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Abstract

The purpose of this paper is to present a new robust strategy in controlling the active suspension system. The strategy
utilized the proportional-integral sliding mode control scheme. A quarter-car model is used in the study and the performance
of the controller is compared to the linear quadratic regulator and with the existing passive suspension system. A simulation
study is performed to prove the e7ectiveness and robustness of the control approach.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Automotive control; Quarter-car suspension; Sliding mode control; Robust control; Mismatched uncertainties

1. Introduction

Several performance characteristics have to be considered in order to achieve a good suspension system [2].
These characteristics deal with regulation of body movement, regulation of suspension movement and force
distribution. Ideally the suspension should isolate the body from road disturbances and inertial disturbances
associated with cornering and braking or acceleration. Furthermore, the suspension must be able to minimize
the vertical force transmitted to the passengers for passengers comfort. These objectives can be achieved by
minimizing the vertical car body acceleration. An excessive wheel travel will result in non-optimum attitude of
tyre relative to the road that will cause poor handling and adhesion. Furthermore, to maintain good handling
characteristic, the optimum tyre-to-road contact must be maintained on four wheels.

An early design for automobile suspension systems focused on unconstrained optimizations for passive
suspension system which indicate the desirability of low suspension sti7ness, reduced unsprung mass, and an
optimum damping ratio for the best controllability [8]. Thus the passive suspension system, which approach
optimal characteristics had o7ered an attractive choice for a vehicle suspension system and had been widely
used for passengers. However, the suspension spring and damper do not provide energy to the suspension
system and control only the motion of the car body and wheel by limiting the suspension velocity according
to the rate determined by the designer. To overcome the above problem, active suspension systems have been
proposed by various researchers [1,5,7]. Active suspension systems dynamically respond to changes in the
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road proFle because of their ability to supply energy that can be used to produce relative motion between
the body and wheel. Typically, active suspension systems include sensors to measure suspension variables
such as body velocity, suspension displacement, wheel velocity and wheel or body acceleration. An active
suspension is one in which the passive components are augmented by actuators that supply additional forces.
These additional forces are determined by a feedback control law using data from sensors attached to the
vehicle. Various control strategies such as optimal state feedback [1], backsteeping method [7], optimal state
feedback [5], fuzzy control [10] and sliding mode control [9] have been proposed in the past years to control
the active suspension system. The sliding mode control has relatively simpler structure and it guarantees the
system stability.

In this paper we will consider a control scheme that can improve further the ride comfort and road handling
of the active suspension system. The proposed control scheme di7ers from the previous sliding mode techniques
in the sense that the sliding surface is based on the proportional-integral (PI) sliding mode control. The
additional integral in the proposed sliding surface provides one more degree of freedom and also reduce the
steady-state error. A computer simulation will be performed to demonstrate the e7ectiveness and robustness
of the proposed control scheme.

2. Dynamic model of the suspension

Most of the past active suspension designs were developed based on the quarter-car model as shown in
Fig. 1. From the Fgure the following state-space model of the quarter-car model can be easily obtained:
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where Ms and Mus are the masses of car body and wheel, respectively, xs and xw are the displacements of
car body and wheel respectively, Ka and Kt are the spring coeKcients, Ca is the damper coeKcient, ṙ is the
road disturbance and ua is the control force from the hydraulic actuator and assumed as the control input.
The following terms are deFned as the state variables: x1 = xs − xw for suspension travel, x2 = ẋs for car body
velocity, x3 = xw − r for wheel deLection and x4 = ẋw for wheel velocity. Eq. (1) shows that the disturbance
input is not in phase with the actuator input, therefore the system su7ers from mismatched condition.

Thus the proposed controller must be robust enough to overcome the mismatched condition so that the
disturbance would not have signiFcant e7ect on the performance of the system. Hence, contribution of this
paper is presented in the following.

Eq. (1) can be written as

ẋ(t) = Ax(t) + Bu(t) + f(t); (2)

where x(t)∈Rn is the state vector, u(t)∈Rm is the control input, and the continuous function f(t) represents
the uncertainties with the mismatched condition, i.e. rank[B|f(t)] �= rank[B]. The following assumptions are
taken as standard:

Assumption 1. There exists a known positive constant such that ‖f(t)‖6 �, where ‖ · ‖ denotes the standard
Euclidean norm.
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Fig. 1. A quarter-car model.

Assumption 2. The pair (A; B) is controllable and the input matrix B has full rank.

3. Switching surface and controller design

In this study, we utilized the PI sliding surface deFned as follows:

�(t) = Cx(t) −
∫ t

0
(CA+ CBK)x(�) d�; (3)

where C ∈Rm×n and K ∈Rm×n are constant matrices. The matrix K satisFes �(A+BK)¡ 0 and C is chosen
so that CB is non-singular. It is well known that if the system is able to enter the sliding mode, hence �(t)=0.
Therefore, the equivalent control, ueq(t) can thus be obtained by letting �̇(t) = 0 [6], i.e.

�̇(t) = Cẋ(t) − {CA+ CBK}x(t) = 0: (4)

If the matrix C is chosen such that CB is non-singular, this yields

ueq(t) = Kx(t) − (CB)−1Cf(t): (5)

Substituting Eq. (5) into system (2) gives the equivalent dynamic equation of the system in sliding mode as

ẋ(t) = (A+ BK)x(t) + {In − B(CB)−1C}f(t): (6)

Theorem 1. If ‖F̃(t)‖6 �1 =‖In−B(CB)−1C‖�, the uncertain system in Eq. (6) is boundedly stable on the
sliding surface �(t) = 0.

Proof. For simplicity, we let

Ã= (A+ BK); (6a)

F̃(t) = {In − B(CB)−1C}f(t) (6b)
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and rewrite (6) as

ẋ(t) = Ãx(t) + F̃(t): (7)

Let the Lyapunov function candidate for the system is chosen as

V (t) = xT(t)Px(t): (8)

Taking the derivative of V (t) and substituting into Eq. (6), gives

V̇ (t) = xT(t)[ÃTP + PÃ]x(t) + F̃T(t)Px(t) + xT(t)PF̃(t)

=−xT(t)Qx(t) + F̃T(t)Px(t) + xT(t)PF̃T(t); (9)

where P is the solution of ÃTP+PÃ=−Q for a given positive deFnite symmetric matrix Q. It can be shown
that Eq. (10) can be reduced to

V̇ (t) = −�min(Q)‖x(t)‖2 + 2�1‖P‖ ‖x(t)‖: (10)

Since �min(Q)¿ 0, consequently V̇ (t)¡ 0 for all t and x∈Bc(�), where Bc(�) is the complement of the
closed ball B(�), centered at x = 0 with radius �= 2�1‖P‖=�min(Q). Hence, the system is boundedly stable.

Remark. For the system with uncertainties satisfy the matching condition, i.e. rank[B|f(t)] = rank[B], Eq.
(6) can be reduced to ẋ(t) = (A+ BK)x(t) [4]. Thus asymptotic stability of the system during sliding mode
is assured.

We now design the control scheme that drives the state trajectories of the system in Eq. (2) onto the sliding
surface �(t) = 0 and the system remains in it thereafter.

For the uncertain system in Eq. (2) satisfying Assumptions 1 and 2, the following control law is proposed:

u(t) = −(CB)−1[CAx(t) + ��(t)] − k(CB)−1 �(t)
‖�(t)‖ + �

; (11)

where �∈Rm×m is a positive symmetric design matrix, k and � are the positive constants.

Theorem 2. The hitting condition of the sliding surface (3) is satis5ed if

‖A+ BK‖ ‖x(t)‖¿ ‖f(t)‖: (12)

Proof. In the hitting phase �T(t)�(t)¿ 0; using the Lyapunov function candidate V (t) = 1
2 �

T(t)�(t), we
obtain

V̇ (t) = �T(t)�̇(t)

= �T(t)
[
−(CA+ CBK)x(t) − ��(t) − k�(t)

‖�(t)‖ + �
+ Cf(t)

]

6−
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∣∣∣∣ k
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∣∣∣∣
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‖�(t)‖2 + {‖C‖ ‖A+ BK‖ ‖x(t)‖ − ‖C‖ ‖f(t)‖}‖�(t)‖

]
: (13)

It follows that V̇ (t)¡ 0 if condition (12) is satisFed. Thus, the hitting condition is satisFed.
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4. Simulation and discussion

The mathematical model of the system as deFned in Eq. (2) and the proposed proportional-integral sliding
mode controller (PISMC) in Eq. (11) were simulated on computer. For comparison purposes, the performance
of the PISMC is compared to the linear quadratic regulator (LQR) control approach. We assume a quadratic
performance index in the form of

J =
1
2

∫ ∞

0
(xTQx + uTRu) dt; (14)

where the matrix Q is symmetric positive semi-deFnite and R is symmetric positive deFnite. Then the optimal
linear feedback control law is obtained as

u= −Kx; (15)

where K is the designed matrix gain.
Numerical values for the model parameters are taken from Alleyne and Hedrick [1], and are as follows:

Ms = 290 kg; Mus = 59 kg; Ka = 16812 N=m;

Kt = 190; 000 N=m; Ca = 1000 N=(m=s):

Let the set of typical road disturbance be in the form of

r(t) =

{
a(1 − cos(8"t))=2 if 0:506 t6 0:75 and 3:006 t6 3:25;

0 otherwise;

where a denotes the bump amplitude (see Fig. 2). This type of road disturbance has been used by Lin and
Kanellakopoulos [7] and D’Amato and Viasallo [3] in their studies. Furthermore, the maximum travel distance
of the suspension travel is as suggested by Lin Kanellakopoulos [7] that is ±8 cm has been used.

In the design of the LQR controller, weighting matrices Q and R are selected as Q = diag[q1; q2; q3; q4]
where q1 = q2 = q3 = q4 = 1 × 104 and R = 1 × 10−4, respectively. Thus, the designed gains of the LQR
controller are k1 = 2750, k2 = 9720, k3 =−206400 and k4 = 8240. The values of the matrix K for the PISMC
is similar to the values of the designed gains in the LQR controller, i.e. K=[2750; 9720;−206400; 8240] such
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Fig. 2. Typical road disturbance.
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Fig. 3. (a) Suspension travel; (b) wheel deLection; (c) car body acceleration.

that �(A+BK) = {−1:5168;−0:1987± j0:1727;−0:0207}. In this simulation the following values are selected
for the PISMC: C = [100; 50; 40; 200], �= 1000, k = 1 and �= 0:001.

In order to fulFll the objective of designing an active suspension system, i.e. to increase the ride comfort
and road handling, there are two parameters to be observed in the simulations. The two parameters are the
car body acceleration and the wheel deLection. Fig. 3a shows the suspension travel of both controllers for
an active suspension system and a passive suspension system for comparison purposes. The result shows that
the suspension travel within the travel limit, i.e. ±8 cm, and the result also shows that the active suspension
utilizing the PISMC technique perform better as compared to the others. Fig. 3b and c illustrates clearly how
the PISMC can e7ectively absorb the vehicle vibration in comparison to the LQR method and the passive
system. The body acceleration in the PISMC design system is reduced signiFcantly, which guarantee better
ride comfort. Moreover, the wheel deLection is also smaller using the proposed controller. Therefore it is
concluded that the active suspension system with the PISMC improves the ride comfort while retaining the
road handling characteristics, as compared to the LQR method and the passive suspension system.
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5. Conclusion

The paper presents a robust strategy in designing a controller for an active suspension system which is based
on variable structure control theory, which is capable of satisfying all the pre-assigned design requirements
within the actuators limitation. The mathematical model of a quarter car is presented in a state space form.
A detailed study of the proportional-integral sliding mode control algorithm is presented and solved the
mismatched condition problem in the mathematical model. The performance characteristics and the robustness
of the active suspension system are evaluated by two types of controllers, and then compared with the passive
suspension system.

The result shows that the use of the proposed proportional-integral sliding mode control technique proved
to be e7ective in controlling vehicle and more robust compared to the linear quadratic regulator method and
the passive suspension system.

References

[1] A. Alleyne, J.K. Hedrick, Nonlinear adaptive control of active suspensions, IEEE Trans. Control System Technol. 3 (1997) 94–101.
[2] M. Appleyard, P.E. Wellstead, Active suspension: some background, Proc. Control Theory Appl. 142 (1995) 123–128.
[3] F.J. D’Amato, D.E. Viasallo, Fuzzy control for active suspensions, Mechatronics 10 (2000) 897–920.
[4] C. Edwards, S.K. Spurgeon, Sliding Mode Control: Theory and Applications, Taylor & Francis, London, 2000.
[5] E. Esmailzadeh, H.D. Taghirad, Active vehicle suspensions with optimal state-feedback control, J. Mech. Sci. 200 (1996) 1–18.
[6] U. Itkis, Control System of Variable Structure, Wiley, New York, 1976.
[7] J.S. Lin, I. Kanellakopoulos, Nonlinear design of active suspension, IEEE Control System Mag. 17 (1997) 45–59.
[8] A.G. Thompson, Design of active suspension, Proc. Inst. Mech. Eng. 185 (1971) 553–563.
[9] T. Yoshimura, A. Kume, M. Kurimoto, J. Hino, Construction of an active suspension system of a quarter car model using the

concept of sliding mode control, J. Sound Vibration 239 (2001) 187–199.
[10] T. Yoshimura, K. Nakaminami, M. Kurimoto, J. Hino, Active suspension of passengers cars using linear and fuzzy-logic controls,

Control Eng. Pract. 7 (1991) 41–47.


