
Eltyeb and Salim Journal of Cheminformatics 2014, 6:17
http://www.jcheminf.com/content/6/1/17
REVIEW Open Access
Chemical named entities recognition: a review on
approaches and applications
Safaa Eltyeb1,2* and Naomie Salim1
Abstract

The rapid increase in the flow rate of published digital information in all disciplines has resulted in a pressing need
for techniques that can simplify the use of this information. The chemistry literature is very rich with information
about chemical entities. Extracting molecules and their related properties and activities from the scientific literature
to “text mine” these extracted data and determine contextual relationships helps research scientists, particularly
those in drug development. One of the most important challenges in chemical text mining is the recognition of
chemical entities mentioned in the texts. In this review, the authors briefly introduce the fundamental concepts of
chemical literature mining, the textual contents of chemical documents, and the methods of naming chemicals in
documents. We sketch out dictionary-based, rule-based and machine learning, as well as hybrid chemical named
entity recognition approaches with their applied solutions. We end with an outlook on the pros and cons of these
approaches and the types of chemical entities extracted.
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Introduction
Scientific results are most commonly presented in the
form of scientific articles, industry reports, or thesis docu-
ments. Normally these documents are written in natural
languages mixed with domain-exclusive terminologies
added to numerical data. Thus, they are rich with unstruc-
tured data that cannot be understood by a machine. As a
result, reusing these data is not an easy matter. Manual in-
formation extraction from the literature by humans has
become a business managed by information providers.
However, manual information extraction is costly. Obtain-
ing the extracted information after publication is often
time consuming and fallible [1].
Specific information on newly discovered compounds is

often difficult to find in chemical databases. For example,
drug research requires the knowledge of new molecules
for developing new drugs. Researchers may also want to
search for potential lead compounds or determine the
function of the compound. Obtaining previous knowledge
on chemicals, such as biological properties or toxic effects,
can help in many aspects of drug development processes.
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The entities extracted can be linked to their properties or
co-occurrence with other entities, which can allow us to
identify new knowledge between them. Finding mentions
of chemical compounds in the texts is useful for many rea-
sons, including mapping entities to corresponding struc-
tures to find relationships between chemicals. Chemists
can then search for similar structures or substructures,
and the knowledge in the text can be combined with the
knowledge from chemical databases. The annotation of
entities enables a search engine to return documents that
contain elements of this entity class, such as their activ-
ities, which can be helpful to find other relationships, such
as adverse reactions or diseases [2]. Thus, the analysis of
information found in the texts seems unavoidable because
text-mining tools can greatly augment, improve and facili-
tate this process of information extraction. However, the
variety of naming standards for chemical entities makes
this task extremely complex and time consuming. Hence,
this task should be supported by computational tools.
Review
This paper unites the types of chemical entities with com-
puterised methods for extraction to help practitioners en-
tering into this area. Thus, different types of chemical
entities supported by examples are organised according to
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the taxonomy derived from the literature. The methods of
recognising the names of chemical entities are then sur-
veyed accompanied by relevant references and summaries
for all solutions starting from 2000, and they are then cor-
related with the types of chemical entities extracted.
The rest of this paper is organised as follows. Section

Chemical literature mining is a background section that
gives an overview of chemical literature mining. Section
Evaluation introduces the corpora and evaluation methods.
Section Chemical Named Entity Recognition (NER)
approaches presents the methods of NER that are applied
in the chemical entity recognition. Section Discussion pre-
sents an outlook on the applied methods and extracted
entities. Section Conclusion concludes the paper.

Chemical literature mining
Although chemical information mining was mentioned in
chemistry before biology [3], text mining is not widespread
and fewer tools have been developed [1]. An example of
the extracted information from the biology literature is in-
formation on genes and proteins and their functional rela-
tionships. Reasons for mining chemical entities from the
literature include the following:

� To identify unique chemical entities.
� To index the bibliographic chemical databases [4].
� To link between chemical structures and biological

processes [5].

Sources of chemical information
Some, but not all, chemical information is freely avail-
able. Many types of chemical databases are available:

➢ Chemical structure databases.
➢ Chemical literature databases.
➢ Nuclear Magnetic Resonance (NMR) spectra
databases.
➢ Crystallographic databases.
➢ Reactions databases.

Chemical literature databases associate structures or
other chemical information with the relevant documents.
Many free and commercial databases cover chemistry lit-
erature and structure. They vary in terms of time period of
coverage, frequency of update, publication type (e.g., jour-
nals, books, chapters, theses, and technical reports) and the
type of search provided (e.g., search by chemical names,
trade names, molecular structure or keywords etc.). These
databases include the following:

➢ PubMed® aand PubMed Central b(PMC®), which
cover the biomedical literature from MEDLINE® cand
life sciences journals and online books. They are
managed by the National Center for Biotechnology
Information (NCBI), a component of the U.S National
Library of Medicine (NLM). PMC carries the full text
of the paper, whereas PubMed includes only the
citations and abstracts of papers.
➢ PubChemd, which is a database of chemical
molecules. The system is maintained by NCBI. It
contains substance descriptions and small molecules as
well as links to the PubMed scientific literature.
➢ ChemSpidere, a free database providing access to
structures, properties, and their related information. It
enables searches with text and structures and provides
important data, such as literature references, physical
properties and chemical suppliers.
➢ SciFinderf, which is used to access information in
selected Chemical Abstracts Service (CASg) databases. It
offers a variety of searches: CAS Registry Number, author
name, research topic, or chemical structure/substructure.

Normally, chemical documents, such as theses, lab
books, industry reports, journal articles and patents found
in text (e.g. text, rich text format, and word documents),
are embedded with figures and/or tables [5].

The textual contents of chemical documents
A manual analysis of 20 papers from Organic & Bimolecular
Chemistry [6] reported a need for chemistry-specific lexicons
for various concepts, such as actions, quantities, substance,
states, procedures, etc. Other examples of the contents in
chemical patents are compounds, reagents and solvents [7].
Figure 1 shows the classes of named chemical entities mined
by different systems as described by examples.
Methods for expressing chemical structural information
in documents
The main source of difficulty in mining chemical structural
information from literature is the lack of a standardised
naming convention to represent the chemical structural in-
formation. Different expressing methods and naming
groups have been used in which chemical terms in docu-
ments can be assigned to structures as described in Table 1
with examples.
The variety of methods used to represent chemical

names and the variations of naming within one method it-
self (e.g. a systematic name can include multiple variations
on how hyphens and dashes are located: 1,1- versus 11-
versus 1–1-) [9] complicates chemical name recognition
in text. Two-dimensional diagrams are the basic units
used to represent chemical structures in chemistry. They
are included in journal articles and patents as raster im-
ages. Optical Chemical Structure Recognition (OCSR) is
used to extract the structural information from these im-
ages. Many systems implement OCSR, which can be
found in the literature, such as in [10] and Park [11].



Figure 1 Example of classes of chemical entities-bolded-extracted by different systems from the chemical literature.
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Thus, extracting information, such as extracting relation-
ships between specific types of entities (as in [12-15], or in-
ferring facts (such as in [16]) first requires that the mentions
of the entities in the text be detected. This step is essential,
and its success determines the success of other tasks of in-
formation extraction. In this paper we focus on information
extraction in a natural language text that concerns the iden-
tification of instances of a specific class of entities in the text.

Evaluation
Before presenting the Chemical Named Entity Recognition
(CNER) approaches, Table 2 describes the available manually
annotated text corpora for training and assessment of CNER
tools according to the chemical entities focus, reference and
source. However, due to the shortage of annotated corpus
available for evaluation and training chemical NER systems,
many developers of the systems generate their own corpus.
To evaluate the performance of NER applications, the

known information extraction measures are used, which
are: (i) precision to measure the ability of a system to
present only the relevant names; (ii) recall to measure the
ability of a system to present all the relevant names; and
(iii) F-measure, which is a harmonic mean of precision
and recall.
The next section introduces the NER approaches that

are used to identify the mentions of chemical entities in a
text accompanied with their bibliographic references of
the solutions. The section ends with a table summarising



Table 1 Description and examples of the expressing methods of chemical structural information ([5,8] and
http://en.wikipedia.org)

Expressing method Description Example

1. Systematic names reflect the information of the chemical
structure. International Union of Pure
and Applied Chemistry (IUPACh)

‘3-(3,4-dihydroxyphenyl)prop-2-enoic acid’

2. Trivial names they do not reflect the structure
of the chemical substance.

‘caffeic acid’ utilized for
‘3-(3,4-dihydroxyphenyl)prop-2-enoic acid’.

3. Semi systematic names at least one part is used in the systematic
sense, IUPAC-like, non-IUPAC names.

in‘N-benzoylglycine’ the part ‘benzoyl’ is systematic,
whereas ‘glycine’ is the trivialname
for ‘_-aminoacetic acid’

4. Common or generic names names applied to a class of compounds camphor, water and alcohol

5. Registered trademark/brand names they identify the brand owner as the
commercial source of products.

‘aspirin’

6. Company codes a company code is to identify the
compound within the company.

ZD5077 = ICI204636 = ZM204636

7. Acronyms and abbreviations they are used to get short names. DMS for dimethyl sulfate

8. Index and reference numbers from Chemical Abstracts Service (CAS)
registry numbers, Beilstein registry numbers, etc

CAS number of water is 7732-18-5

9. Anaphors Compounds are named earlier in the text but
co-referenced to a shorter name, called
the anaphor, later in the text.

A compound number is anaphor where …
bioactivity is found in compounds [1-7,9-11]
listed in Additional file 1…’

10. Sum formula Consists of the elements contributing to
a compound and the number of their occurrences

‘C9H8O4’

11. Chemical structures explicit and implicit structures Markush structures, where R1 = CH3, COOH, etc…
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the solution with a consideration of the NER approach
used, class of chemical named entity recognised, corpora
and performance outcomes.
Chemical Named Entity Recognition (NER)
approaches
The term “Named Entity” was introduced in the sixth
Message Understanding Conference (MUC6). NER aims
to identify the portions of the text that refer to specific
entities, such as persons, locations, organisations, etc. It
is a subtask of information extraction and the core of
the natural language processing (NLP) system [22].
Chemical NER automatically identifies the occurrences
of chemical entities in a text. The following steps are
Table 2 Chemical text corpora for evaluating and training the

Corpus Class of named entities Reference A

IUPAC training corpus IUPAC names [2] h

SCAI All chemical names [17] h

PubMed corpus Compounds, reagents, chemical
adjectives enzymes and prefix

[18] N

Sciborg corpus All chemical names [18] N

GENIA corpus Biological besides some
chemical entities

[19] h

European Patent Office
and the ChEB

All chemical names [20] h

CHEMDNER Corpus Chemical compounds and drugs [21] h
required to develop a chemical NER system, and their
order is shown in Figure 2.

1. Preprocessing step: This is done to determine entity
boundaries in a text by sentence splitting and
tokenization.

2. Feature processing step: Due to the complexity of the
natural language, creating a set of patterns to match
the possible linguistic realizations of the individual facts
requires the preprocessing on structural input, such as
assigning parts-of-speech and features to words and
idiomatic phrases. Table 3 describes the common
categories of textual features with some examples.

3. Name recognition step: This recognizes the entity
and assigns it to a class or entity type.
NER applications

vailability

ttp://www.scai.fraunhofer.de/chem-corpora.html

ttp://www.scai.fraunhofer.de/chem-corpora.html

ot available.

ot available

ttp://www-tsujii.is.s.u-tokyo.ac.jp/GENIA

ttp://chebi.cvs.sourceforge.net/viewvc/chebi/chapati/patentsGoldStandard

ttp://www.biocreative.org/tasks/biocreative-iv/chemdner/



Figure 2 The main steps for developing the chemical NER system.
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4. Solving recognition mistakes or normalization step:
This is sometimes addressed as a separate task from
the NER. The entity normalization process is
represented by mapping entities’ names to their
canonical names and by associating them with
unique representations so as to help in solving issues
resulting from variations in the synonym terms as
well as the ambiguous abbreviations [24].

Over the past decades, many automatic NER systems
have been developed and used to recognise chemical en-
tities. They are categorised into four groups as shown in
Figure 3 and described in the next section.

Dictionary-based NER systems
A dictionary is a collection of vocabulary for a specific
domain usually collected from repositories related to the
domain. Dictionaries can be built manually or automat-
ically from public sources, such as databases or thesauri.
Examples of dictionaries in the chemistry and biomedi-
cine domains are the Jochemi dictionary [25], which is
used to identify small molecules and drugs in the text,
and the DrugBankj dictionary for drugs.
Dictionary-based systems use lists of terms in diction-

aries to identify the entity occurrences in the text. The
system specifies whether a word or a group of words se-
lected from the text matches a term from some diction-
ary, or implements string-matching algorithms. These
algorithms can be divided into two types:

1. Exact matching: This process makes an exact text
search for synonyms from a given list of terms
against the text.

2. Flexible or approximate matching: This process does
not attempt to exactly match the given terms to the
text and allows insertion, deletion or substitution for
some character(s). It performs fuzzy matching and is
used by most NER approaches [8].

The quality of the dictionary-based system depends on
the quality and the completeness of the dictionary used as
well as the quality of the matching algorithm. Hettne et al.
[25] and Rebholz-Schuhmann et al. [26] are examples of
dictionary-based systems used to extract drug names and
molecules via string matching methods (see Additional
file 1). Generally, the dictionary-based method offers high
precision but poor recall in cases of spelling errors in the
text. This method is further hindered when out-dated dic-
tionaries are changed for the dictionary-based systems be-
cause maintaining dictionaries is costly and time-consuming.

Rule-based NER systems
Rule-based systems [27] use a set of hand-made rules to ex-
tract the names of entities. The handcrafted models consist



Table 3 Description of common categories of textual features with some examples, summarized from [23]

Features categories Objectives and Examples

Linguistic to find the prefix that is common to all variations of the term,

to find the root term of the variant word,

to assign each token to a grammatical category or

to divide the text into syntactical correlated parts of words,

(e.g chucking, lemmatization, stemming and Part-of-speech (POS) tagging)

Orthographic to capture knowledge on word formation by the presence of these features, (e.g capitalization and symbols)

Morphological to reflect common structures and/or sub-sequences of characters among entities,
(e.g suffixes and prefixes, char n-gram and word shape patterns)

Context to establish a higher level of relationship between the tokens and the
extracted features, e.g (windows and conjunctions)

Lexicons to add domain knowledge to the set of features for optimizing the NER system. Dictionaries of domain
term are used to match the entity names in the text and the resulting tags are used as features.
Examples of the types of dictionaries used (target entity name and trigger name).
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of sets of rules that use grammatical (e.g., parts of speech)
and syntactic (e.g., word precedence) rules that are some-
times combined with dictionaries. Two types of rules are
usually used in the rule-based systems:

1. Pattern-based rules: These rules depend on the
orthographic or morphological patterns of the
words.

2. Context-based rules: These rules depend on the
context of the words in the text.

An example of a context-based rule is “If a proper noun
follows a person’s title, then the proper noun is a person’s
name” [28]. For example, [29] devised two classes in the
chemical NER for identifying biological terms, including
two chemical entities. The first class contains chemicals
NER Systems

Dictionary-based sy
-Exact string match
-Flexible string mat

Rule-based systems
-Pattern-based
-Context-based

Machine-learning-b
systems

Hybrid systems

Figure 3 Types of NER systems with some related techniques.
(Indomethacin, N-methylformamide, suberoylanilide and
hydroxamic acid); the second class includes the chemical
parts, with terms like “methyl groups”, which correspond
to the parts of the chemicals. They used pattern-based
rules that utilise the orthographic and lexical characteris-
tics of entity classes. For instance, the module used to ex-
tract chemical core terms (which have surface features like
capital letters, numerals, and special symbols) consists of
the recognition of chemical root forms based on IUPAC
conventions followed by the chemical naming. For ex-
ample, consider the sentence “Polar organic solvents, such
as, methanol or N-methylformamide inactivate lipases.” In
this case, methanol and N-methylformamide are identified
as chemical core terms because they contain the chemical
root forms “methyl” and “meth” (refer to Additional file 1
for their results). However, the rule-based NER performs
stems
ing 
ching
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Semi-supervised learning
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well when the required resources are available (e.g. a set of
expert-derived rules), but the systems lack portability.
When the data are slightly changed, the high cost of main-
taining the rule increases. Some systems can also use dic-
tionaries to improve precision and recall.

Machine learning (ML)-based NER systems
NER systems that are based on the ML approach
[30-32] use statistical models for recognising specific en-
tity names by utilising a feature-based representation of
the observed data that depends on the annotated docu-
ments. Two basic steps are required to develop the ML-
based systems:

1. Training: The machine-learning model must be
trained to use the annotations that are present in
the annotated documents.

2. Annotating: The documents can be annotated to
produce the entity names based on past experience
learned from the annotated documents.

However, ML algorithms are categorised based on the
desired outcome of the algorithm. The common ML algo-
rithms used un NER are:

Supervised learning algorithms
Supervised learning algorithms learn and offer feedback on
the learning process (supervised learning) by labelling the
training instances with the correct results. For instance, in
classification problems that are usually solved by supervised
learning, the computer learns the created classification sys-
tem and produces the output accordingly [33]. For example,
the machine-learning–based method for recognising gen-
eral chemical names in chemical NER proposed in [20] uses
Conditional Random Fields (CRFs) [34,35]. A set of five tags
(labels) was defined in order to indicate the boundaries of
the named entities. These sets were named as follows:

* NO: nonchemical token.
* NE: single-token chemical entity.
* S-NE: start token of a multi-token chemical entity.
* M-NE: middle token of a multi-token chemical entity.
* E-NE: end token of a multi-token chemical entity.

Hence, these labels annotate the training set, and the
model has been specifically trained on this set. Thus, the
sentence: “. . . an oligomeric amdioamine salt and an
amidoquat …” in this example would be tagged by the
following sequence of tags: NO, S-NE, M-NE, E-NE,
NO, NO, and NE.
In chemical NER applications, the supervised learning

models, such as CRFs and Hidden Mark Models (HMMs)
and Maximum Entropy Markov Models (MEMMs) [36],
have received the most research interest in recent years.
The next subsections reviews the general characteristics of
these models.
HMMs models are characterised by their simplicity,

quick learning and the globally made decision of the best
sequence after the total analysis of the input sequence
[37]. However, when the HMMs are used to label the se-
quences, they assume the independence of each word
from its context, even though this assumption is not true.
Thus, HMMs cannot identify the relationships between
neighbouring tokens. Another type of supervised models
used in the NER are the MEMMs models that take the ob-
servation features as inputs and offer better freedom in
choosing features to represent observations than the HMM
models. However, they suffer from the "label-bias problem”;
in this problem, states with low entropy next-state distribu-
tions are ignored when observations are made on the con-
ditioning of the data [36].
CRF models differ from the HMMs and MEMMs; they

use an undirected graph to avoid the label-bias problem
of the MEMMs and ease the conditional independence
assumption of the HMMs. Thus, these models have be-
come very popular and are extensively used in many bio-
logical and chemical NER applications.
Furthermore, the classification models, such as the

Naïve Bayes [6] and the Support Vector Machines (SVMs)
[38], make the NER task a classification problem. They are
used to classify individual words or multi-word phrases.
One of the common tagging schemes is BIO, in which in-
dividual tokens are classified (B) as being at the beginning
of an entity, (I) being inside the boundaries of an entity, or
(O) outside the boundaries of an entity. The main draw-
back of this scheme appears if the entity boundaries over-
lap [24]. Many ML-based solutions, such as [2,39-42], are
summarised in Additional file 1.
However, supervised models require available inputs, and

missing inputs affect the inferring process in the output.
Furthermore, the features (such as the textual features de-
scribed in Table 3) should be extracted and selected. Fea-
ture extraction was represented by transforming the text
into numerical features applicable for the ML models.
Many environments can be used to facilitate the process of
feature extraction, such as the frameworks described by
[43-45]. The process of selecting a subset of informative
and discriminative features to be used on the ML model
construction is another very important matter. Feature se-
lection processes affect the performances of algorithms. For
example, feature redundancy does not provide the model
with more information than the current selected features.
Furthermore, using irrelevant features does not provide
useful information, whereas the combinations of features
may increase performance as in the work of [42]. Usually,
after establishing a primary set of features, a set of experi-
ments can be carried out in order to improve the features
sets by adding, deleting or modifying features [43].
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While most CNER systems used domain-independent
feature sets, such as morphological, linguistic, orthographic,
context and lexicon features, few studies have examined
the impact of these features on the performance effective-
ness. Some studies, such as [46] in the newswire domain
and [47] in the biomedical domain, have explored the ef-
fectiveness of using different features and their combination
in NER systems. However, chemical entities differ from
newswire entities, particularly in terms of shape features.
Orthographic and morphological features, such as capit-

alisation, symbols, and word shape patterns, are very im-
portant in pattern-based rules and supervised ML CNER
approaches because the chemical names contain symbols,
roman numbers, dashes, capital and lowercase letters. Fur-
thermore, using orthographical features is advantageous
because they provide information to detect the boundaries
of the named entities [47].
The windows, capitalisation and dependency parsing

features in a supervised CNER system [48] were tested but
did not provide positive outcomes. However, the ortho-
graphic, morphological and domain knowledge (e.g., dic-
tionary from Jochem) yielded promising results.
Some studies showed that the linguistic features, such as

lemmatisers and stemmers, decrease the performance of
supervised CNER systems [49], while POS and chuckers
are normally used.
Many recent systems have used domain-specific fea-

tures, such as using additional domain-specific resources
(e.g., the drug FDA and ATC nomenclature lists) or out-
puts of other CNER systems. The results of [49] showed
that using domain resource features contributes most to
the overall performance.
In addition to the use of these features, tokenisation is

an important issue in CNER systems. CNER systems re-
quire special types of tokenisers that consider the shapes
of chemical entities. For example, the brackets would not
be removed from the word “(R)-acetoin”. However, the
common tokenisers tokenise the brackets wherever they
occur [50].
However, most studies confirmed that using diction-

aries and lexicons and token prefix and suffix informa-
tion features improves the performance of all types of
NER systems.

Unsupervised learning algorithms
The use of unsupervised learning algorithms seems much
more difficult because they aim to teach the computer
how to do something without explaining the method, and
the labels are not known during training. Thus, the goal of
the program in unsupervised learning is to build represen-
tations from data. Clustering is an example of unsuper-
vised learning, which aims to find similarities in the
training. However, unsupervised learning is not popular in
the NER task [22,33].
Semi-supervised learning algorithms
Semi-supervised algorithms use both labelled and un-
labelled data. These types of systems include a small de-
gree of supervision, i.e., a small set of trusted seeds
defined manually for starting the learning process. For
example, a system to extract “disease names” is pro-
vided with a small number of disease names as relevant
examples. The sentences that contain these examples
are then searched using the system, which aims to iden-
tify contextual clues common to the examples. Other
instances appearing in similar contexts are searched
again. The learning process is then continually reused
for the newly found examples in order to discover new
relevant contexts. Thus, a large number of disease
names will be recognised by repeating this process [51].
However, to the best of the authors’ knowledge, the un-
supervised and semi-supervised learning algorithms
have not yet been practically applied in the chemical
NER applications.
Hybrid NER systems
The hybrid NER system implements more than one
NER approach in order to utilise the good characteris-
tics from each approach. In the chemical NER, the dic-
tionary approach is usually combined with the rule-
based or machine learning approach to improve per-
formance. For example, ChemSpot [52] is a chemical
NER tool for identifying mentions of chemical entities
(trivial names, drugs, abbreviations, molecular formulae
and IUPAC) in text. It implements a hybrid approach
that combines a CRF model with a dictionary. The au-
thors stated that the main purpose of the combination
was to cover the different naming characteristics of
these classes. IUPAC entities are morphologically more
complicated than other entities; these entities are difficult
to follow in any rule and are best caught by a dictionary.
ChemSpot uses the CRF model and the dictionary inde-
pendently to annotate the text. Finally, the annotations of
both approaches are merged. Although the entities ex-
tracted by the dictionary or the CRF may overlap, Chem-
Spot keeps the union of all extracted entities and solves
this overlapping by choosing a match from the CRF model.
This feature is attributed to the observed higher accuracy
of boundary detection by the CRF model. The dictionary
component is also used to normalise the extracted entities
to the CAS Registry IDs. Another example of the com-
bined system [53] is shown in Additional file 1.
Recent results obtained from the CHEMDNER task of

the Fourth BioCreative challenge evaluated the applica-
tions of biomedical text mining [21]. CHEMDNER focuses
on the recognition of chemical entities (compounds and
drugs names) in text. Two subtasks in CHEMDNER are
specified in the challenge:
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➢ Chemical Document Indexing (CDI): The required
output of this subtask is a ranked list of unique
chemicals mentioned in a set of given documents.
➢ Chemical Entity Mention (CEM) recognition: The
required output of this subtask is the start and end
character index pairs for the chemical entities
mentioned in a given document.

A text corpus (CHEMDNER Corpusk) for training
and evaluation purposes was annotated by a domain ex-
pert according to particular annotation rules for this
task. Approximately 27 teams submitted results. When
the obtained automatic annotations were compared
against the manual annotation, the best F-scores were
87.39% in the CEM task and 88.20% in the CDI task.
The teams used different technologies in the task, in-

cluding dictionary lookup in [54], rule-based technologies
as in [55,56] and ML methods. The ML algorithm was
mostly used with different features, especially CRFs, which
were applied by eighteen teams including [48,57-59].
Participants who used lexical resources, such as the

Chemical Entities of Biological Interest (ChEBIl) ontology,
for resolution purposes as in [60] obtained a considerably
higher F-score than teams that did not use any lexicon.
Furthermore, some systems, such as [49,61], used the out-
puts of existing systems, e.g., ChemSpot [52] and OSCAR
[62], as features in the ML models, which contributed
most to the overall system performance leverage. Patterns
were also used as features to recognise sequence element
symbols (e.g. to cover abbreviations, chemical formulae or
chemical identifiers). Semantic information (e.g., UMLS
semantic types and ChEBI) were employed via several sys-
tems, such as [55], but we observed that the semantic in-
formation did not contribute in the performance leverage.
Dictionary-based methods present lower F-scores be-

cause they depend on the coverage of the dictionaries. At
the same time, creating a dictionary with a high degree of
coverage is a difficult matter due to the continuous discov-
ery of novel compounds. The LeadMine system [63] is an
example of a hybrid system (dictionary lookup and rule-
based). It employed spelling correction, the merging of ad-
jacent entities and entity extension to increase the chance
of recognising the trivial names slightly outside the cover-
age of the dictionary and write rules to describe the system-
atic chemical nomenclature. The CheNER-BioC [64] is
another hybrid system that applied CRFs and dictionary
with regular expression taggers to identify formulae and
identifier name types. Additional details about the corpus
construction, obtained result, technique details and features
used on the Biocreative IV challenge can be found in [21].

Discussion
The examined approaches of NER and their associated
applications indicated that each approach features have
different requirements and advantages over other ap-
proaches. However, dictionary-based systems are more suit-
able and effective when we have closely defined and
updated vocabulary names and when names are correctly
written in documents. Otherwise, they can be enhanced by
including the potential spellings and orthographic varia-
tions or using regular expressions instead of the exact string
matching to catch the variability during the matching
process [53,65,66]. One of the key advantages of dictionary-
based NER approaches is that they allow the normalisation
of named entities in one step. When a term is found in
the text and disambiguated, it maps directly to the unique
identifiers that it represents. In contrast, ML-based NER
approaches do not provide identification information of
recognised terms [8], which can be solved later by using
dictionaries. However, the development and maintenance
of comprehensive chemical name dictionaries are nontrivial
tasks because an increasing number of new chemicals are
being identified as the result of high throughput screening
tests and a growing number of other experiments.
Rule-based NER approaches are suitable when the

orthographic and morphological structures are strongly
defined, but maintaining the rules is costly and time con-
suming due to the need to cope with the problems of ro-
bustness and portability.
In recent years, machine-learning methods have become

prevalent to extract chemical entities from the scientific
literature. Although machine-learning models rely on the
quality of an annotated corpus, they can identify new
entities in documents in contrast to the dictionary ap-
proaches, which can only identify the entities already
present in the recourses. Although ML models are
suitable for a variable vocabulary of names, they re-
quire large resources. When the appropriate resources
are obtainable, the ML approaches perform better
than dictionary and rule-based approaches. The ML
approaches solve many problems associated with
dictionary-based and rule-based approaches by recog-
nising the new entity names, and they perform better
in the case of spelling variations in entity names [23].
However, the manual tagging of the training corpus is
costly and a non-trivial task, but maintaining the ML-
based systems is cheaper than employing rule-based
systems.
Using a hybrid NER approach enables us to take advan-

tage of the combined approaches and avoid their associ-
ated problems. Hence, the combination of approaches
may enhance the targeted performance. Due to the vari-
ation in the naming methods of chemical entities, one ap-
proach may recognise some types of entities better than
other approaches.
Furthermore, a variation in the performance of the

summarised solutions in Additional file 1 was observed
due the following issues:
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➢ Different datasets have been used in the evaluation
processes.
➢ Different classes of chemical names (e.g., IUPAC
names, trivial names, chemical formula, etc.) are
recognised by the different systems.
➢ Some types of chemical names are easier to
recognise than others [21], which may result a higher
recognition results.

The CHEMDNER task was organised in 2013 (see
Chemical Named Entity Recognition (NER) Approaches)
due to the previous bottlenecks related to the performance
of such systems, such as the difficulty of building a com-
prehensive dataset with complete annotation guidelines
and the heterogeneity of the field and the absence of com-
parative evaluation efforts for this chemical name recogni-
tion task. The variance in the obtained results was deemed
suitable and in the boundary of competition.
Biomedical NER applications show a trend towards

semi-supervised approaches because they offer more gen-
eral and independent corpus solutions [23]. Thus, due to a
small number of annotated corpora in the chemistry do-
main for training and testing models, the application
of semi-supervised models in chemical NER may enhance
the performance because it considers large numbers of
un-annotated documents and enables the development of
models without relying on training corpora. Hence, apply-
ing semi-supervised models for chemical entity recogni-
tion may be a focus of future work.
Moreover, most of the work examined the extraction of

chemical entities and focused little on its associated data,
such as the physicochemical properties and analytical data,
which helps to automate or semi-automate the creation of
chemical data bases. Other information can be linked to
the chemicals, such as biological effects, targets, pharma-
cokinetic (PK) numerical data and ADME-Tox (absorp-
tion, distribution, metabolism, and excretion – toxicity)
data. Little work has been performed regarding the extrac-
tion of PK and pharmacodynamic (PD) data due to the
complexity of the information obtained from the PK/PD
studies [67]. In addition to this information, other entities
are mentioned in the text with chemical entities, some of
which are also chemical but differ in nature, such as genes
and proteins or other entities, such as diseases. The ex-
traction of the relationships between these entities is cov-
ered in many applications of biomedical text mining, such
as the extraction of gene-drug relationships ([68,69], ex-
traction of drug-protein relationships [70], relationship be-
tween chemicals and diseases [71] and the relationships
between chemical-gene-disease [72].
However, the basic unit of chemical text mining is the

recognition of a mentioned chemical entity. Thus, the
basis is the development of chemical NER applications
characterised with highly effective entity extraction.
Conclusion
Due to the significant growth of the scientific literature,
manually annotating the databases often yields incomplete
annotations that are inconsistent with the literature. De-
veloping methods to automatically map text from litera-
ture sources to structured forms, such as knowledge bases
or databases is an important challenge. In the literature,
several techniques are proposed for chemical entity ex-
traction. In this paper, a review of the solutions based on
the NER approaches was provided with an outlook on
applied approaches and extracted chemical entities. This
paper highlighted the types of machine learning models that
are not used in chemical NER, such as semi-supervised
models, and the information that is not focused upon in the
process. The study corroborates existing systems for chem-
ical information extraction that are focused on chemical
substances (compounds, reagents, solvents, etc.), but little
focus has been given to compound properties and numer-
ical data. Adopting more types of the NER methods, such
as, semi-supervised methods, may considerably increase the
effectiveness of chemical entity extraction.

Endnotes
ahttp://www.ncbi.nlm.nih.gov/pubmed
bhttp://www.ncbi.nlm.nih.gov/pmc/
chttp://www.nlm.nih.gov/
dhttp://www.ncbi.nlm.nih.gov/pccompound
ehttp://www.chemspider.com/
fhttps://scifinder.cas.org
ghttp://www.cas.org
hhttp://www.iupac.org
ihttp://www.biosemantics.org/index.php?page=Jochem
jhttp://www.drugbank.ca
khttp://www.biocreative.org/tasks/biocreative-iv/

chemdner-courpus/
lhttp://www.ebi.ac.uk/chebi/
msee Rule-based NER Systems.
nthis evaluation for chemical names.
oOSCAR was evaluated in many corpora by different

actors, this evaluation performed by [52].
pdrugs in this corpus were automatically annotated

thus, cannot be considered as gold-standard corpus [52].
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