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Bilayer Graphene Application on NO2 Sensor Modelling
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Graphene is one of the carbon allotropes which is a single atom thin layer with sp2 hybridized and two-dimensional (2D)
honeycomb structure of carbon. As an outstanding material exhibiting unique mechanical, electrical, and chemical characteristics
including high strength, high conductivity, and high surface area, graphene has earned a remarkable position in today’s
experimental and theoretical studies as well as industrial applications. One such application incorporates the idea of using graphene
to achieve accuracy andhigher speed in detection devices utilized in caseswhere gas sensing is required.Although there are plenty of
experimental studies in this field, the lack of analyticalmodels is felt deeply. To start withmodelling, the field effect transistor- (FET-)
based structure has been chosen to serve as the platform and bilayer graphene density of state variation effect by NO2 injection has
been discussed. The chemical reaction between graphene and gas creates new carriers in graphene which cause density changes
and eventually cause changes in the carrier velocity. In the presence of NO2 gas, electrons are donated to the FET channel which
is employed as a sensing mechanism. In order to evaluate the accuracy of the proposed models, the results obtained are compared
with the existing experimental data and acceptable agreement is reported.

1. Introduction

Currently, there are various kinds of hazardous gases which
are harmful to the organic life and are difficult to observe
and sense [1–3]. Therefore, a sensor or a detection system
is a necessary component in environments where human
presence is inevitable. In the case of gas sensors, the best
sensor would be defined as one that is able to detect even
one molecule or atom of the chemical or gas [4–6]. Gas
sensor efficiency can be improved significantly by the state-
of-the-art technology [7–11]. Sensor technology has become
omnipresent in the modern life, and nanosensor provides
the foundation for highly developed electronic technology.
According to the studies, graphene is one of the crystalline
allotropes by two-dimensional network of carbon atoms
arranged on a honeycomb structure [12–14]. Also, graphene

has been widely implemented for the detection of various
chemical materials including NO2, NH3, CO2, H2O, and CO
because of its excellent adsorption properties and carrier
mobility [15, 16]. Bilayer graphene (BLG) is the stack of two
graphene layers, due to special features such as electrical,
physical, and optical properties, and is known as an appro-
priate material to be used in nanotechnology especially in the
sensor area [17, 18].

The twisted configuration and Bernal stacking are two
common structures of bilayer graphene. In the former, the
layers are rotating toward each other while, in the latter,
half of the carbon atoms in one layer are standing over
the other half [19, 20]. The electrical and optical features
of bilayer graphene can be influenced by orientation and
stacking order. The AA-stacked configuration is metallic, but
the AB-stacked configuration, which is in our focus, behaves
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Figure 1: The schematic of bilayer graphene (AB-stacked configu-
ration).

like a semiconductor material [21, 22]. In the AB structure
of bilayer graphene with hexagonal carbon lattice, the atoms
located on the top layer of BLG are A

1
and A

2,
whereas atoms

on the bottom layer of BLG are labelled B
1
and B

2
[18] as

shown in Figure 1.
One of the most interesting properties in BLG is its band

structure. Through theoretical studies it has been assumed
that, by applying a perpendicular electric field, the band
gap can be induced by reducing the asymmetry of two
graphene layers in the BLG [19]. The controllable band gap
is one of the most excellent properties of BLG that makes
it a promising material in nanotechnology. In Figure 2(a),
the band structure of the unbiased BLG with no external
perpendicular electric fields is shown. It demonstrates that
the BLG is a zero gap semiconductor with four parabolic
bands, where two inner bands contact each other near the
Dirac points at zero energy and the two outer bands are
separated by the interlayer hopping energy, ± 𝑡 [23, 24].

In the biased BLG, as shown in Figure 2(b), by applying
a perpendicular electric field, a band gap is opened which is
given by [26]

𝐸
𝑔
=

𝑉𝑡
⊥

√𝑉
2
+ 𝑡
2

⊥

, (1)

where 𝑉 = 𝑉
1

− 𝑉
2
is the potential energy difference

between the first and second layers and 𝑉
1
and 𝑉

2
are the

potential energy of the first and second layers, respectively.
The parameter 𝑉 can be controlled externally; therefore, by
adjusting 𝑉, the band gap can be tuned [25].

2. The Proposed Model

The sensitivity of graphene to the miniature applied voltage
can be used in sensor technology. In Figure 3, nanosensor
detection method is illustrated schematically. In this model,
the bilayer graphene as a substrate of gas sensor has been
used. As can be seen in the figure, it looks similar to the
conventional field effect transistors (FET) which include a
source metal, a drain metal, a silicon back gate, and a gate
insulator [27]. A graphene channel connects the source and
drain electrodes, a dielectric barrier layer (SiO

2
) separates the

gate from the channel, and SiO
2
is used under the graphene

as a dielectric layer while silicon acts as a back gate. When
gas molecules attach to the surface or edges of CNT, carrier
concentration will change. Due to this variability, the drain
source current is a measurable parameter. This platform is
employed in our model as a FET-based sensor structure [28].

The threshold voltage (𝑉TH) of a MOSFET is usually
defined as the gate voltage where an inversion layer forms
at the interface between the insulating layer (oxide) and the
substrate (body) of the transistor. MOSFET is a device used
for amplifying or switching electronic signals.When the gate-
source voltage is smaller than the threshold voltage (𝑉GS <

𝑉TH), there will be no conduction between the source and the
drain, and the switch will be off. In contrast, when𝑉GS > 𝑉TH,
the gate will attract electrons, including an n-type conductive
channel in the substrate below the oxide. Electrons will flow
between n-doped terminals and the switch will be on.

The tight-binding method has been used to calculate the
biased energy of BLGs, which indicates energy dispersion of
BLG as follows [29, 30]:
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where ∈
𝑘
is the electron’s dispersion in monolayer graphene

and 𝑡
⊥
= 0.32 eV is the interlayer hopping energy. The wave

vector in which the smallest gap is observed is given by
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where the ]
𝐹
≈ 1×10

6m⋅s−1 is the Fermi velocity [5] and ℎ is
the reduced Planck constant. Near 𝑘

𝑔
the energy dispersion

can be written as [31]
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where 𝑘 = 𝑘
𝑥
𝑖̂ + 𝑘
𝑦
𝑗 and 𝑚

∗ is the effective mass in BLG.
The density of states for BLG which indicates the number of
states for each interval of energy at each energy level that can
be occupied by electrons can be written as

DOS =
Δ𝑛
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= (
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The velocity of electrons is directly proportional to the value
of DOS at any instance. Average velocity of carriers in the
first subband in bilayer graphene can be obtained by the
accumulative velocity of all carriers divided by the number
of carriers. The carrier drift velocity has been reported to be
formulated in the following form [32]:

] = ∫
|]|DOS (𝐸) 𝐹 (𝐸) 𝑑𝐸

𝑛

. (6)

From the kinetic energy principle, |]| = √2𝐸/𝑚, DOS(𝐸)
is density of states, 𝐹(𝐸) = 1/(1 + 𝑒

(𝐸−𝐸𝑓)/𝐾𝐵𝑇
) is the Fermi-

Dirac distribution function which gives the probability of
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Figure 2: Band structure of BLG near the Dirac points for (a) 𝑉 = 0 (unbiased BLG) and (b) 𝑉 ̸= 0 (biased BLG) [25].
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Figure 3: Proposed structure of gas sensor based on bilayer graphene.

occupation of a state at any energy level, and 𝑛 is carrier
concentration [33]. Hence, the integral of the numerator in
(6) with respect to 𝐸 can be rewritten as
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It has been attempted to write (8) in a form which can be
solved using the Fermi integrals. The obtained equation is as
follows:
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Figure 4: The velocity of BLG.
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Figure 5: Schematic of NO
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adsorption processes by surface area of

graphene.

in which the orders of 𝑥 in the numerator of the integrands
are 1, 0, and −1/2, thus making the integrals equivalent to the
Fermi integrals of orders 1, 0, and −1/2, respectively.This can
finally give the following equation [34]:
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in which 𝑓(1), 𝑓(0), and 𝑓(−1/2) are the Fermi integral of
orders 1, 0, and −1/2, respectively. For the details on the
derivation and mathematical representation of the Fermi
integrals, the reader is referred to [34]. Velocity is evaluated
in Figure 4 based on (10) [35].

As can be seen in Figure 5, when the sensor is exposed
to gas, according to the chemical reaction between graphene
and gas molecules, graphene experiences a change in the
velocity of its carriers which can in turn cause alterations in
the current and channel voltage. In other terms, the electron
exchange between the gas and the surface of the graphene
creates new carriers which change the velocity of electrons
[36].

It can be concluded that the velocity of electrons in the
presence of gas is equal to that of the no-gas state plus the
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Figure 6: The comparison of current-voltage characteristics for
100 ppm and 500 ppm and intrinsic graphene based on proposed
model.

velocity change when graphene is exposed to gas. Consider
the following:

]with gas = ]without gas + ]gas injected. (11)

From this, the current-voltage relation can be derived as
follows:

𝐼 = 𝑛𝑞V𝐴, (12)

where 𝑛 is charge carrier density, 𝑞 is electrical charge, V is
drift velocity of the charge carriers, and𝐴 is the area in which
the charges are moving. In Figure 6, the current-voltage
characteristic of intrinsic graphene exposed to ambient air
only as well as the current-voltage characteristic of BLGbased
NO
2
sensor for graphene under 100 ppm and 500 ppm NO

2

concentration is plotted. By current-voltage characteristic
of the presented model, it is demonstrated that current
of gas sensor rises with increasing the NO

2
concentration.

Therefore, it is notable that, based on the supposed model
sensor, 𝐼-𝑉 characteristic is controlled byNO

2
concentration.

When the sensor is exposed to the gas, the density of states
can be divided into two parts; one is the density of states
without gas DOSWOG(𝐸) and the second parameter is the
density of states with gas proportional to 𝛼𝐹, which depends
on different values of NO

2
gas concentration. Consider the

following:

DOS = DOSWOG + DOSgas injected, (13)

where DOSgas injected ≈ 𝛼𝐹.
In our study, 𝛼 is our control parameter; that is, by

heuristically changing the values of 𝛼, we attempt to set the
results from the proposed model as close to the experimental
results as possible. According to the relation between the
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Figure 7: The current-voltage characteristics for (a) 100 ppm and (b) 500 ppm.

Table 1: Different F values with 𝛼 parameter.

Carrier concentration (F) Parameter (𝛼)
100 ppm 0.077
500 ppm 0.016

control parameter and density of states, we can write the
following:
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where 𝑛 is the carrier concentration equal to 𝑛 = 10
16 for

two-dimensional bilayer graphene [35].
The velocity of the graphene-based FET devices is influ-

enced by the number of carriers changing in the channel.
FET-based graphene with high sensitivity was applied to
detect the NO

2
gas, based on velocity variations. As depicted

in Figures 7(a) and 7(b), the velocity of channel will change
due to the adsorption of NO

2
to the surface of the FET chan-

nel. The performance of graphene-based gas sensor under
exposure of 100 ppm and 500 ppm of NO

2
gas is evaluated

and the analytical results of the proposed model for gas
sensor with appropriate parameters are compared with the
experimental data extracted from [16] which shows a good
agreement. It is evident in the figure that the points calculated
and obtained from our model satisfactorily coincide with the
measurement data.

In the suggested model, different carrier concentrations
are demonstrated in the form of 𝛼 parameter which is
presented in Table 1.
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Figure 8: 𝐼-𝑉 characteristic of different values of NO
2
carrier

concentration.

According to the analytical model, 𝛼 is proposed as
the controlling parameter of gas concentration. The analytic
model based on data extracted can be written as follows:

𝛼 = 𝑎𝑒
𝑏𝑥
. (15)

Referring to the analytical model, the velocity will be
enhanced as the amount of gas concentration increases.
According to the extracted data, parameters 𝑎 and 𝑏 are
calculated as 𝑎 = 0.370 and 𝑏 = −1.57.

It is evident in Figure 8 that 𝐼-𝑉 characteristic curve can
be controlled by the carrier concentration factor.The current
rises as a result of increase in the carrier concentration.

3. Conclusion

Graphene indicates amazing carrier transport properties and
high sensitivity at the single molecule level which makes
it a promising material for nanosensor applications. An
innovative analysis of matchingmodels using different values
has been presented in this work to verify that the conductance
of the graphene-based gas sensor is increased at higher
carrier concentrations. NO

2
gas effect in the FET channel
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region in the form of carrier density variation influencing
the carrier velocity is further modelled, and current-voltage
characteristic of a bilayer graphene (BLG) as a NO

2
gas

sensor is reported. Injected carriers from NO
2
on the carrier

concentration of bilayer graphene surface are monitored.
Furthermore, injected carriers as a function of gas concen-
tration (𝑓) are demonstrated. It was shown that, as carrier
concentration increases, the control parameter, 𝛼, decreases.
Finally, for the purpose of verification, 𝐼-𝑉 characteristic
of gas sensor in exposure to NO

2
is investigated and a

comparative study between the model and experimental data
from literature shows an acceptable agreement.
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