulting integrated value which is used as membrane potential. 

Whenever the membrane potential approaches a certain threshold value the 

neuron sends a spike, after that its membrane potential is reset. 

New knowledge in  information processing in biological neurons have explained 

several additional parameters(such as gene and protein expression ) which  have 
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to be considered for a neuron to spike  [15,23,24].These additional parameters 

may include  physical properties of connections [25], the probabilities of spikes 

being received at the synapses and also the emitted neuro-transmitters or open ion 

channels [26,27]. Many of these properties have been mathematically modeled 

and used to study biological neurons [28,29,30,31]. SNN are made up of artificial 

neurons which communicate with the help of trains which can be considered as 

pulse coded information [32,33,20,34,23]. SNN are biologically plausible and 

offer some means for representing time, frequency, phase and other features of the 

information being processed. SNN has the ability to train the neurons to convert 

spatial-temporal information into spikes (whose properties include spiking time 

and spiking rates). When selecting the neuron model for big SNN, there is a 

tradeoff between the computational efficiency and biological plausibility [35]. If 

the computational efficiency is more important than biological plausibility, the 

Leaky Integrate and Fire (LIF) model will be adopted because of its low 

computational cost. 

3.1      Model of spiking neurons and synaptic plasticity 

A spiking neuron model accounts for the impact of impinging action potentials 

spikes on the targeted neuron in terms of the internal state of the neuron, as well 

as how this state relates to the spikes the neuron fires. There are many models of 

spiking neurons, and this section only describes some of the models that have so 

far been most influential in Spiking Neuron Networks. 

3.1.1      Threshold-fire models 

The threshold-fire models are based on the temporal summation of the 

contributions from all presynaptic neurons to the membrane potential unit. If this 

contribution exceeds a threshold ϑ, then the postsynaptic neuron will fire .In this 

section we will discuss two of these models, the integrate and- fire and the spike 

response model – SRM [35,32]. 

3.1.2      Integrate-and-fire models 

Integrate-and-fire model was the first model to use spikes over time to convey 

information [28].  As the input spikes arrive in time, the inner potential of a 

neuron (postsynaptic potential - PSP) depends on the weights at the input. If the 

weights are positive, the connections are excitatory and an incoming stimulus acts 

to increase the PSP. Connections with negative weights are inhibitory as stimulus 

passing through them act to decrease the PSP. When the postsynaptic potential 

reaches a threshold, an output spike is released. In the event of an output spike, 

the PSP is reset to its resting potential, as can be seen in Fig. 3. 
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Fig. 3. Integrate-and-fire neuron [35]. 

3.1.3      Integrate-and-fire with leakage models 

Integrate-and-fire neuron has its PSP ruled by a decay term, which decreases the 

magnitude of PSP over time [28]. When neurons cease to receive input excitation, 

the PSP gradually decreases and after some time reaches its resting potential. This 

mechanism, in its simplest form, can be associated with an RC electrical circuit 

where each neuron is composed of resistors and capacitors. Consequently, 

neuronal activity can be analyzed using the theory of electrical circuits. The 

dynamics of a leaky neuron can be expressed by the change in the PSP (excitation 

or inhibition) upon spike arrival as: 

( ) ( ) max 1 exp ini
t t

rise

t t
PSP PSP A

τ

  −
= ± − −   

  
                                   (1) 

Where maxA  is the maximum activation caused by a single spike, is the time of 

the incoming spike, and 
rise

τ  is the excitatory or inhibitory time constant of the 

neuron. Some simplified models do not consider the exponential term in Equation 

1. As a result, upon the arrival of a spike, the PSP is simply added to by the 

constant maxA . 

The PSP decay term, on the other hand, is described as: 

( ) max 1 exp ini
t

decay

t t
PSP A

τ

  −
= ± − −    

  
                                    (2) 

Where maxA is the maximum activation caused by a single spike, 
ini

t is the time of 

the incoming spike, and 
decay

τ  is the time constant for PSP decay in the neuron. 

Fig. 4 shows the dynamics of a leaky integrate-and-fire neuron. Experiments have 

demonstrated that leaky integrate-and-fire neurons can very realistically reproduce 

the behavior of biological neurons [35]. 
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Fig. 4. Typical behaviour of a leaky integrate-and-fire neuron (rise and decay 

terms). 

3.1.4      Different neuron models 

Apart from Threshold- Fire Models, there are other models which can be used for 

SNN. Three different neuron models which are frequently used are as listed 

below: 

i. Izhikevich model 

ii. Thorpe’s model 

iii. Fitzhugh-Nagumo model 

3.1.5      Izhikevich model 

Izhikevich (IZ) applied bifurcation theory to create this model, which is a 2D 

ordinary differential equation system [32,30,31]. 

( )

20.04 5 140 1
dv

v v u
dt

du
a bv u

dt

= + + − +

= −

                                       (3) 

Resetting of the neuron after every spike is governed by the following formula: 

If 30v mV≥ Then 
v c

u u d

←


← +
                                     (4) 

Where v = the voltage of a neuron, u = adjusting function as a recovery variable, I 

(f) = current input, And a,b,c,d  are adjustable parameters. 

When the membrane voltage v (t) reaches its top peak (30 mV), a spike is emitted, 

then the v and u are reset to other values according to the mechanism in rule (3). 

The resting range in the model is between -70 mV and -60 mV depending on the 

value of b. i.e., to imitate regular spiking neurons, the scale of time for a, b, c and 

d are set to be 0.02, 0.2, - 65 mV and 2 respectively. 
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3.1.6    Thorpe’s model 

Thorpe’s model is a simple version of an integrate-and-fire neuron without 

leakage in which the membrane potential of a post-synaptic neuron i at time t 

depends on the firing order of all its pre-synaptic neurons j [18]: 

modi ji jPSP w order= ∑                                           (5)                                                             

Where mod  [0, 1] is the modulation factor, orderj is the firing order of a pre-

synaptic neuron j, order j  [0, m-1] where m is the number of pre-synsptic 

neurons connected to neuron i, wji is the synaptic efficacy (weight) of the synapse 

connecting neuron i and neuron j. The synaptic modification is proportional to the 

firing order of the spikes received: 

mod jorder

jiw∆ =                                                     (6) 

With the same convention as in (6).  Connections to superior order pre-synaptic 

neurons are given a higher weight. Higher weights results in stronger connections. 

When a spike is received via one of the neuron’s synapse, the neuron’s potential 

PSPi builds up. When the PSPi reaches a threshold PSPθi, neuron i fires a spike. 

After the spike is fired the PSPi is set to 0: 

,

0,

i ji i i

i

i i

PSP P PSP PSP (spike received)
PSP

PSP PSP (spike emitted)

θ

θ

+ <
= 

=
                           (7) 

This model has been proven to be an efficient way of modeling the visual system 

[18] and it has been used to create an audio model [36]. 

3.1.7    Fitzhugh-Nagumo model 

This model is a modified version of a single cell neuron (which is often referred to 

as HH model). Like the HH model it is possible to get low level steady state for 

small values of applied current. Intermediate values of current yield stable 

oscillatory state. Higher values of current will again produce a steady state (of 

higher values). This model differs from HH in that it uses fewer variables. By 

imitating the null lines of the HH model with a straight line and a cubic function, 

a polynomial decreasing model for the following form was obtained [37,38,15]. 

( )

( )

3

3

dv v
v w I t

dt

dw
v v a bw

dt
ε

= − − +

= − + −

                                                (8) 

In the previous formula, v represents the fast ability parameter, and w the slow 

ability parameter; both of which are recovery variables. Parameters a, b and ε are 

associated with the time scale and dynamic kinetics of the recovery variable.  The 

FitzHugh-Nagumo model deserves special mention [23] because it was 
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discovered after a research work to get a mathematical model of a single cell 

neuron for the axons of a giant squid (as does the Izhikevich model [38]. The 

latter is a simple and computationally inexpensive neuron model (suitable for 

large-scale simulation) that uses two coupled differential equations which are able 

to reproduce several biologically realistic neuronal behaviors (brain-like activity, 

bursting, etc.). 

3.2      Neural unit models 

This section explores in details the spiking neural networks which represent a 

more realistic neuronal unit models. There are two main applications for a group 

of spiking neurons connected to each other in a network. SNNs can be used to 

model brain functions and they are also useful   as tools in artificial intelligence. 

These two applications are discussed in details as follows. 

3.2.1      SNNs for modeling brain functions 

Traditionally SNNs have been used in computational neuroscience, usually in an 

attempt to evaluate the dynamics of neurons and how they interact in an ensemble 

[39]. The Hodgkin-Huxley model of spiking generation [40] can be considered the 

pioneering work describing the action potentials in terms of ion channels and 

current flow [41]. Further studies expanded this work and revealed the existence 

of a wide number of ion channels and that the set of ion channels varies from one 

neuron to another [42]. Genesis and Neuron [43,44] are examples of widely 

known simulation tools that use neurons described with ion channels. 

New neuron models have been developed using the simulation tools of Genesis 

and Neuron [43,44,15,35] for which internal and external behaviors of a single 

neuron are simulated as compartmental electric cable. Because of this , simplified 

models such as  the integrate-and-fire neuron [34], for all intents and purposes 

have  the properties of a single resistor-capacitor (RC) circuit which enables the   

Izhikevich model [38] be combined with  the Hodgkin-Huxley model to produce   

the integrate-and-fire model which can be described as a two-dimensional system 

of ordinary differential equations . Spiking neural networks (SNN) use SpikeProp 

as training algorithms which implement both incremental and batch processing 

[45]. 

3.2.2      SNNs in artificial intelligence 

Most neural networks are considered as artificial intelligent systems   which 

execute information processing using linear or non-linear processing elements (for 

instance, a sigmoid function) [46,47,48,49,50,45,15]. Over the years, SNN has 

been considered too complex and difficult to analyze. Other reasons for leaving 

SNN aside in artificial intelligence tasks include: 

i. Biological cortical neurons have long time constants. Typically fast or 

slow inhibition can be in the order of dozens of milliseconds and fast or 
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slow excitation can reach hundreds of milliseconds. This dynamics can 

considerably constrain applications that need fine temporal processing [51]. 

ii. For biological cortical neurons, there is no prior knowledge of the time 

coded information. Although it is known that neurons receive and emit 

spikes, whether neurons encode information using spike rate or precise 

spike time is still unclear [52]. For those supporting the theory of spike 

rate coding, it is reasonable to approximate the average number of spikes 

in a neuron with continuous values and consequently process them with 

traditional processing units (sigmoid, for instance).  Therefore, it is not 

necessary to perform simulations with spikes, as the computation with 

continuous values is simpler to implement and evaluate. 

However, new discoveries on the information processing capabilities of the brain 

and the technical advances related to massive parallel processing, are bringing 

forward the idea of using biologically realistic networks in artificial intelligent 

systems. Many have questioned the use of rate coding, mainly because they have 

the assumption that rate coding can be very slow to provide reliable outputs (the 

average number of spikes needs to be computed over a certain period of time). 

However, many perceptual experiments have shown to be contrary to this 

assumption. For instance, a pioneering work has shown that the primate 

(including human) visual system can classify complex natural scenes in only 

around 100-150 ms [53]. The same magic numbers of 100-150 ms were obtained 

by other researchers, when they discovered that unprimed views of common 

objects can be recognized at a rate of 10 Hz. This rate of information processing is 

important considering that billions of neurons are involved and the massive 

volume of information is propagated through several areas of the brain before a 

decision is made [54]. 

Such results culminated in a theory suggesting that a single neuron probably 

exchanges only one or a few spikes before the information processing task is 

concluded. As a result of Thorpe’s work, a simple multi-layer feed-forward 

network (BP) of integrate-and-fire neurons that can successfully detect and 

recognize faces in real time was designed [55,56,15]. Other works [12,57,58] also 

present systems using precise timing of spikes on pattern recognition (clustering, 

supervised and unsupervised training). 

An important landmark in the use of SNNs in artificial information processing is 

the work of Maass [20], which shows that, theoretically, SNN can be used as 

universal approximates of continuous functions. Mishra [59] gave examples of 

spiking neural networks applied to benchmark datasets (internet traffic data, EEG 

data, XOR problems, 3-bit parity problems, iris dataset) to perform function 

approximation and supervised pattern recognition. A comparison with a 

traditional Multi-Layer Perceptron Network (MLP) highlights the differences in 

performance between the systems in each specific dataset. 
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3.3      Learning in SNN 

This section describes several learning algorithms designed for SNN. Learning in 

SNN is a complex process since information is represented in time dependent 

spikes. Most of the SNNs use recurrent network topologies where learning is 

difficult. Some of the learning algorithms are normally being applied to a specific 

type of SNN due to its characteristics. 

Like traditional neural network, learning in SNN is reinforcement, supervised and 

unsupervised. Supervised learning is the most commonly used learning algorithm 

in SNN [15]. Various supervised learning algorithms have been developed for 

SNN and have been reviewed by Kasabov [23]. 

3.3.1      Unsupervised learning 

As mentioned above, the synaptic efficacy and the strength of the synaptic 

response may be influenced by the history of activity of the pre- or postsynaptic 

neurons. This phenomenon is known as synaptic plasticity [60]. There exists 

strong evidence that this phenomenon is a key factor for the learning processes. 

The most common forms of the synaptic plasticity are summarized in Table 1. 

They differ mainly in their time duration. For instance, some processes (e.g. 

facilitation) decay at the rate of about 10-100ms; other processes (e.g. long-term 

potentiating (LTP) or long-term depression (LTD)) persist for hours, days, or 

longer.  The spectrum of time constants is in fact so broad that it covers 

essentially every time scale, from the fastest (that of synaptic transmission itself), 

to the slowest (developmental). 

Different forms of synaptic plasticity   differ according to the conditions required 

for the induction (cf. Table 1, column 3). Some depends only on the history of 

presynaptic stimulation, independently of the postsynaptic response. For example, 

facilitation, augmentation, and postsynaptic potentiation occur after rapid 

presynaptic stimulation, with stronger stimulation leading to more persistent 

potentiating. Others depend on some coincidence of pre- and postsynaptic activity 

or even on the temporal order of pre- and postsynaptic spikes that can determine 

synaptic potentiation or depression [15,61]. 
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Table 1: Different forms of synaptic plasticity [60,15]. By ’pre’ we denote the 

presynaptic locus of the phenomenon induction, while ’post’ stands for the 

postsynaptic locus. 

Phenomenon Duration Locus of induction 

Short-Term Enhancement 
Paired-Pulse Facilitation (PPF) 

Augmentation 

Post-Tetanic Potentiation (PTP) 

 

Long-Term Enhancement 
Short-Term Potentiation (STP) 

Long-Term Potentiation (LTP) 

 

Depression 
Paired-Pulse Depression (PPD) 

Depletion 

Long-Term Depression (LTD) 

 

100 ms 

10 s 

1 min 

 

 

15 min 

>30 min 

 

 

100 ms 

10 s 

>30 min 

 

Pre 

Pre 

Pre 

 

 

Post 

Pre and post 

 

 

Pre 

Pre 

Pre and post 

3.3.2      Supervised learning 

A supervised spike-based processes, such as Spike-Timing Dependent Plasticity 

(STDP), have already been widely investigated and described in literature 

[62,63,28,34,54]. However, unsupervised approach is not appropriate for the 

learning tasks that require an explicit goal definition.  In this chapter we focus on 

the supervised learning methods for precise spike timing in SNN. The goal of the 

presented survey is to determine what paradigms of neural information coding can 

be implemented with the recent approaches.  We present some representative 

methods for supervised learning in SNN. For all these methods the common goal 

of learning can be stated as follows: given a sequence of input spikes trains 

and a sequence of the target output spikes , find a vector of the 

synaptic weights w, such that the outputs of the learning neurons  are close 

to . 

3.4      Spikeprop network model 

The most famous and most used algorithm for supervised learning of feedforward 

network is the backpropagation algorithm (BP). 80 % of all applications of neural 

networks use backpropagation algorithm. 

The first published back propagation algorithm for SNN is SpikeProp which was 

proposed by Bohte [11]. Many different versions of SpikeProp have been used 

[64,65]. SpikeProp algorithm is not similar to classical backpropagation 

algorithms which have been used frequently [1,66]. The difference between 

SpikeProp algorithm and classical back propagation algorithm is of course in their 
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adaptation rules. SpikeProp allows the network to gradually adjust towards correct 

operation, just as traditional networks do [11,54]. 

The algorithm works in much the same way as back propagation does. It starts 

with the end neuron, and looks back at the neurons that connect to it. It then 

adjusts the weights on those connecting edges so that the neuron is more likely to 

fire at the correct time. This process is continued from the neurons at the output 

layer of the network back towards the input layer. 

This system restricts spiking neural networks to a feed forward model where the 

neurons are organized into layers [67]. These layers are connected to the previous 

and next layers by edges, but they are not connected to any neurons within their 

own layer. In addition, they only affect neurons in the next layer. The adjustment 

algorithm assumes that all weights rely on the desired firing pattern of the neurons 

in the next layer. If this assumption does not hold, each weight adjustment must 

take into account the chance of causing a neuron in a previous layer to fire. 

Because it is not possible to know how previous layers are related to other layers 

(including the one in which the current neuron is) the neuron cannot be adjusted 

(cannot be initialized) without considering the previous neurons in relation to 

preceding neurons. Initialization of neurons to fire is a problem associated with 

circular dependence and cannot be solved within this algorithm. 

Another flaw in SpikeProp is that, in cases where the potential barely reaches the 

level of synapse (causing the neuron to fire), the gradient of the potential during 

the spike is very small which in turn causes the derivative of the error to be very 

high [67]. This causes neurons that need little adjustment to be dramatically 

changed.  It’s an edge case, but it can cause networks to never converge to a 

correct weighting arrangement. Without a fix for this, 4% of cases never converge, 

and cases that do converge take 16.7% longer on average. 

Finally, networks using SpikeSrop can only fire once in a given time period. This 

means that, to handle big problems, increasingly large networks must be used. 

However, none of these issues are endemic to spiking neural networks. It is 

possible to train a spiking neural network that is both recurrent and has neurons 

that spike multiple times. 

Spiking neural networks (SNNs) are believed to be biologically more plausible 

[68,69,11,54,15,35] and computationally more powerful than analog neural 

networks [70]. 

Computational power of SNNs has yet to be demonstrated, mainly due to the fact 

that an efficient supervised learning algorithm still unavailable. In contrast to 

analog neural networks, for which various sophisticated supervised learning 

algorithms have been developed [71], only a very limited number of supervised 

learning algorithms are available for training SNNs, which can be attributed to the 

discontinuous nature of spiking neurons. 
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SpikeProp adopt error backpropagation procedures which have been used widely 

in the training of analog neural networks to perform supervised learning [72]. 

SpikeProp do have weaknesses. The first weakness concerns sensitivity to 

parameter initialization values. This means that if the neuron is still inactive after 

initialization, the SpikeProp will not perform training for that weights which will 

not produce any spike. The second weakness is that SpikeProp is only suitable in 

cases where there is latency-based coding. The third weakness is that SpikeProp 

works only for SNNs where neurons spike only once in the simulation time. 

Finally, SpikeProp algorithm has been designed for training the weights only. To 

address these weaknesses, several improvements to SpikeProp algorithms have 

been suggested [73,74,11,54]. 

4      Conclusion 

This paper has given an overview of the current state-of-the Spiking Neuron 

Networks: its biological inspiration, the models that underlie the networks, some 

theoretical work on computational complexity and learnability, learning rules, 

both traditional and novel, and some current application areas. The novelty of the 

concept of SNNs means that many lines of research are still open and are actively 

being pursued. Describes in details are the fundamental concepts and methods of 

ANNs, SNNs and SpikeProp. Many studies in literature have been done to 

improve the performance of SNNs and SpikeProp algorithm based on ANNs. 

More work is still required to develop SNN and SpikeProp to improve 

generalization of error and classification accuracy etc. 
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