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mperature synthesis of zeolitic
imidazole framework 8 (ZIF-8) with various
concentrations of triethylamine

N. A. H. M. Nordin,a A. F. Ismail,*a A. Mustafa,a P. S. Goh,a D. Ranab and T. Matsuurab

In this study, a zeolitic imidazole framework (ZIF-8) was prepared, and physico-chemical characterizations

were performed to investigate the influences of triethylamine (TEA) on the crystallinity, particle size,

morphology, and defects of ZIF-8 synthesized via an aqueous room temperature approach with a

relatively low molar ratio of ligands to metal salts. Increasing the concentration of TEA by raising the

TEA/total molar ratio from 0.004 to 0.007 prompted the formation of pure phase ZIF-8, whereas a TEA/

total molar ratio below 0.004 did not result in a yield of ZIF-8. The particle size of ZIF-8 decreased from

approximately 288 to 133 nm with increasing TEA/total molar ratio, except at a TEA/total molar ratio of

0.007. However, an excessive TEA/total molar ratio alters the 2-MeIM chemistry, and partially forms

hydroxylated 2-MeIM. Thus, this study shows that at relatively low molar ratios of ligands to metal salts,

up to a maximum TEA/total molar ratio of 0.006, the TEA concentration plays an important role in

assisting crystal formation and in controlling the particle size of ZIF-8. The proposed procedure enables

pure phase nanoscale ZIF-8 to be synthesized with a high product yield and with minimal chemical usage.
1. Introduction

Metal–organic frameworks (MOFs) are crystalline compounds
consisting of metal ions and organic ligands that function as
secondary building units. MOFs are a new and emerging class of
porous material that possesses interesting characteristics such as
high micropore volume, large pore size, high crystallinity, and a
high metal content to achieve active sites.1 The large surface area
ofMOFs provides advantages over other porousmaterials such as
activated carbon and zeolite. Previous researchers have synthe-
sized MOF with high Brunauer–Emmett–Teller (BET) surface
areas such as MOF-5 (3000 m2 g�1),2 Co-MOF-74 (1314 m2 g�1),3

and Mg-MOF-74 (1332 m2 g�1),4 which are much higher
than those of commercial Zeolite Y (900 m2 g�1), Zeolite Beta
(710 m2 g�1), ZSM-5 (425 m2 g�1), and Modernite (500 m2 g�1).

Zeolite imidazole framework (ZIF), a novel class of MOFs,
has recently attracted considerable attention from materials
scientists. The exceptional chemical and thermal stability of ZIF
enables numerous diverse applications for this compound. ZIF
exhibits a porous crystalline structure with metal atoms linked
through N atoms by ditopic imidazolate (C3N2H3

� ¼ Im). The
Metal–Im–Metal angle links together at 145�, coinciding with
the Si–O–Si angle commonly found in zeolite.5–7 The metal ions
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that are commonly used for the synthesis of ZIF are Zn2+ and
Co2+; however, there are many types of imidazole-type linkers
such as imidazole (IM), 1-methylimidazole (mIM), 1-ethyl-
imidazole (eIM), and 2-nitroimidazole (nIM) that are suitable
for synthesis. Different combinations of different metal sites
and imidazole organic ligands would result in ZIF with different
properties, types, and structures. ZIF-8, a product formed with
Zn2+ and 2-methylimidazole (2-MeIM), is one of the most
investigated MOFs. The properties of ZIF-8 have been widely
studied and exhibit excellent chemical stability against polar
and nonpolar solvents,8 structural reorientation at high pres-
sure,9 and high mechanical strength.10

ZIFs can be synthesized using different routes such as the
solvothermal process, the microwave-assisted solvothermal
process, and aqueous synthesis at room temperature. The sol-
vothermal process is commonly used to synthesize ZIFs.6–8,10–13 A
common synthesis method consists of mixing a highly diluted
metal salt and organic ligands in an organic solvent and heating
them in an autoclave at temperatures up to 200 �C. Despite its
prevalence, this approach is time-consuming and requires high
energy consumption.1,14 The microwave-assisted solvothermal
method is less time-consuming compared to the solvothermal
process,15 and both solvothermal and microwave-assisted
synthesis processes have their own advantages and limita-
tions. Although better yield and smaller particle size can be
obtained through microwave-assisted synthesis, the process
requires unfavorably high energy.3,16 To resolve the issues, a
room temperature synthesis method has been explored.
Previous works by Cravillon et al.17,18 and Pan et al.19 have
This journal is © The Royal Society of Chemistry 2014
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Table 1 Composition of TEA/total molar ratio for ZIF-8 synthesis

Sample
TEA/Total molar
ratio

TEA volume
(ml)

A0 0 0
A1 0.001 0.5
A2 0.002 1.0
A3 0.003 1.5
A4 0.004 2.0
A5 0.005 2.5
A6 0.006 3.0
A7 0.007 3.5
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demonstrated that the synthesis of ZIF-8 using highly diluted
zinc salt and 2-MeIM in solvent can be successfully performed
at room temperature, thus minimizing the energy consumption
compared to the solvothermal and microwave-assisted sol-
vothermal methods. Additional benets of the room tempera-
ture method are a high product yield, smaller crystal size, low
energy requirement, and short reaction time.

The ability to control the particle size of synthesized MOFs is
one of the most interesting features of the material. By
increasing the ligand-to-metal ratio, an excess of ligand would
cover the crystal seed and limit the linkage with metal ions.
Hence, crystal growth that was hindered by excess ligand would
lead to smaller MOF particles.19,20 Another approach to control
the particle size of produced MOF involves incorporating a
modulating agent into the synthesis system that can act as a
buffer for the ligands and ease the metal–ligand interaction.
Consequently, rapid interaction between ligands and metal
would promote smaller crystals.18,21–25 Among modulating
agents, triethylamine (TEA) has been widely studied and shows
good compatibility with various MOFs.2,26 However, limitations
on TEA concentration exist since its basicity would induce the
formation of unknown crystals.23

Synthesis parameters such as the Zn2+ : 2-MeIM : solvent
ratio, temperature, mixing rate, and reaction time and their
control are some of the crucial and well-studied factors.2,17–19,27

However, previous studies on the inuence of additives only
focused on the particle size of the resultant ZIF-8.18,28 ZIF-8
studies have mainly focused on crystal formation in highly
diluted zinc salt and 2-MeIM in solvent, while the effects of
additives on ZIF-8 formation have not been investigated. Hence,
the present work investigates the synthesis of ZIF-8 at room
temperature, and the effect of reactant concentration was
studied in order to minimize chemical usage. Various concen-
trations of TEA in the reaction mixture were used to assist ZIF-8
formation. The inuence of TEA concentration on ZIF-8 particle
size was investigated. The effects of TEA concentration on the
morphology, crystallinity, thermal stability, and surface area of
synthesized ZIF-8 were also investigated and are discussed.
2. Experimental
2.1. Materials

Zinc nitrate hexahydrate (Zn(NO3)2.6H2O) (99% purity) was
purchased from Alfa Aesar Chemicals. 2-MeIM (99% purity) and
TEA (99.5%purity) were purchased from Sigma-Aldrich Chemical
Co., Inc. All chemicals were used without further purication.
2.2. Synthesis of ZIF-8

The synthesis of ZIF-8 has been previously described in the
literature,28 and a few changes were implemented in our
experiments to improve the yield and reduce the chemical
usage. Briey, a molar ratio of 1 : 6 : 500 of Zn(NO3)2 : 2-
MeIM : H2O was used for this study. Zn(NO3)2$6H2O (2 g, 6.72
mmol) was dissolved in 20 wt% total deionized water (12.11 g).
At the same time, 2-MeIM (3.312 g, 40.43 mmol) was dissolved
in the remaining deionized water (48.45 g). Ratios of TEA added
This journal is © The Royal Society of Chemistry 2014
to 2-MeIM solution were relative to the total molar amount of
synthesis solution (sample A0) (Table 1). Both solutions were
vigorously stirred at room temperature. Aer 30 minutes, the
product was collected by centrifugation (3000 rpm for 30
minutes) and then washed several times with deionized water
before drying (60 �C for at least 12 hours). The mass yield of the
product was calculated using eqn (1).

Yield ð%Þ ¼ mactual

mtheoritical

� 100% (1)

where mactual represents the mass of ZIF-8 produced (g), and
mtheoretical represents the theoretical mass of ZIF-8 based on
stoichiometry (g).

2.3. Characterizations

X-ray diffraction (XRD) analysis was performed using a diffrac-
tometer (Siemens D5000) with CuKa radiation and wavelength
(l) of 1.54 �A to identify the crystallinity of ZIF-8.28 Attenuated
total reectance infrared (ATR-IR) spectroscopy analysis using a
Universal ATR (UATR, Single Reection Diamond for the Spec-
trum Two) (PerkinElmer, L1600107) was used to observe the
functional group of synthesized ZIF-8s. A transmission electron
microscope (TEM) (JEOL, JSM-6701FJEOL 1230) was used to
observe the macrostructures of the ZIF-8. Samples were
prepared by dispersing ZIF-8 powder into methanol. A drop of
methanol was used for the dispersion of ZIF-8 onto carbon-
coated copper grids operating at 300 kV. A single point N2

adsorption reading was taken at 130 �C for 1 h. The apparent
surface area was calculated using the BET equation. A ther-
mogravimetric analyzer (TGA) (Mettler Toledo, TSO800GC1) was
used to characterize the thermal stability of the prepared
samples. The TGA records the weight changes of a sample when
it is continuously heated. The samples were heated from 30 to
800 �C at a rate of 10 �C min�1under a N2 atmosphere with a
nitrogen ow rate of 20 ml min�1. 1H NMR spectroscopy was
performed with a Bruker Avance 400 spectrometer using
dimethyl sulfoxide (DMSO) as the solvent to ascertain chemical
bonding and structure of the impurities.

3. Results and discussion

The mass yields of the products synthesized with various
TEA : 2-MeIM ratios are shown in Table 2 and demonstrate a
high production yield. Previously reported ZIF-8 synthesis via
RSC Adv., 2014, 4, 33292–33300 | 33293



Table 2 Properties of prepared ZIF-8s

Sample
Approximate
yield (%) Particle size (nm)

BET surface
area (m2 g�1)

A4 90 287.78 � 86.01 491.54
A5 90 162.34 � 57.02 420.83
A6 90 133.69 � 41.21 418.44
A7 85 141.12 � 46.65 428.57
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the room temperature aqueous system produced resultant
yields of up to 80%,19 while 100% has been reported for the
room temperature organic solvent method.29 It should be noted
that syntheses conducted by both research groups used
Zn(NO3)2 : 2-MeIM ratios ranging from 1 : 23 to 1 : 70. Inter-
estingly, high yields of ZIF-8 were obtained throughout this
work with a low Zn(NO3)2 : 2-MeIM ratio. The inclusion of TEA
in the aqueous system eased the interaction between Zn2+, and
deprotonated 2-MeIM produced high yields of ZIF-8.
3.1. X-ray diffraction analysis

Fig. 1 shows the XRD pattern of ZIF-8 synthesized using
different TEA ratios. The XRD patterns of the samples have been
well established in the previously reported work.19 The rst
attempt to synthesize ZIF-8 was performed without any TEA
additive (sample A0), and the solution instantly turned cloudy
upon the mixing of reactants. This observation indicated that
rapid nucleation occurred in the solution.30 However, the
absence of ZIF-8 characteristic peaks for planes {110}, {200},
{211}, {220}, {310}, and {222} suggested that a low TEA/total
molar ratio (0 to 0.002) was not favorable for the synthesis of
ZIF-8 due to (1) the intergrowth hindrance at a low ligand-to-
metal-salt ratio,30,31 (2) insufficient amount of 2-MeIM in the
solution, which led to a low reaction rate and hindered crystal
growth, thus hampering the formation of ZIF-8, and (3) insuf-
cient TEA concentration to deprotonate 2-MeIM to assist in the
Fig. 1 XRD pattern of ZIF-8 with different TEA concentrations.

33294 | RSC Adv., 2014, 4, 33292–33300
ZIF-8 formation. Interestingly, characteristic peaks for planes
{110}, {200}, {211}, and {222} appeared as the TEA/total molar
ratio was increased to 0.003 (sample A3) at 2q ¼ 7.30, 10.35,
12.70, and 18.00, respectively, suggesting that the formation of
ZIF-8 was successful. However, additional peaks were also
observed, indicating that the ratio of 0.003 was still insufficient
to form pure-phase ZIF-8. The phenomenon can be probably be
ascribed to (1) deprotonation of 2-MeIM that began to take
place, resulting in only the formation of the intermediate ZIF-8
phase, or (2) only a small amount of ZIF-8 formed, and the XRD
reection was clouded with a large amount of intermediate ZIF-
8 crystal.

As the TEA/total molar ratio increased to 0.004 (sample A4),
peaks for planes {110}, {200}, {211}, {220}, {310}, and {222} can
be clearly seen. No additional peaks were observed, hence
suggesting that pure phase ZIF-8 had been successfully formed,
and thus implying that a minimum TEA/total molar ratio of
0.004 is necessary to form ZIF-8. For higher TEA/total molar
ratios, similar patterns were also observed. The results indi-
cated that the formation of pure phase ZIF-8 can be achieved
regardless of TEA loading aer exceeding the minimum
TEA/total molar ratio. This phenomenon was due to the
deprotonation of 2-MeIM to produce more reactive sites on the
ligands to facilitate the reaction with Zn2+. Consequently,
nucleate formation was initiated, and rapid crystal growth
commenced, which eventually led to the formation of a frame-
work. Therefore, pure phase ZIF-8 was successfully synthesized
in a reaction time of less than 30 minutes at a relatively low
molar ratio of ligands to metal salts with a high product yield
that was comparable to that of a previous study.19 However,
further increase of the TEA/total molar ratio of 0.007 led
partially to the formation of an impure component (Fig. 2a). The
formation of this impure component lowered the mass yield to
approximately 85%.

Biemmi et al.23 suggested that the introduction of excess base-
type additive to the synthesis solution would introduce hydroxyl
(–OH) groups on the organic ligands, which would later react with
metal salts, thus leading to the formation of different compounds.
ATR-IR analysis of the impure component (Fig. 2b) revealed a
broad –OH stretch at 3550–3200 cm�1 in the compound, hence
implying the possibility of the formation of an impure compo-
nent, as observed in this study. The XRD pattern of the impure
component is presented in Fig. 2c, and it behaves distinctly from
the pure phase ZIF-8 pattern. The disoriented peak order of the
impure component revealed that excess TEA would lead to the
formation of amorphous species. Further investigation was
carried out by dissolving the impure component in dimethyl
sulfoxide (DMSO) and evaluating it via 1H NMR to identify a
possible structure of the impure component (Fig. 2d). A peak
corresponding to –CH3 was present at d ¼ 2.51 ppm, and –OH at
d ¼ 3.97 ppm (broad single peak, merged with DMSO water). An
aromatic –H appeared at d ¼ 7.05 ppm, and the lack of a –NH
group may be due to the presence of moisture. Hence, excess TEA
added to the synthesis solution would hydroxylate 2-MeIM and
would not assist in the formation of ZIF-8.

Although the crystallinity of prepared samples remained
unchanged as the TEA/total molar ratio increased above the
This journal is © The Royal Society of Chemistry 2014



Fig. 2 Unknown component partially forms for sample A7: (a) visible to the naked eye, and characterized via (b) ATR-IR, (c) XRD, and (d) 1H NMR.
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minimum value of 0.004, the ZIF-8 planes began to shi
towards a higher diffraction angle. Fig. 3 shows the low-angle
XRD patterns of the prepared samples in which the character-
istic planes {110} at 2q ¼ 7.35� were compared.8 It can be
observed that the plane {110} peak of ZIF-8 prepared at TEA/
total mole ¼ 0.004 exists at a lower angle compared to the
simulated data, and a further increase in the ratio led to the
slight shiing of planes {110} towards a higher angle. It is
expected that crystal irregularities were induced through the
fast reaction between Zn2+ and 2-MeIM, where a high uniform
strain and stacking faults were experienced by the particles,
Fig. 3 Low angle XRD of prepared samples. Dotted line represents
2q ¼ 7.35� for plane {110} of simulated ZIF-8.8

This journal is © The Royal Society of Chemistry 2014
thus resulting in a shi of the XRD peak to a higher angle.32,33

Further understanding of the inuence of the TEA/total molar
ratio on the crystal irregularities of the prepared ZIF-8s was
obtained through TEM analysis and will be discussed in the
following section.

Gross et al.28 reported that the inclusion of TEA in the
aqueous synthesis system for ZIF-8 would reduce the 2-MeIM
usage. A metal : ligand ratio of 1 : 4 to 1 : 16 is sufficient to
obtain pure phase ZIF-8 with TEA embodied in the system,
whereas a metal : ligand ratio of 1 : 70 to 1 : 200 is required
without a modulating agent,19 implying the impact of TEA on
ZIF-8 formation. The author also suggested that a molar ratio of
ligands/TEA >0.5 in a 2255 molar ratio of water is necessary to
provoke ZIF-8 formation in order to minimize the 2-MeIM
requirement. However, the current study indicated that if
ligands/TEA >0.3 in only a 500 molar ratio of deionized water,
this would be sufficient to form pure phase ZIF-8 in an aqueous
room temperature system. Thus, pure phase ZIF-8 was obtained
in a limited quantity of solvent while maintaining high product
yield.
3.2. Transmission electron microscopy analysis

The effects of TEA/total molar ratio on the particle size and
morphology of ZIF-8 were further evaluated using TEM (Fig. 4).
Overall, all ZIF-8 samples showed a rhombic dodecahedron
shape within a nanoscale range. This observation implied that
nanosized ZIF-8 can be produced with a low 2-MeIM ratio
(2-MeIM/Zn2+ < 4) and the addition of TEA at room tempera-
ture.19,28,34 A nanorod-like morphology had been previously
reported29 but it was not observed in these experiments, sug-
gesting a stable phase of ZIF-8 formation. At the minimum TEA/
RSC Adv., 2014, 4, 33292–33300 | 33295



Fig. 4 TEM images for samples (a) A4, (b) A5, (c) A6, and (d) A7 with their size distribution (the red line represents a Gaussian fit).
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total molar ratio of 0.004, the particle size of ZIF-8 was
approximately 288 nm (Fig. 4a). Upon increasing the TEA/total
molar ratio above the minimum value, from 0.005 to 0.006,
the particle size of ZIF-8 gradually decreased from approxi-
mately 162 nm (Fig. 4b) to 134 nm (Fig. 4c). This phenomenon
was expected due to the high TEA/total molar ratio that could
induce more nuclei formation through the deprotonation of 2-
MeIM. The fast reaction between Zn2+ and deprotonated 2-
MeIM prompted the formation of small particles.21,26,28 As the
TEA loading increased, smaller particle size was observed.
However, increasing the TEA/total molar ratio up to 0.007 led to
the formation of larger particles (Fig. 4d). The high reaction rate
rendered by the deprotonated 2-MeIM might lead to an unde-
sirable competition between MeIM� for Zn2+ sites, resulting in
the formation of larger crystals.18,29

Structural defects on the particle surface of prepared ZIF-8s
are shown in Fig. 5. Structural defects were observed for all
samples, which indicates that the TEA/total molar ratio had no
33296 | RSC Adv., 2014, 4, 33292–33300
inuence.18 Because other synthesis parameters were kept
constant, these structural defects can be related to the fast
crystal formation. The crystal irregularities could be induced by
crystal shearing as the solution concentration increased.23,30

Therefore, it is reasonable to deduce that the rapid crystal
formation resulted from highly concentrated synthesis solu-
tion, and the crystal irregularities resulted from the addition of
TEA.
3.3. Attenuated total reected infrared spectroscopy analysis

Fig. 6 shows the ATR-IR spectra of samples A4-A7. Most of the
spectra are related to the vibrations of the imidazole units and
thus can be described based upon bond origin. It was observed
that the spectra of samples A4-A7 are in agreement with other
studies.8,11 Samples A4-A7 showed absorption bands between
3135 and 2929 cm�1 that can be attributed to the aromatic and
the aliphatic C–H stretch of the imidazole, respectively. The
This journal is © The Royal Society of Chemistry 2014



Fig. 5 Crystal irregularities (red circle) on ZIF-8 prepared with
TEA\total molar ratios of (a) 0.004, (b) 0.005, (c) 0.006, and (d) 0.007.
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characteristic peak at 1584 cm�1 was due to C]N stretching,
whereas bands between 1350–1500 cm�1 can be assigned to the
entire ring stretching.35 The peak at 450 cm�1 shows the distinct
stretching vibration of Zn–N. The absence of amine and
hydroxyl functional groups in the prepared ZIF-8s (with the
exception of the unknown crystal) indicated the presence of an
amine additive at the TEA/total molar ratio from 0.004 to 0.007
that did not react with 2-MeIM11 and only served as a deproto-
nation agent.

The resultant impure component partially formed as the
TEA/total molar ratio increased to 0.007, while no products were
formed at lower ratios. This observation demonstrated the
important roles of TEA concentration in inuencing ZIF-8
Fig. 6 ATR-IR spectrum of synthesized ZIF-8s.
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synthesis. The formation of ZIF-8 through room temperature
synthesis can be generally classied into three categories, as
depicted in Fig. 7. As shown in Fig. 7a, although rapid nucle-
ation occurred at a TEA/total molar ratio below 0.004, insuffi-
cient TEA was available to deprotonate 2-MeIM, and hence, no
product was formed. As the TEA/total molar ratio increased to
the range of 0.004–0.007, the formation of pure phase ZIF-8s as
illustrated in Fig. 7b suggested that deprotonation of 2-MeIM
(Fig. 7d) induced faster crystal growth, which then resulted in
impure crystal formation. When excessive TEA was added, the
deprotonation of ligands also simultaneously occurred.
However, partially formed impure crystals associated with the
presence of the –OH group implied that excessive dissociated
water also reacted with the ligands, according to the route
illustrated in Fig. 7c.

3.4. Thermogravimetric analysis

The thermal stability of the prepared ZIF-8 samples was charac-
terized by TGA analysis under an N2 atmosphere as shown in
Fig. 8a. The initial weight loss for all samples occurred at 100 �C
and was attributed to the evaporation of trapped solvent
(deionized water).2,17,36 Secondary weight losses were observed at
approximately 250 �C and were associated with the carbonization
of guest molecules (2-MeIM) in ZIF-8 pores.8 The third weight
losses occurred at approximately 600 �C for all prepared ZIF-8s
and corresponded to the decomposition of the organic linkers
and ZIF-8 crystal. Further investigation was focused on sample A6
because it provided the minimal particle size compared to the
other samples. The XRD patterns of sample A6 heated in open air
at 300 �C, 400 �C, 500 �C and 600 �C are presented in Fig. 8b. Peak
intensication was observed, as sample A6 heated at 300 �C
indicated the absence of guest molecules that could cause
destructive interference in the diffracted beams. At 400 �C, peak
disappearance suggests that the ZIF-8 structure was collapsed,
resulting in the formation of amorphous solids,37 while oxidation
of Zn2+ at 500 �C and 600 �C led to the formation of zinc oxide
(ZnO). Contradictory data between the TGA and XRD techniques
implies that the prepared ZIF-8s were able to retain their struc-
ture up to 600 �C in an inert atmosphere, whereas they could
retain their structure only at 300 �C in the open air, due to
framework sensitivity towards moisture and/or oxygen.19 It was
found that there was no signicant impact on the thermal
stability of ZIF-8 by the incorporation of various TEA/total molar
ratios during the synthesis.

3.5. BET analysis

The surface area of all ZIF-8s samples is presented in Table 2,
and the values are far smaller than those previously reported.
For example, Park et al.8 reported a surface area of 1947 m2g�1

while Cravillon et al.18 reported a surface area of 1617 m2g�1.
The decreased surface areas measured in this report resulted
from guest molecule entrapment in the ZIF-8 pores that
reduced the BET surface area.28 Sample A6 was heated at 300 �C
in open air in an attempt to evacuate the guest molecules. The
BET surface area increased to 1182.87 m2 g�1 in the heated
sample, suggesting that there was more accessible pore
RSC Adv., 2014, 4, 33292–33300 | 33297



Fig. 7 A schematic illustration showing the influence of TEA concentration on ZIF-8 formation.

Fig. 8 Thermal stability of prepared ZIF-8s: (a) weight loss profile of ZIF-8 and (b) XRD pattern of sample A6 heated in open air at elevated
temperature.
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availability due to the carbonization of the guest molecules that
had occurred.

4. Conclusions

ZIF-8 was successfully synthesized at room temperature using a
low Zn2+ : 2-MeIM : H2O ratio with TEA as an additive, and
limited chemical usage was sufficient for synthesis while
maintaining high product yield. The presence of TEA during
ZIF-8 synthesis is crucial for promoting crystallization at a low
molar ratio of metal : ligand : solvent. From this study, the
minimum TEA/total molar ratio required for the formation of
ZIF-8 was determined to be 0.004. The ZIF-8 particle size
decreased from approximately 288 to 133 nm as the TEA/total
molar ratio increased from 0.004 to 0.006. The increase in the
TEA/total molar ratio did not affect the crystallinity, but did
result in crystal irregularities. The TEA/total molar ratio of 0.006
is suitable to produce a high yield of ZIF-8, with a particle size of
approximately 133 nm. It can be concluded that TEA plays an
33298 | RSC Adv., 2014, 4, 33292–33300
important role in assisting crystal formation and controlling the
particle size of ZIF-8 when a relatively low molar ratio of ligand/
metal salt is used in the synthesis. The lowered BET surface area
of synthesized ZIF-8s that was observed throughout the study
resulted from guest molecules occupying its pores. Thus,
removal of guest molecules by heat treatment is necessary to
activate ZIF-8.
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