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Abstract
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Introduction

It is well known that Newtonian fluids such as air, water,

ethanol, benzene and mineral oils form a basis for classical fluid

mechanics. However, many important fluids, such as blood,

polymers, paint, and foods show non-Newtonian behavior. Due to

the diversity of non-Newtonian fluids in nature no unique

relationship is available in the literature that can describe the

rheology of all the non-Newtonian fluids. Of course, the

mathematical systems for non-Newtonian fluids are of higher

order and complicated in comparison to the Newtonian fluids.

Therefore, a variety of constitutive equations have been suggested

to predict the behavior of non-Newtonian fluids. Despite of all

these difficulties, the recent researchers in the field have made

valuable contributions in study of flows of non-Newtonian fluids

[1–12]. Amongst the different categorizations of non-Newtonian

fluids, there is one simplest model of differential type fluids known

as second grade fluid [13,14]. Keeping the importance of non-

Newtonian fluids in mind, for the present problem, we have

chosen second grade fluid as a non-Newtonian fluid. Amongst the

different studies on second grade fluids [15–25], Nazar et al. [26]

provided some interesting results. They considered the second

grade fluid over an oscillating plate and obtained exact solutions

using the Laplace transform technique, expressed them as the sum

of steady-state and transient solutions. Recently, Farhad et al. [27]

extended the work of Nazar et al. [26] by considering the second

grade fluid to be electrically conducting and passes through a

porous medium. As a special case, it is observed that their results in

the absence of MHD and porosity effects are reduced to those

obtained by Nazar et al. [26].

On the other hand free convection is a common process in

nature and has numerous applications and occurrences in

industry. It is a major cause of atmospheric and oceanic circulation

and plays an important role in the passive emergency cooling

systems of advanced nuclear reactors. Furthermore, free convec-

tion flows of non-Newtonian fluids with heat transfer play an

important role in many industrial systems. For example, there are

many process in which thermal energy is transferred from an

object through the physical contact with heat transfer fluids at a

temperature colder than the object. Industrial refrigeration or

heating, chemical manufacturing, breweries, ventilation and air

conditioning, ice rinks and engine cooling, environmental

chambers, oil and gas industry and, food and pharmaceutical

are some examples of such applications [28–30]. Besides that, the

Stokes’ second problem for the flow of an incompressible fluid over

an oscillating plane is of great importance in the literature of fluid

dynamics. It admits an exact analytical solution [31]. The Stokes’

or Rayleigh problem is not only of fundamental theoretical interest

but it also occurs in many applied problems [32,33].

Pop and Watanabe [34] investigated the effects of suction and

injection on the free convection flow from vertical cone with

uniform surface heat flux with fixed value of Pr = 0.7 and obtained

numerical solutions. Kafoussias [35] studied free convection

magnetohydrodynamic flows through porous medium and ob-

tained numerical solutions for constant viscosity. In the investiga-

tions [34,35], the coefficients of viscosity are assumed constant.

However, it is observed the coefficients of viscosity for most fluids

may depend on temperature [36]. Many investigations have been

reported into the problem of free convection heat transfer along a

vertical surface with temperature dependent viscosity for different

heating conditions [37–41]. Jang and Lin [42] studied the role of

temperature-dependent viscosity in laminar free convection flow

adjacent to a vertical surface with uniform heat flux.

Most of the existing studies in the literature on convection flows

of second grade fluid are concerned with numerical or approx-

imate solutions [43–45]. Considerably less work has been reported
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concerning the constant property effects on free convection flow of

second grade fluid over the vertical isothermal plate. So, it is

necessary to carry out the study on free convection flows of second

grade fluid with exact solutions for the free convection flow of

second grade. Exact solutions on the other hand are needed not

only for the technical relevance of the flows but are also significant

for a variety of other reasons such as they can be used as a

benchmark by numerical solvers and for checking the stability of

their solutions. Therefore, the main purpose of the present

investigation is to study the unsteady free convection flow of a

second grade fluid past an isothermal vertical plate oscillating in its

plane with constant viscosity [34,35], and to obtain the exact

solutions using the Laplace transform technique. The present

problem is the extension of Nazar et al. [26]. However, it is rather

complicated due to the presence of free convection term in the

momentum equation which makes the momentum and energy

equations coupled with each others. Hence the present solutions

are more general compared to the solutions existing in the

literature.

Formulation of the Problem

Following Fosdick and Rajagopal [13], the Cauchy stress tensor

T in a homogeneous incompressible fluid of second grade is

related to the fluid motion in the following form

T~{pIzmA1za1A2za2A2
1, ð1Þ

where p is the scalar pressure, I is the identity tensor, m is the

coefficient of viscosity, a1 and a2 are the material moduli

commonly referred to as the normal stress moduli and A1 and A2

stand for the first two tensor of Rivlin and Ericksen defined by

A1~LzLT , A2~
dA1

dt
zA1LzLTA1: ð2Þ

According to Fosdick and Rajagopal [13] and Dunn and

Fosdick [14] the model (1) required to be compatible with

thermodynamics in the sense that all motions satisfy the Clausius-

Duhem inequality and the assumption that the specific Helmholtz

free energy is a minimum in equilibrium at constant temperature

then, the material moduli must satisfy the following conditions

m§0, a1§0, a1za2~0: ð3Þ

Now let us consider the unsteady free convection flow of a

second grade fluid near an isothermal vertical plate situated in the

x,zð Þ plane of a Cartesian coordinate system x,y and z: Initially,

both the plate and fluid are at rest with constant temperature T?:

At time t~0z, the plate starts motion in its plane with oscillating

velocity and then transmitted to the fluid. The temperature of the

plate immediately raises to Tw and thereafter maintains constant.

Owing to the shear, the fluid is gradually moved and its velocity is

of the form

v~v(y; t)~u(y,t)i; ð4Þ

where i is the unit vector in the flow direction as shown in Fig. 1.

In the view of the above assumptions and using the usual

Boussinesq approximation, the momentum and energy equations

for the incompressible flow of a second grade fluid are

Figure 1. Physical geometry and coordinates system.
doi:10.1371/journal.pone.0085099.g001
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r
Lu

Lt
~m

L2u

Ly2
za1

L3u

Ly2Lt
zgbT T{Twð Þ, ð5Þ

rcp
LT

Lt
~k

L2T

Ly2
: ð6Þ

The appropriate initial and boundary conditions

u y,0ð Þ~0, T y,0ð Þ~T?, yw0,

u 0,tð Þ~UH tð Þ cos v1tð Þ or u 0,tð Þ~U sin v1tð Þ, tw0,

T 0,tð Þ~Tw, tw0,

u ?,tð Þ~0, T ?,tð Þ~T?, tw0, ð7Þ

where u~u y,tð Þ denotes the fluid velocity in the x{direction,

T~T y,tð Þ is the temperature, r is the constant density of the

fluid, m is the viscosity, a1 is the second grade parameter, bT is

the volumetric coefficient of thermal expansion, g is the

acceleration due to gravity, cp is the specific heat capacity, k is

the thermal conductivity, T? is the free stream temperature, v1

the frequency of the velocity of the wall and H tð Þ is the Heaviside

unit step function.

By introducing the following dimensionless variables

v~
u

U
, j~

U

n
y, t~

U2

n
t, v~

n

U2
v1, h~

T{T?

Tw{T?
, ð8Þ

the system of equations 5ð Þ{ 7ð Þ reduces to

Lv

Lt
{

L2v

Lj2
{a

L3v

Lj2Lt
{Grh~0, ð9Þ

Pr
Lh

Lt
~

L2h

Lj2
, ð10Þ

v j,tð Þ~0; h j,tð Þ~0; tƒ0,

v 0,tð Þ~H tð Þ cos vtð Þ or

v 0,tð Þ~ sin vtð Þ, h j,tð Þ~1 tw0,

v ?,tð Þ~0, h ?,tð Þ~0, tw0, ð11Þ

where

a~
a1U2

rn2
, Gr~

gbT n Tw{T?ð Þ
U3

, Pr ~
mcp

k
:

Here a is the dimensionless second grade parameter, Gr is the

thermal Grashof number and Pr is the Prandtl number.

Solution of the Problem

We solve the governing equations in exact form by the Laplace

transform technique and their solutions in the transform y,qð Þ-
plane are given by

�vvc j,qð Þ~ q

q2zv2
exp {

jffiffiffi
a
p

ffiffiffiffiffiffiffiffiffiffi
q

qzb

r� �

z
a

q2 q{bð Þ exp {
jffiffiffi
a
p

ffiffiffiffiffiffiffiffiffiffi
q

qzb

r� �

{
a

q2 q{bð Þ exp {j
ffiffiffiffiffiffiffiffi
Pr q

p� �
, ð12Þ

�vvs j,qð Þ~ v

q2zv2
exp {

jffiffiffi
a
p

ffiffiffiffiffiffiffiffiffiffi
q

qzb

r� �

z
a

q2 q{bð Þ exp {
jffiffiffi
a
p

ffiffiffiffiffiffiffiffiffiffi
q

qzb

r� �

{
a

q2 q{bð Þ exp {j
ffiffiffiffiffiffiffiffi
Pr q

p� �
, ð13Þ

�hh j,qð Þ~ 1

q
exp {j

ffiffiffiffiffiffiffiffi
Pr q

p� �
, ð14Þ

where the subscripts c and s in Eqs. (12) and (13) refer to cosine

and sine oscillations of the plate and

a~
Gr

a Pr
, b~

1

a
, b~

1{ Pr

a Pr
, Pr=1:

We split Eq. (12) in the following forms

�vv1 qð Þ~ q

q2zv2
, �vv4 j,qð Þ~ a

q2 q{bð Þ exp {j
ffiffiffiffiffiffiffiffi
Pr q

p� �
,

�vv2 qð Þ~ a

q2 q{bð Þ ,
ð15Þ

�vv3 j,qð Þ~ exp {
jffiffiffi
a
p

ffiffiffiffiffiffiffiffiffiffi
q

qzb

r� �
: ð16Þ

Let us we denote

v1 tð Þ~L{1 �vv1 qð Þf g, v2 tð Þ~L{1 �vv2 qð Þf g,

v3 j,tð Þ~L{1 �vv3 j,qð Þf g, v4 j,tð Þ~L{1 �vv4 j,qð Þf g,

where L{1 is denoting the inverse Laplace transform.

In order to find the inverse Laplace transform of Eq. (12), we

write the velocity vc j,tð Þ as a convolution product (see theorem

(A1) from Appendix S1).

vc(j,t)~

ðt
0

v1 t{sð Þv3 j,sð Þdsz

ðt
0

v2 t{sð Þv3 j,sð Þds{v4 j,tð Þ: ð17Þ

Laplace inversion of Eq. 15ð Þ leads to the following expressions.

v1 tð Þ~ cos vtð Þ, v2 tð Þ~
a ebt{bt{1
� �

b2
, ð18Þ

v4 j,tð Þ~ aebt

2b2

e{j
ffiffiffiffiffiffi
b Pr
p

erf c
j
ffiffiffiffiffi
Pr
p

2
ffiffiffi
t
p {

ffiffiffiffiffi
bt
p

 !
zej

ffiffiffiffiffiffi
b Pr
p

erf c
j
ffiffiffiffiffi
Pr
p

2
ffiffiffi
t
p z

ffiffiffiffiffi
bt
p

 !" #

{
a

b
tz

j2 Pr

2

 !
erf c

j
ffiffiffiffiffi
Pr
p

2
ffiffiffi
t
p

 !
{

j
ffiffiffiffiffiffiffiffi
Pr t
p ffiffiffi

p
p e

{
j2 Pr

4t

" #

{
a

b2
erf c

j
ffiffiffiffiffi
Pr
p

2
ffiffiffi
t
p

 !
: ð19Þ{

a

b2
erf c

j
ffiffiffiffiffi
Pr
p

2
ffiffiffi
t
p

 !
:
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In order to find v3 j,tð Þ, we use the inversion formula of

compound functions (A2) and some of the known results (A4)-(A7)

from Appendix S1, consequently Eq. (16) results.

v3 j,tð Þ~ jd tð Þ
2
ffiffiffiffiffiffi
ap
p

ð?
0

exp { j2

4au
{u

� �
u
ffiffiffi
u
p du

z
je{bt

ffiffiffi
b
p

2
ffiffiffiffiffiffiffiffi
apt
p

ð?
0

exp { j2

4au
{u

� �
u

I1 2
ffiffiffiffiffiffiffiffi
but

p� �
du,

ð20Þ

where d :ð Þ is the Dirac delta function and I1
:ð Þ is the modified

Bessel function of the first kind of order one. Using Eqs. (18)–(20)

into Eq. (17), keeping in mind (A3) from Appendix S1, we get

ð?
t

f j,t,sð Þds~

ð?
0

f j,t,sð Þds{

ð?
t

f j,t,sð Þds ð23Þ

and use formulae (A8)-(A10) from Appendix S1, we obtain

vc(j,t)~vcs(j,t)zvct(j,t), vs(j,t)~vss(j,t)zvst(j,t), ð24Þ

where the steady state solutions are written as

vc(j,t)~
jH tð Þ cos vtð Þ

2
ffiffiffiffiffiffi
ap
p

ð?
0

exp { j2

4au
{u

� �
u
ffiffiffi
u
p duz

jH tð Þ
ffiffiffi
b
p

2
ffiffiffiffiffiffi
ap
p

ðt

0

ð?
0

cos vt{vsð Þ exp { j2

4au
{u{bs

� �
u
ffiffi
s
p

I1 2
ffiffiffiffiffiffiffi
bus

p� �
du dsz

aj ebt{bt{1
� �

2b2
ffiffiffiffiffiffi
ap
p

ð?
0

exp { j2

4au
{u

� �
u
ffiffiffi
u
p du

z
aj

ffiffiffi
b
p

ebt

2b2
ffiffiffiffiffiffi
ap
p

ðt

0

ð?
0

exp { j2

4au
{u{bs{bs

� �
{b(t{s){1

h i
u
ffiffi
s
p I1 2

ffiffiffiffiffiffiffi
bus

p� �
du ds

{
aebt

2b2
e{j

ffiffiffiffiffiffi
b Pr
p

erf c
j
ffiffiffiffiffi
Pr
p

2
ffiffiffi
t
p {

ffiffiffiffiffi
bt
p

 !"
zej

ffiffiffiffiffiffi
b Pr
p

erf c
j
ffiffiffiffiffi
Pr
p

2
ffiffiffi
t
p z

ffiffiffiffiffi
bt
p

 !#

z
a

b
tz

j2 Pr

2

 !
erf c

j
ffiffiffiffiffi
Pr
p

2
ffiffiffi
t
p

 !
{

j
ffiffiffiffiffiffiffiffi
Pr t
p
ffiffiffi
p
p e

{
j2 Pr

4t

" #
z

a

b2
erf c

j
ffiffiffiffiffi
Pr
p

2
ffiffiffi
t
p

 !
:

Similarly for the sine oscillations of the plate the corresponding

expression of velocity is given by

vs(j,t)~
j sin vtð Þ

2
ffiffiffiffiffiffi
ap
p

ð?
0

exp { j2

4au
{u

� �
u
ffiffiffi
u
p duz

j
ffiffiffi
b
p

2
ffiffiffiffiffiffi
ap
p

ðt

0

ð?
0

sin vt{vsð Þ exp { j2

4au
{u{bs

� �
u
ffiffi
s
p I1 2

ffiffiffiffiffiffiffi
bus

p� �
du ds

z
aj ebt{bt{1
� �

2b2
ffiffiffiffiffiffi
ap
p

ð?
0

exp { j2

4au
{u

� �
u
ffiffiffi
u
p duz

aj
ffiffiffi
b
p

ebt

2b2
ffiffiffiffiffiffi
ap
p

ðt

0

ð?
0

exp { j2

4au
{u{bs{bs

� �
{b(t{s){1

h i
u
ffiffi
s
p

I1 2
ffiffiffiffiffiffiffi
bus

p� �
du ds{

aebt

2b2
e{j

ffiffiffiffiffiffi
b Pr
p

erf c
j
ffiffiffiffiffi
Pr
p

2
ffiffiffi
t
p {

ffiffiffiffiffi
bt
p

 !
z

"
ej
ffiffiffiffiffiffi
b Pr
p

erf c
j
ffiffiffiffiffi
Pr
p

2
ffiffiffi
t
p z

ffiffiffiffiffi
bt
p

 !#

z
a

b
tz

j2 Pr

2

 !
erf c

j
ffiffiffiffiffi
Pr
p

2
ffiffiffi
t
p

 !
{

j
ffiffiffiffiffiffiffiffi
Pr t
p ffiffiffi

p
p e

{
j2 Pr

4t

" #
z

a

b2
erf c

j
ffiffiffiffiffi
Pr
p

2
ffiffiffi
t
p

 !
:

(22)

The starting solutions of vc(j,t) and vs(j,t) given by Eqs. (21)

and (22) are rather complicated. Therefore, we derive approxi-

mate expressions for these velocities corresponding to small and

large values of time. This time is important, especially for those

who need to eliminate transients from their rheological measure-

ments [26]. In order to determine this time, we need first to write

the starting solutions as the sum of the steady state and transient

solutions. Therefore, we decompose the integrals from Eqs. (21)

and (22) under the form

(21)

Free Convection Flow of Second Grade Fluid
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vcs(j,t)~H tð Þe{mj cos vt{njð Þ, ð25Þ

vss(j,t)~e{mj sin vt{njð Þ, ð26Þ

which are periodic in time and independent of the initial

condition. The transient solutions in equivalent but more suitable

forms are written as

in which

m2~
v

2 1z avð Þ2
h i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1z avð Þ2
q

zav

	 

and

n2~
v

2 1z avð Þ2
h i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1z avð Þ2
q

{av

	 

:

The inverse Laplace transform of Eq. (14) gives the required

temperature as

h j,tð Þ~erf c
j
ffiffiffiffiffi
Pr
p

2
ffiffiffi
t
p

 !
: ð29Þ

It is important to note that the steady state solutions (25) and

(26) are independent of thermal effects whereas, the transient

solutions (27) and (28) contain the thermal effects due to the

presence of free convection term. Therefore, these transient

solutions can be written as a sum of the mechanical vctme j,tð Þ and

thermal vctth j,tð Þ components as below

vct j,tð Þ~vctme j,tð Þzvctth j,tð Þ, ð30Þ

vst j,tð Þ~vstme j,tð Þzvstth j,tð Þ, ð31Þ

where

vctme j,tð Þ~{
H tð Þj

ffiffiffi
b
p

2
ffiffiffiffiffiffi
ap
p

ð?
j

2
ffiffi
t
p

ð?
0

cos vt{vsð Þ exp {
j2

4au
{u{bs

 !

u
ffiffi
s
p I1 2

ffiffiffiffiffiffiffi
bus

p� �
du ds

ð32Þ

vstme j,tð Þ~{
H tð Þj

ffiffiffi
b
p

2
ffiffiffiffiffiffi
ap
p

ð?
j

2
ffiffi
t
p

ð?
0

sin vt{vsð Þ exp {
j2

4au
{u{bs

 !

u
ffiffi
s
p I1 2

ffiffiffiffiffiffiffi
bus

p� �
du ds

ð33Þ

vct j,tð Þ~{
H tð Þj

ffiffiffi
b
p

2
ffiffiffiffiffiffi
ap
p

ð?
j

2
ffiffi
t
p

ð?
0

cos vt{vsð Þ exp { j2

4au
{u{bs

� �
u
ffiffi
s
p I1 2

ffiffiffiffiffiffiffi
bus

p� �
du dsz

a exp { jffiffi
a
p

� �
ebt{bt{1
� �

b2

z
a

b2
erf c

j
ffiffiffiffiffi
Pr
p

2
ffiffiffi
t
p

 !
{

2affiffiffiffiffiffi
ap
p ebt

b2
{

t

b
{

1

b2

� �ð?
j

2
ffiffi
t
p

exp {
s2

a
{

j2

4s2

 !
dsz

2affiffiffiffiffiffi
ap
p ebt

b2
{

t

b
{

1

b2

� �ð?
j

2
ffiffi
t
p

exp {
s2

a
{

b

bzb

� �
j2

4s2

 !
ds

z
aj

ffiffiffi
b
p

2b
ffiffiffiffiffiffi
ap
p

ð?
j

2
ffiffi
t
p

ð?
0

ffiffi
s
p

cos vt{vsð Þ exp { j2

4au
{u{bs

� �
u

I1 2
ffiffiffiffiffiffiffi
bus

p� �
du ds{

aebt

2b2
e{j

ffiffiffiffiffiffi
b Pr
p

erf c
j
ffiffiffiffiffi
Pr
p

2
ffiffiffi
t
p {

ffiffiffiffiffi
bt
p

 !"

zej
ffiffiffiffiffiffi
b Pr
p

erf c
j
ffiffiffiffiffi
Pr
p

2
ffiffiffi
t
p z

ffiffiffiffiffi
bt
p

 !#
z

a

b
tz

j2 Pr

2

 !
erf c

j
ffiffiffiffiffi
Pr
p

2
ffiffiffi
t
p

 !
{

j
ffiffiffiffiffiffiffiffi
Pr t
p
ffiffiffi
p
p e

{
j2 Pr

4t

" #
, (27)

vst j,tð Þ~{
j
ffiffiffi
b
p

2
ffiffiffiffiffiffi
ap
p

ð?
j

2
ffiffi
t
p

ð?
0

sin vt{vsð Þ exp { j2

4au
{u{bs

� �
u
ffiffi
s
p I1 2

ffiffiffiffiffiffiffi
bus

p� �
du ds{

2affiffiffiffiffiffi
ap
p ebt

b2
{

t

b
{

1

b2

� �ð?
j

2
ffiffi
t
p

exp {
s2

a
{

j2

4s2

 !
ds

z
2affiffiffiffiffiffi
ap
p ebt

b2
{

t

b
{

1

b2

� �ð?
j

2
ffiffi
t
p

exp {
s2

a
{

b

bzb

� �
j2

4s2

 !
dsz

aj
ffiffiffi
b
p

2b
ffiffiffiffiffiffi
ap
p

ð?
j

2
ffiffi
t
p

ð?
0

ffiffi
s
p

sin vt{vsð Þ exp { j2

4au
{u{bs

� �
u
ffiffi
s
p

I1 2
ffiffiffiffiffiffiffi
bus

p� �
du ds{

aebt

2b2
e{j

ffiffiffiffiffiffi
b Pr
p

erf c
j
ffiffiffiffiffi
Pr
p

2
ffiffiffi
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in which the subscripts me and th are used for the mechanical and

thermal parts of transient velocity.

Further, it is worth mentioning to note that solutions (21) and

(22) are valid only for Pr=1, however to make these solutions

valid for Pr ~1, we once again derive our solutions by putting

Pr ~1 into Eq. (14) and using it in the transform solution of Eq.

(9), the starting solutions are

corresponding to the cosine and sine oscillations of the plate and

a1~
Gr

a
. Now by employing the previous methodology, the

starting solutions (36) and (37) can also be written as a sum of

the steady-state and transient solutions.
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Limiting Cases

Equations (21) and (22) investigate the exact solutions for the

starting motion of a second grade fluid for the cosine and sine

oscillations of an isothermal vertical plate respectively and Eq. (28)

represents the corresponding solution for temperature of the fluid.

Since the present solutions are more general and the existing

published results from the literature appear as special cases by

taking suitable parameters such as Grashof number Gr, frequency

of oscillations v and the second grade parameter a equal to zero.

Case-I: Solutions in the Absence of Thermal Effects
In the absence of free convection, the solution of temperature

(29), is unaffected by the thermal effects due to the reason that the

free convection term Gr is not involved there, however by taking

Gr~0 implies that a~0, Eqs. 21ð Þ and 22ð Þ yield Eqs. 38ð Þ and

39ð Þ as follows
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which are identical to the starting solutions obtained by Nazar

et al. (Eqs. (13) and (14) in [26]) describe the motion of the fluid for

small and large times. Furthermore, for a?0, m~n~

ffiffiffiffi
v

2

r
, the

steady parts of Eqs. 38ð Þ and 39ð Þ give the well known results
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which are quite identical to the published results obtained by

Erdogan (Eqs. 12ð Þ and 17ð Þ in [46]) and Feteca et al. (Eq. 17ð Þ in

[47]).

Case-II: Solutions in the Absence of Oscillating Effects
Now let us assume that the infinite plate is set into impulsive

motion after time t~0z: The thermal component of velocity

vctth j,tð Þ remain unchanged while the mechanical part of velocity

vctme j,tð Þ is effected due to the frequency of oscillations v: So, by

taking v?0 into Eq. 21ð Þ, the solution corresponding to the case

when the plate applies impulsive motion to the fluid is given by

Case-III: Solutions in the Absence of Mechanical Effects
Here we assume that the infinite plate is kept at rest all the time.

In this case the motion in the fluid together with heat transfer are

only caused due to the presence of free convection because there is

no disturbance from the bounding plate. Thus, the mechanical

component of velocity is identically zero and consequently the

velocity of the fluid v(j,t) reduces to the thermal component
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We note that the solutions obtained as limiting cases (Case-II &

Case-III) are also new and not available in the literature.

Skin-Friction
The expression for dimensional skin friction in case of a second

grade fluid is given as

t�0~ m
Lu

Ly
za1

L2u

LyLt

" #
y~0

: ð44Þ

In dimensionless form Eq. 44ð Þ is written as

t0~
Lv
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L2v
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" #
j~0

, ð45Þ

where t0~
t�
0

rU2 :

Finally, Eq. (45) in view of Eq. (21) gives

Nusselt Number
The rate of heat transfer evaluated from Eq. 29ð Þ is given by

Nu~

ffiffiffiffiffi
Pr
pffiffiffiffiffi

pt
p : ð47Þ

Results and Discussion

A numerical assessment for the exact solutions (21) of the

present problem corresponding to the cosine oscillations of the

plate and (29) is performed. Using a computational software

Mathcad, the results are plotted to illustrate the interesting features

of the involved parameters on the starting solution corresponding

to the cosine oscillations of the plate (Figs. 2{6 ) and temperature

profiles (Fig. 6 and 7) whereas Figs. 8 and 9 are shown for the

starting and steady-state velocities corresponding to the cosine and

sine oscillations of the plate. In addition Fig. 10 is prepared to

show the comparison of the present results with Nazar et al.

26½ �: The parameters entering into the problem are second grade

parameter a, Prandtl number Pr, thermal Grashof number Gr,

dimensionless time t, and phase angle vt.

Figure 2 shows the influence of a on the velocity field v(j,t). It is

clear from this figure that an increase in a results a decrease in the

velocity. Physically, it is true because the higher values of a, are

having greater stability than the smaller values. This behavior of a
is quite similar to that of Sivaraj and Kumar (see Fig. 4 in [32]).

Unlike [34,35], the effect of Prandtl number Pr for four different

values as Pr ~0:71, 0:9, 1:5 and 7 upon velocity v(j,t) is

elucidated from Fig. 3. It is seen from this figure. 3 that in the case

of heating of the plate or cooling of the fluid Grv0ð Þ, velocity

v(j,t) decreases when Prandtl number Pr increases. Physically, it

is true as the Prandtl number describes the ratio between

momentum diffusivity and thermal diffusivity and hence controls

the relative thickness of the momentum and thermal boundary

layers. As Pr increases the viscous forces (momentum diffusivity)

dominate the thermal diffusivity and consequently decreases the

velocity. The influence of thermal Grashof number Gr on velocity

distribution v(j,t) is elucidated from Fig. 4. It is clear from this

figure that in the absence of thermal effect (Gr~0) when the effect

of buoyant forces is negligible and the viscous forces are dominant,

the velocity tends to steady-state faster than for the values of

Grw0: It can be observed that velocity increases for the increasing

values of Gr: It is also true physically as the Grashof number Gr
describes the ratio of bouncy forces to viscous forces. Therefore, an

increase in the values of Gr leads to increase in buoyancy forces,

consequently velocity increases.

The effect of dimensionless time t on velocity v(j,t) is illustrated

from Fig. 5: It can be seen from this figure that velocity is a

decreasing function of t. The effect of phase angle vt upon

velocity v(j,t) is elucidated from Fig. 6: It is observed that velocity

v(j,t) is fluctuating between 21 and 1, tending to zero for large

values of independent variable y: It is clear from this figure that

the obtained solution (21) satisfies the corresponding boundary

conditions given in Eq. (11). Hence this provides a useful

mathematical check. The influence of Prandtl number Pr on

temperature profile h(j,t) is shown in Fig. 7. Four different values

of Pr ~0:015, 0:71, 1 and 7 are chosen. They physically

correspond to mercury, electrolyte, air and water respectively. It

is found that temperature decreases when Pr is increased. As Pr is

the ratio of momentum diffusivity (kinematic viscosity) to that of
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Figure 2. Velocity profiles for different values of a when Pr~0:71, Gr~0:5, v~2, vt~
p

3
, and t~1:

doi:10.1371/journal.pone.0085099.g002

Figure 3. Velocity profiles for different values of Pr when a~0:2, Gr~{0:2, v~5, vt~
p

4
, and t~1:

doi:10.1371/journal.pone.0085099.g003
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thermal diffusivity, so the increase in Pr is actually increase in

viscous forces (viscosity) which results a decrease in temperature

profile. The effect of dimensionless time t on the temperature

profiles h(j,t) is shown in Fig.8: It can be seen from the figure that

the effect of time t on temperature h(j,t) is quite opposite to the

Prandtl number Pr as observed in Fig. 7.

Figure 4. Velocity profiles for different values of Gr when a~0:8, Pr~0:71, v~0:5, vt~
p

3
, and t~1:

doi:10.1371/journal.pone.0085099.g004

Figure 5. Velocity profiles for different values of t when Pr~0:71, a~0:2, Gr~0:5, v~2 and vt~
p

3
:

doi:10.1371/journal.pone.0085099.g005
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A very important problem regarding the technical applicability

of the starting solutions is to find the approximate time after which

the fluid is moving according to the steady-state solutions. More

exactly, in practice it is necessary to know the required time to

attain the steady state [26]. For this purpose, the variations of the

corresponding starting and steady-state velocities with the distance

from the wall are depicted in Figs. 9 and 10. At small values of

time, the difference between unsteady and steady-state velocities is

large enough. This difference rapidly decreases and it can be

clearly seen from the figures that the required time (t~6) to reach

the steady-state for the cosine oscillations of the boundary is

smaller than that for the sine oscillations (t~10). A comparative

study of the present solution (21) corresponding to the cosine

oscillations of the plate is provided in Fig. 11 with published results

of Nazar et al. (Eq. (13) in [26]) It is found that in the absence of

free convection (Gr~0) the present results are identical with those

of Nazar et al. [26].

The numerical results for skin friction t0 are shown in Table

1 for various embedded parameters. It is found that the skin

friction decreases when a is increased. On the other hand, the

influence of Prandtl number Pr on skin friction shows that

t0 decreases when Pr increases whereas it increases for large

Figure 6. Velocity profiles for different values of vt when Pr~0:71, a~0:2, Gr~0:5, v~1 and t~1:
doi:10.1371/journal.pone.0085099.g006

Figure 7. Temperature profiles for different values of Pr when t~1:
doi:10.1371/journal.pone.0085099.g007
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Figure 8. Temperature profiles for different values of t when Pr~0:71:
doi:10.1371/journal.pone.0085099.g008

Figure 9. Variations of the starting and steady-state solutions with the distance from the wall, for the cosine oscillations of the
boundary, corresponding to relation (21) curves v1s j,tð Þ, v2s j,tð Þ and relation (25) curves v1ss j,tð Þ, v2ss j,tð Þ, when Gr~0, v~0:5 and
a~0:8:
doi:10.1371/journal.pone.0085099.g009
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values of Gr, t and vt: The effects of Pr and t on Nusselt number

Nu are studied numerically in Table 2: It is found that

Nu decreases when Pr increases. Physically this behavior is

acceptable because when Pr increases, it decreases the resistance

and consequently enhances the rate of heat transfer. The influence

of t on Nu is found quite opposite to that of Pr.

Conclusions

The heat transfer analysis of a second grade fluid for unsteady

free convection flow past an isothermal vertical plate oscillating in

its plane is investigated. Closed form solutions of the problem are

obtained by using the Laplace transform technique. The starting

solutions (21) and (22) are expressed in terms of steady-state and

transient solutions. It is found that they satisfy the imposed initial

and boundary conditions and can be easily reduced to the similar

Figure 10. Variations of the starting and steady-state solutions with the distance from the wall, for the sine oscillations of the
boundary, corresponding to relation (22) curves v1s j,tð Þ, v2s j,tð Þand relation (26) curves v1ss j,tð Þ, v2ss j,tð Þ, when Gr~0, v~0:5 and
a~0:8:
doi:10.1371/journal.pone.0085099.g010

Figure 11. Comparative study of the present solution (21) to those of Nazar et al. (Eq. (13) in [26]) corresponding to the >cosine

oscillations of the plate when Gr~0, v~0:5, a~0:8 and vt~
p

3
:

doi:10.1371/journal.pone.0085099.g011
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solutions in the literature by taking Grashof number Gr, frequency

of oscillations v and the second grade parameter a equal to zero.

The effects of various parameters on velocity and temperature

profiles are graphically studied whereas the results for skin-friction

and Nusselt number are computed in tables. The following

conclusions are extracted from this study.

N Increasing second grade parameter a decreases fluid velocity.

N Velocity for electrolyte solution is greater than air and water.

N The presence of free convection enhances the fluid motion.

N Temperature decreases for large values of Pr :

N The Nusselt number increases when Pr is increased

N The skin friction increases when both time t and phase angle

vt are increased.

N In the absence of free convection (Gr = 0) the present solutions

are found identical to those obtained by Nazar et al. [26].
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