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Rainfall-runoff simulation in hydrology using artificial intelligence presents the nonlinear relationships using neural networks. In
this study, a hybrid network presented as a feedforward modular neural network (FF-MNN) has been developed to predict the
daily rainfall-runoff of the Roodan watershed at the southern part of Iran. This FF-MNN has three layers—input, hidden, and
output. The hidden layer has two types of neural expert or module. Hydrometeorological data of the catchment were collected for
21 years. Heuristic method was used to develop the MNN for exploring daily flow generalization. Two training algorithms, namely,
backpropagation with momentum and Levenberg-Marquardt, were used. Sigmoid and linear transfer functions were employed
to explore the network’s optimum behavior. Cross-validation and predictive uncertainty assessments were carried out to protect
overtiring and overparameterization, respectively. Results showed that the FF-MNN could satisfactorily predict stream flow during
testing period.The Nash-Sutcliff coefficient, coefficient of determination, and root mean square error obtained using MNN during
training and test periods were 0.85, 0.85, and 39.4 and 0.57, 0.58, and 32.2, respectively.The predictive uncertainties for both periods
were 0.39 and 0.44, respectively. Generally, the study showed that the FF-MNN can give promising prediction for rainfall-runoff
relations.

1. Introduction

A hydrologic model can be categorized as (i) mathematical,
(ii) physical, and (iii) analog. Physical model is a small-
scaled view of a real phenomenon. Analog model is used for
observing one process to create another physically similar
natural process. Mathematical model includes obvious series
of numerical logical steps and equations that transfer numeri-
cal inputs to numerical outputs [1, 2]. Advances and improve-
ments in the development of rainfall-runoff modeling
appeared in the 1950s and 1960s [3]. One of the classifications
of hydrological modeling is attributed to the concept of arti-
ficial intelligence (AI).The artificial neural networks in an AI
can be roughly likened to the structure of a brain [4]. ANN
researches have so far given rise to three periods of wide-
spread activity. The first was in the 1940s, pioneered by
McCulloch and Pitts. The second happened in the 1960s with
Rosenblatt’s perceptron convergence theory and Minsky
and Piper’s work showing the boundaries and limitation of

a simple perceptron. In the early 1980s, ANNs began receiving
considerable renewed attention [5]. In recent years, neural
networks have become tremendously accepted for forecasting
and predicting in various disciplines such as that done for the
rainfall-runoff relationships in hydrology [6–12]. Artificial
networks used for solving problemsmay be ofmultilayer per-
ceptron, radial basis function, and generalized feedforward
networks. Indeed, every network has its own advantages. A
full discussion on artificial neural networks in hydrology can
be found in basic literature such as [5, 7, 8, 13].

In this research, feedforward modular neural network
(FF-MNN) is proposed for the development of rainfall-runoff
modeling as a new generation of neural networks in Roodan
watershed. A short literature review for hybrid structures
such as modular neural network revealed some interesting
studies. For instance,Wu [14] predicted rainfall via amodular
radial basis function neural network (M-RBF-NN) method
to forecast in a near real time manner. Results indicated that
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Figure 1: General construction of feedforward modular network.

the forecasting was more consistent and accurate. In another
study, Wu and Chau [15] studied the optimal prediction of
rainfall-runoff through a modular neural network (MNN)
and an artificial neural network (ANN). Results showed that
MNN provided better accuracy than a simple ANN. In one
study in India, four types of feedforward modular neural
networks were used to recognize the hourly rainfall-runoff
pattern recognition; this study was done by Deshmukh and
Ghatol [16]. Results revealed that feedforward modular neu-
ral networks are promising forwater resourcemanagement in
monsoon climate. Corzo and Solomatine [17] separated their
base flow using modular neural network to predict the flow.
The outcome showed that modular neural network is more
accurate than traditional ANN models. Parasuraman et al.
[18] developed spiking modular neural networks (SMMN) to
predict stream flow and evaporation. Results indicated that
SMNNs can give better generalization for prediction of high
flows and evaporation than feedforward neural networks
(FFNNs). Jin et al. [19] used a modular fuzzy neural network
(MFNN) for climate prediction. They found that the MFNN
model has an advantageous simple structure with no hidden
layer, and their results showed that not only can the MFNN
give better prediction but also its number of adjustable
parameters is obviously less than that of common multilayer
neural network. Almasri and Kaluarachchi [20] used modu-
lar fuzzy neural networks to simulate nitrate in an agriculture
catchment where geographic information system (GIS) was
used to prepare the input data. Results revealed that long-time
simulations by MNN are effective for future water resource
management. Zhang andGovindaraju [21] predictedmonthly
runoff using Bayesian concepts andMNNs.Theirmain objec-
tive was to developmodular topologies to overcome the com-
plexity of rainfall-runoffmodeling.They collected the average
monthly rainfall and temperature as input and the output
generated was the discharge.The results found satisfying pre-
diction on runoff.

This study, on the other hand, was done to perform pat-
tern recognition via feedforward modular neural network
(FF-MNN) for the Roodan catchment situated at the south-
ern part of Iran. As far as the authors are concerned, no
similar studies using MNN have ever been done for the
aforesaid catchment.TheMNN in this studywas developed to
simulate daily flow via training, cross-validation, and testing.

2. Introduction of Feedforward Modular
Neural Network

Feedforward modular neural network (FF-MNN) is a special
class of multilayer perceptron (MLP) and is often defined as
an extension tomultilayer perceptron.This alsomeans that its
hypothesis and training rules are the same as MLP [5]. Gen-
erally, FF-MNN considers its input using two parallel MLPs
networks and then recombines the results to generate the
output. Wang et al. [22] stated that MNN is structured from
neural expert or modules where each module (neural expert)
is designed for individual input-output pairs. The weights
of the module are adjusted by applying the attributed algo-
rithm simultaneously during training phase. This procedure
improves function specialization in each module to generate
more options for the development of topology (architecture).

Generally, MNN can learn pattern recognition and speed
up training times. The general representation of FF-MNN is
shown in Figure 1. FF-MNN has several modules in hidden
layers attributed to the number of neurons and transfer func-
tions, but all learning rules are the same. The modules learn
patterns for different input-output pairs using transfer func-
tion and the number of neurons. In this study, the FF-MNN
had two modules, and this was adequate to configure the
nonlinearity. A motivation to apply MNN can be found in
Zhang and Govindaraju [21].

3. Methodology

3.1. Case Study. The study area is located in the southern
part of Iran between the Hormozgan and Kerman provinces,
which is the Roodan watershed. The area of catchment is
10570 km2 and lies between northern geographical latitude
of 26 degrees and 57 minutes to 28 degrees and 31 minutes
and the eastern longitude of 56 degrees and 47 minutes to 57
degrees and 54 minutes (Figure 2). For the period of 1978 to
2008, the average annual precipitation was 215mm. Gener-
ally, the climate of Roodan is arid to semiarid with short and
high intensity rainfall. The most important and dominant
land uses of Roodan watershed are as shrub land (range
brush) mix grassland, and Minab dam is located at the outlet
of catchment and is important in collecting surface water for
downstream development. Precipitation and discharge were
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Figure 2: Roodan watershed in south of Iran (a); satellite image for the reservoir of Esteghlal (Minab) dam (b).

collected for the Roodan watershed in daily time step from
1988 to 2008.

3.2. Building the FF-MNN. Generally, an artificial neural
network such as FF-MNN functions by learning variables
relationships in training and then extending them to test con-
ditions [23].Thequantity and quality of data, that is, the infor-
mation content, is paramount for the modeling [24]. Gener-
ally, the collection of training data represents the hydromete-
orological patterns’ features in a basin and is very significant
in neural networks as opined by Yapo et al. [25]. In this study,
the hydrometeorological data, namely, precipitation and
stream flow, were obtained from IRIMO from 1988 to 2008 in
daily time scale for the Roodan watershed. Average daily pre-
cipitation (mm) and average daily discharge flow (m3/s) were
used as the available predictors.

The modular feedforward network selected was first
introduced byDeshmukh andGhatol [16]. FF-MNN includes
two modules for its hidden layer, which means that there are
two parallel calculations for input vectors. Every module has
specific number of neurons and attributed transfer functions,
and every layer has a training algorithm.The outputs of every
module are summed up in the output layer computation. It
is important that a desirable number of neurons are selected
for everymodule in the hidden layer to advantage the transfer
functions and optimize the training algorithm; the number of
layers in this case can be selected heuristically through trial
and error [26]. This entire process demands that the modeler
remains patient before a neural network is developed. The
transfer function is a required component for every process
element (neuron) because the generating of output vectors in
a neuron is related to the transfer function types [27]. In
rainfall-runoff modeling, the sigmoid and linear transfer

Table 1: Applied transfer functions.

Transfer function Description
Sigmoid Sigmoid (0/1)
Linear sigmoid Piecewise linear (0/1)
Linear Adds a bias and scales

Table 2: Applied Training algorithms.

Name Description
Backpropagation with
momentum

Gradient and weight
change

Levenberg-Marquardt
Improved second
order method for

gradient

functions are the most popular functions, as mentioned in
[28]. Table 1 indicates the applied transfer functions for this
research.

Generally, learning rule determines the relative signif-
icance of input weights to a process element. The most
popular training algorithm is backpropagation (Momentum),
which has been derived from gradient descent rule [22]. The
Levenberg-Marquardt algorithm, which is associated with
the optimization numerical technique as the learning rule, is
undergoing more evaluation for rainfall-runoff relationships
[29]. In our study, two training algorithms were chosen, and
these are as shown in Table 2.

In neural networks, the data has to be standardized
according to the training algorithm and then the data sets
need to be divided for training and testing. The data should
be normalized (standardized) because of equal consideration
during the training stage. In this study, since sigmoid and
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linear functions were used, the data were scaled separately for
sigmoid to be between 0 and 1; this method was suggested by
Zadeh et al. [30].

Three data sets were involved in the development pro-
cedure—the training set, the cross-validation set, and the
test set (validation). The training dataset was first applied to
train the FF-MNNmodel configuration.The cross-validation
dataset was then applied to decide the training’s stopping time
to prevent overfitting [27]. Finally, the test set was applied to
assess the selectedmodel alongside independent data. Gener-
ally, about 70% of the input-output pairs were used for learn-
ing and remaining 30% of input-output pairs were used for
validation (test). 10% of the training data was used as the
cross-validation set for Roodan watershed.

Several architectures (topologies) were developed in this
study to find the optimum generalization for the training
algorithms, transfer functions, and number of neurons. In the
first step, a series of configurations were tested by combining
training algorithms and transfer functions in the hidden and
output layers. Table 3 shows the designed architectures for
Roodan watershed. There is no definite algorithm that can
show the optimal number of neurons needed in a hidden
layer, but this can be determined through trial and error [26].
In this regard, the number of neurons in the hidden layer
for the two modules was increased gradually. Two evolution
schemes were involved here for Module 1: (1) increase of the
neurons forModule 1 andModule 2 while fixing two neurons
in Module 2 and (2) increase of the neurons for Module 2
while fixing the optimum neurons for Module 1 (optimum
neuron means that more neurons do not improve the gen-
eralization further). The same procedure was repeated for
Module 2 where (1) the number of neurons for Module 2 was
increased while two neurons in Module 1 were fixed and (2)
the number of neurons in Module 1 was increased while the
optimum neurons for Module 2 were fixed. The general aim
here is to obtain a consistent generalization.

3.3. General Methodology of FF-MNN for Roodan Watershed.
The development of FF-MNN was initiated by first choosing
the data set for model learning and validation. This was
followed by determining the input and output variables and
scaling the data. After that, the network topology and specifi-
cation for the number of cells for hidden layer were set.Then,
the crude FF-MNN was trained and tested to find the opti-
mum results. This FF-MNN had three layers, which were the
input, hidden, and output layers. The hidden layer had two
modules (neural expert).

It was obvious at this point that the number of cells in
the input layer was correlated with the input data vector and
the same relationshipwas found between the output layer and
its vector. Normally, one hidden layer is enough for rainfall-
runoff modeling by ANNs. However, to find the optimal
network architecture is a task that is highly dependent on the
number of hidden layers. In this study, the layers were
evaluated layer by layer, and this was done using the heuristic
approach, deemed as a usualmethod, as suggested byBowden
et al. [7]. This is a stepwise approach where the inputs
(forward approach) are increased stepwise by decreasing

the inputs (backward approach). In this regard, the modeler
should consider the complexity of the neural network with
the number of inputs variables (i.e., attributed lags and vari-
ous variables). In this study, the input pairs were determined
in a forward approach to find the optimum generalization.
The FF-MNN model was trained using the resulting daily
data of runoff and rainfall. The input vector was represented
by rainfall (PCP) and runoff (𝑄) values for the previous five
days.The reason that a five-day lag was chosen was due to the
existence of rainfall events in five previous days (i.e., 𝑡−1, 𝑡−2,
𝑡 − 3, 𝑡 − 4, and 𝑡 − 5) [28]. The FF-MNN model can also be
showed in the following compact format:

𝑄
𝑡
= FF-MNN [PCP

𝑡
,PCP
𝑡−1
,PCP
𝑡−2
,PCP
𝑡−3
,

PCP
𝑡−4
,PCP
𝑡−5
, 𝑄
𝑡−1
, 𝑄
𝑡−2
,

𝑄
𝑡−3
, 𝑄
𝑡−4
, 𝑄
𝑡−5
] .

(1)

By using the forward approach to combine the input vari-
ables, the FF-MNN architectures were trained to capture the
dynamic, complex, and nonlinear rainfall-runoff mechanism
in the Roodan watershed with harmony of transfer function
and normalized data. At this stage, the FF-MNN was devel-
oped by combining input data, transfer functions, and train-
ing algorithms in the hidden and output layers (Table 3). As
mentioned before, the optimal number of neurons in the hid-
den layer was determined using a trial-and-error procedure
via the two evolution schemes suggested by [7]. Special con-
sideration was also taken to the fact that smaller amount cells
could be inadequate to capture difficult relations between
predictors and calculated output [31]. Finally, the results were
compared to calculate the various performance evaluation
indices (i.e., MSE, 𝑅2, and NS) for both training and test-
ing data sets before the optimum developed topology was
decided.

4. Model Performance Assessment

The hydrological model’s accuracy can be evaluated using
many approaches, for example, the methods proposed by the
World Meteorological Organization (WMO) which can be
generally divided into graphical evaluation and numerical
assessment [32]. WMO [33] has suggested two indicators as
graphical evaluation for observed and simulated data, which
are

(i) linear scale plot of the predicted and measured data,

(ii) double mass plots of the estimated and real data.

The numerical assessment can be carried out in two
forms as well, that is, absolute goodness-of-fit and relative
goodness-of-fit [34]. Relative goodness-of-fit is a nondimen-
sional criterion that offers a relative comparison between the
observed and simulated data [35], represented as the coeffi-
cient of determination (𝑅2) and Nash-Sutcliffe coefficient of
efficiency (NS). The absolute goodness-of-fit statistics has
dimension [35] and is represented as the root mean square
error (RMSE).



Modelling and Simulation in Engineering 5

Table 3: Developed configurations of MNNs for Roodan watershed.

Architecture Hidden layer 1 Output layer

Module Transfer
function Training algorithm Transfer function Training algorithm

1 Module 1 Sigmoid ∗Levenberg-Marquardt or
momentum Sigmoid

∗Levenberg-Marquardt or
momentumModule 2 Sigmoid

2 Module 1 Sigmoid ∗Levenberg-Marquardt or
momentum Linear sigmoid

∗Levenberg-Marquardt or
momentumModule 2 Sigmoid

3 Module 1 Sigmoid ∗Levenberg-Marquardt or
momentum Linear

∗Levenberg-Marquardt or
momentumModule 2 Sigmoid

4 Module 1 Linear sigmoid ∗Levenberg-Marquardt or
momentum Sigmoid

∗Levenberg-Marquardt or
momentumModule 2 Linear sigmoid

5 Module 1 Linear sigmoid ∗Levenberg-Marquardt or
momentum Linear sigmoid

∗Levenberg-Marquardt or
momentumModule 2 Linear sigmoid

6 Module 1 Linear sigmoid ∗Levenberg-Marquardt or
momentum Linear

∗Levenberg-Marquardt or
momentumModule 2 Linear sigmoid

7 Module 1 Linear ∗Levenberg-Marquardt or
momentum Sigmoid

∗Levenberg-Marquardt or
momentumModule 2 Linear

8 Module 1 Linear ∗Levenberg-Marquardt or
momentum Linear sigmoid

∗Levenberg-Marquardt or
momentumModule 2 Linear

9 Module 1 Linear ∗Levenberg-Marquardt or
momentum Linear

∗Levenberg-Marquardt or
momentumModule 2 Linear

10 Module 1 Sigmoid ∗Levenberg-Marquardt or
momentum Sigmoid

∗Levenberg-Marquardt or
momentumModule 2 Linear sigmoid

11 Module 1 Sigmoid ∗Levenberg-Marquardt or
momentum Linear sigmoid

∗Levenberg-Marquard or
momentumModule 2 Linear sigmoid

12 Module 1 Sigmoid ∗Levenberg-Marquardt or
momentum Linear

∗Levenberg-Marquardt or
momentumModule 2 Linear sigmoid

13 Module 1 Sigmoid ∗Levenberg-Marquardt or
momentum Sigmoid

∗Levenberg-Marquardt or
momentumModule 2 Linear

14 Module 1 Sigmoid ∗Levenberg-Marquardt or
momentum Linear sigmoid

∗Levenberg-Marquardt or
momentumModule 2 Linear

15 Module 1 Sigmoid ∗Levenberg-Marquardt or
momentum Linear

∗Levenberg-Marquardt or
momentumModule 2 Linear

16 Module 1 Linear sigmoid ∗Levenberg-Marquardt or
momentum Sigmoid

∗Levenberg-Marquardt or
momentumModule 2 Linear

17 Module 1 Linear sigmoid ∗Levenberg-Marquardt or
momentum Linear sigmoid

∗Levenberg-Marquardt or
momentumModule 2 Linear

18 Module 1 Linear sigmoid ∗Levenberg-Marquardt or
momentum Linear

∗Levenberg-Marquardt or
momentumModule 2 Linear

∗For every configuration, both training algorithms, Levenberg-Marquardt and momentum, were examined separately for hidden and output layers.

(a) Coefficient of determination is presentd as

𝑅
2

=

{{

{{

{

∑
𝑛

𝑖=1
(𝑄obs − 𝑄obsavg) (𝑄sim − 𝑄simavg)
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𝑛

𝑖=1
(𝑄obs − 𝑄obsavg)∑

𝑛

𝑖=1
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2

]
0.5

}}

}}

}

2

,

(2)

where 𝑄obs is the observed value at time 𝑖; 𝑄sim is the
predicted value at time 𝑖; 𝑛 is the sumnumber of observations;

and 𝑄obsavg and 𝑄simavg are the average of observed and pre-
dicted values, respectively. 𝑅2 ranges between 0 and 1, and
a higher value indicates higher degree of harmony or agree-
ment.

(b) Nash-Sutcliffe (NS) is presented as

NS = 1 − [

[

∑
𝑛

𝑖
(𝑄sim𝑖 − 𝑄obs𝑖)

2

∑
𝑛

𝑖
(𝑄obs𝑖 − 𝑄avg)

2

]

]

, (3)

where 𝑛 is the number of time steps; 𝑄sim𝑖 and 𝑄obs𝑖 are the
simulated and observed stream flow at time step 𝑖; and𝑄avg is
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Table 4: Optimum architecture of FF-MNN in Roodan watershed.

Input variable∗ Hidden layer 1 Output layer

Module Transfer
function Learning rule Transfer

function Learning rule

PCP(𝑡), PCP(𝑡−1),
𝑄
(𝑡−1)

= 3 cells

Module (1): 38
cells Sigmoid Levenberg-Marquardt Linear: 1 cell

Momentum
(momentum = 0.8)
(step size = 0.1)Module (2): 26

cells Linear sigmoid
∗PCP(𝑡) is the present precipitation meanwhile PCP(𝑡−1) is the precipitation for one day before present time.𝑄(𝑡−1) is the discharge for one day before present
time.

the average observed stream flow over the simulation period.
WhenNS is equal to 100%, itmeans that a perfect dependency
between the observed and the predicted values has been
achieved. Generally, the Nash-Sutcliffe coefficient is devel-
oped over correlation-based measures due to its responsive-
ness to the measured and predicted averages and variances
[35].

(c) Root mean square error (RMSE) is presented as

RMSE = √
∑
𝑛

𝑖=1
(𝑂
𝑖
− 𝑃
𝑖
)
2

𝑛
, (4)

where 𝑂
𝑖
is the measured value at time 𝑖; 𝑃

𝑖
is the estimated

value at time 𝑖; and 𝑛 is the total number of measured data.
The RMSE is a dimensional measurement that shows the
agreement between the observed and simulated data. When
RMSE is close to zero, it means that the model’s performance
is good.

Generally, the predictive uncertainty (PU) of the ANN
is assessed using the noise-to-signal ratio index [6]. In this
case, it was calculated as the unbiased standard error (SEE).
SSE is an unexplained variance which is compared with the
standard deviation of observed values for the dependent
variable (STD).Therefore, the ratio of SEE to STD (SEE/STD)
is named as the noise-to-signal ratio or the predictive uncer-
tainty index. It indicates the degree to which noise hides
the information. The model can offer correct predictions if
SEE is smaller than the STD. On the other hand, the model
estimations will not be correct if the ratio is larger than 1. SEE
is presented as

SEE = [1
]

𝑛

∑

𝑖=1

(𝑄
𝑝
− 𝑄
𝑜
)
2

]

0.5

, (5)

where ] is the degree of freedom and is equal to the number of
observations in the training setminus the number of parame-
ters.𝑄

𝑜
and𝑄

𝑝
are the observed and predicted values of flow,

respectively. The predicted uncertainty (PU) is thus calcu-
lated as

PU = SEE
STD
. (6)

5. Results and Discussions

The optimum developed FF-MNNwas found via challenging
heuristic method that considered (i) different topologies
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Figure 3: Training and cross-validation curves attributed withMSE
for FF-MNN.

training; (ii) combination of input variables; (iii) increasing
and decreasing number of neurons in hidden layer for both
modules; and (iv) exploration on the learning rate and
momentum term to bring better generalization through trial
and error. Figure 3 shows the behavior of theminimummean
square error (MSE) for the training and cross-validating of
the dataset on a normalized data for optimum architecture.
The optimum numbers of cells which had increased and
decreased throughout the heuristic procedure were 38 and 26
for Module 1 and 2, respectively, in the hidden layer. Gener-
ally, the increase in neurons that has resulted in better gener-
alization can be attributed to the sigmoid transfer function for
Module 1. However, the transfer function failed to incur any
significant changes inModule 2.The results were not satisfac-
tory since the neurons number was shorter than 52.

Table 4 presents the final developed FF-MNN model
with related components in the hidden and output layers for
Roodan watershed. To sum up, the linear transfer function in
the output layer and sigmoid type transfer function in the hid-
den layer (module) have led to better generalization. Addi-
tionally, Levenberg-Marquardt algorithm in hidden layer and
backpropagation in output layer were found suitable in
improving generalization.

In this study, the suitable momentum and step size
(learning rate) values were found through trial-and-error.
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Table 5: Examining indices for accuracy of FF-MNNmodel.

Index Calibration Validation
Nash and Sutcliffe
coefficient % (NS) 85 57

Coefficient of
determination % (𝑅2) 85 58

Root mean square error 39.4 32.2

The momentum speeds up the training in very flat regions
of the error surface. A learning rate is applied to increase the
possibility of preventing trapping in local minima as an alter-
native of global minima [5]. The momentum value should
be less than 1.0 (normally between 0.1 and 0.9) for making
convergence in the network. Adjustment of step size is usually
related with updating the weights space. Xu et al. [36] found
that a momentum value of 0.85 and learning rate of 0.23 was
suitable. Furthermore, Nourani and Kalantari [26] proposed
values of 0.9 and 0.1 formomentum and learning rate, respec-
tively. In this research, the momentum and step size were set
at 0.8 and 0.1, respectively, after taking into consideration
training time and stability of the optimum results and litera-
ture suggestions.

The NS-coefficients for calibration and validation period
were 85% and 57%, respectively, for the optimal FF-MNN.
The calibration period gave good performance while that
of validation period was moderate, as defined according to
Tombul andOĝul [37].The𝑅2 coefficients obtainedwere 85%
and 58% for calibration and validation periods, respectively.
In a recent study in Pakistan where a feedforward neural net-
work model was developed to predict the monthly runoff of
an arid large watershed (9391 km2) with an annual precipita-
tion of 191mm [38], the NS values were 0.88 and 0.63 for cali-
bration and validation periods, respectively; these are in fairly
good agreement with this study. Clearly, the rainfall-runoff
processes were extremely nonlinear. The differences between
training and test (validation) could be derived from the com-
plexity of the rainfall-runoff relationships that had become
more significant in large-scale watersheds with aridity cli-
mate.Therefore, the model failed to capture this nonlinearity
relationship in a perfect manner. Deshmukh and Ghatol [16]
reported a satisfactory range between 0.5 and 0.8 for the cor-
relation coefficient (𝑟) of a 4000 km2 catchment in India; this
was obtained through a feedforwardmodular neural network
for rainfall-runoff developed in hourly time step. Table 5
shows the accuracy criteria for the developed model in this
study.

The daily stream flow in m3/s (CMS) was evaluated
through graphical visualizations and statistical analysis to
give a good cognition for reviewing observed and simulated
daily stream flows. Figures 4 and 5 show a comparison
between measured and simulated stream flow in CMS for the
training and test periods, respectively. Figure 4 depicted an
acceptable simulation for peak flows by FF-MNN for training
period. The 5 February 1993 event had the largest flow
recorded in the Roodan watershed and had the most promis-
ing striking. On the contrary, the largest flowwas recorded on
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Figure 4: Measured and simulated stream flow (CMS) for training
period.
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Figure 5: Measured and simulated stream flow (CMS) for test
period.

14 February 2005 for the test period, but theMNNhad clearly
underestimated this. In Figure 5, the daily stream flow on
29 March 2008 was obviously overestimated. Generally, the
stream flow prediction was inspiring for both periods, and
their predictions followed a similar trend to measure stream
flows.

Figures 6 and 7 illustrate the cumulative daily stream
flow for Roodan during calibration and validation periods.
Figure 6 showed that the simulated daily streamflowhas been
underestimated over the period of 1991 to 2002. From 1989 to
1990, the simulated daily flows were satisfactory. For the test
period, the FF-MNN predicted two similar trends as over-
estimation (Figure 7). To sum up, the simulated cumulative
daily flow has been overestimated for the test period, but the
similarity in early 2005 is acceptable.

Generally, the daily cumulative flow trend is similar
between observed and simulated daily flow for the training
period, though there is a slight sustainable underestimation.
In addition, there is an overestimation for the test period
except in early 2005. The dissimilarities between observed
and predicted flows for both periods may be due to the capa-
bility of the network and the significance of nonlinearity in
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Table 6: Percentile of absolute error value between observed and simulated flow (CMS).

Percentile %
5 10 25 50 75 90 95

Validation 0.75 0.8 1 1.27 1.42 4.6 10
Calibration 0.05 0.09 0.34 0.87 2 6.2 19.7
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Figure 6: Cumulative daily stream flow m3/s (CMS) for calibration
period.

0

2

4

6

8

10

12

14

16

St
re

am
 fl

ow
 (C

M
S)

Day

Observed flow
Simulated flow

1
/1

/2
0
0
3

1
/1

/2
0
0
4

1
/1

/2
0
0
5

1
/1

/2
0
0
6

1
/1

/2
0
0
7

1
/1

/2
0
0
8

×10
3

Figure 7: Cumulative daily stream flow m3/s (CMS) for validation
period.

rainfall-runoff relationships for large-scale watersheds with
aridity climate.

The percentile absolute errors between observed and sim-
ulated flows are shown in Table 6 for both training and testing
periods. 95% of the data had a difference of 10m3/s in testing
period and 19.7m3/s in training period. Generally, the per-
centiles of absolute error that were less than 50% were lesser
for the testing period than the training period. They have
been shown in bold version in Table 6.
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Figure 8: Uncertainty prediction of training and test period for FF-
MNN.

The predictive uncertainty obtained for training and test-
ing periods was 0.39 and 0.44, respectively (Figure 8). Gener-
ally, PU under unity is considered satisfying [6]. In the study
of Tokar and Johnson [24], the predictive uncertainty evalua-
tion for neural networks involving learning data included wet
and dry or wet and average years. They opined that such can
offer more acceptable predictive accuracy in comparison to
networks trained using a combination of dry and/or average
year data. Perhaps the reason of satisfying predictive uncer-
tainty of MNN for Roodan watershed was due to the applica-
tion of a large data period that involved wet, dry, and average
years for training.

6. Conclusion

This study has proposed a feedforward modular neural
network for a large catchmentwith aridity climate for rainfall-
runoff prediction. The FF-MNN was developed through
training, cross-validation, and testing. LevenbergMarquardt
and backpropagation with momentum terms were used to
develop the training algorithms. Sigmoid and linear transfer
functions were applied to compute the neuron output. The
developed FF-MNN gave good and fair predictions for train-
ing and test. The absolute errors according to 50 percentiles
in the test period were less than those in training period.
The uncertainty prediction obtained was satisfactory for both
periods. To conclude, feedforward modular neural networks
can be promising as new generation of neural networks for
flow prediction.
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