Universiti Teknologi Malaysia Institutional Repository

Carbon balance impacts of land use changes related to the life cycle of Malaysian palm oil-derived biodiesel

Hansen, Sune Balle and Olsen, Stig Irving and Ujang, Zaini (2014) Carbon balance impacts of land use changes related to the life cycle of Malaysian palm oil-derived biodiesel. International Journal of Life Cycle Assessment, 19 (3). pp. 558-566. ISSN 0948-3349

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1007/s11367-013-0672-3

Abstract

Purpose: The area of oil palm plantations in Malaysia is expanding by approximately 0.14 million hectare per year, and with the increasing demand for palm oil worldwide, there is no sign of the expansions slowing down. This study aims to identify the greenhouse gas emissions associated with land conversion to oil palm, in a life cycle perspective. Methods: LCA methodology is applied to existing land use change data the assessment includes the issue of temporary carbon storage in the plantations. Through quantification of emissions from state forest reserve and rubber plantation conversions, the average Malaysian palm oil-related land use changes are calculated. Results and discussion: The results show that there are high emissions associated with the conversion of Malaysian state forest reserve to oil palm, whereas the conversion of rubber leaves a less significant carbon debt when indirect land use change is not included. Looking at the average Malaysian land use changes associated with oil palm shows that land use change emissions are responsible for approximately half of the total conventional biodiesel production emissions the sensitivity analysis shows that the results could be significantly influenced by data variations in indirect land use changes, peat soils, and state forest reserve carbon stock. Conclusions: The relatively extensive conversions of the state forest reserve must be reversed and preferably with a shift toward conversion of degraded land in order for the average Malaysian land use changes to have less impact on the production life cycle of palm oil and biodiesel.

Item Type:Article
Uncontrolled Keywords:biodiesel, forest, land use change, luc, palm oil, plantations, rubber, temporary carbon storage
Subjects:T Technology > TP Chemical technology
Divisions:Chemical Engineering
ID Code:52054
Deposited By: Siti Nor Hashidah Zakaria
Deposited On:01 Feb 2016 03:54
Last Modified:30 Nov 2018 07:00

Repository Staff Only: item control page