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del and ANN simulation for carbon
nanotube based ammonium gas sensors

Elnaz Akbari,a Zolkafle Buntat,*a Aria Enzevaee,b Seyed Javad Mirazimiabarghouei,c

Mahdi Bahadoran,d Ali Shahidie and Ali Nikoukarf

As one of the most interesting advancements in the field of nano technology, carbon nanotubes (CNTs)

have been given special attention because of their remarkable mechanical and electrical properties and

are being used in many scientific and engineering research projects. One such application facilitated by

the fact that CNTs experience changes in electrical conductivity when exposed to different gases is the

use of these materials as part of gas detection sensors. These are typically constructed on a Field Effect

Transistor (FET) based structure in which the CNT is employed as the channel between the source and

the drain. In this study, an analytical model has been proposed and developed with the initial assumption

that the gate voltage is directly proportional to the gas concentration as well as its temperature. Using

the corresponding formulae for CNT conductance, the proposed mathematical model is derived. An

Artificial Neural Network (ANN) algorithm has also been incorporated to obtain another model for the

I–V characteristics in which the experimental data extracted from a recent work by N. Peng et al. has

been used as the training data set. The comparative study of the results from ANN as well as the

analytical models with the experimental data in hand show a satisfactory agreement which validates the

proposed models. It is observed that the results obtained from the ANN model are closer to the

experimental data than those from the analytical model.
1. Introduction

With the development of industry and human activity, air
pollution has become a serious problem for the environment.
Hazardous gases such as NO2, NH3, CO, H2S, and SO2 have
harmful effects on human life, animals, and plants. Therefore,
it is essential to develop gas sensors with high sensitivity in
order to detect harmful gases for the purpose of improving the
quality of environmental living conditions and protecting
humans from exposure to hazardous gases.1,24

Sensor is a term used for devices that can measure specic
physical quantities and convert them into a readable electrical
signal for an observer or an instrument. Sensors come in many
different types based on the intended material that they are
expected to detect as well as mechanisms of detection. They can
culty of Electrical Engineering, Universiti

laysia. E-mail: zolkae@e.utm.my

rsiti Teknologi Malaysia, Johor Bahru,

ering, USQ Faculty of Health, Engineering

tralia

otechnology Research Alliance, Universiti

laysia

Science 4, Ahornstr. 55, 52056 Aachen,

Malaysia, Johor Bahru 81310, Malaysia

04
be classied as electromagnetic sensors, mechanical sensors,
thermal sensors, etc.7,15 The trend in sensor manufacturing and
production is heading toward those with higher sensitivities,
better selectivities and faster response times; also those which
are easier to fabricate, more portable, remotely operateable and
more cost-effective are more desirable.34 In addition to the main
sensing function, the sensor is expected to keep track of various
ambient factors such as temperature and humidity, time,
location and event history. Rapid improvements in nanoscience
and engineering, as well as faster and more advanced compact
integrated electronics are helping these requirements come
true. In this regard, many newly developed materials like gra-
phene and carbon nanotubes (CNTs) are now becoming avail-
able for the design fabrication of nanosensors.18

To date, carbon nanotubes based gas sensors have aroused
great interest since their discovery in 1991. Carbon nanotubes
are formed in two major types; single-walled carbon nanotubes
(SWNTs) comprising single graphene sheet wrapped in the form
of a cylindrical tube and multi-walled carbon nanotubes
(MWNTs) consisting of a group of such nanotubes in concentric
conguration, both possessing varying inherent band gaps
(Fig. 1).21,41

Depending on their helicity, carbon nanotubes are either
electrically conductive or semi-conductive. They possess unique
intrinsic properties including high surface area, high chemical
and mechanical stability and excellent electrical conductivity.
This journal is © The Royal Society of Chemistry 2014
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Fig. 1 Schematic of different CNT structures.

Fig. 3 FET based gas sensor structure.
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Moreover, SWNTs with diameters as low as �1 nm and near-
ballistic electron transport,9,16,39 makes them an ideal candidate
for sensing/transducer material for direct electronic detection
of analyte gases. This plethora of unique properties of SWNTs
has motivated researchers across the globe to pursue develop-
ment of SWNTs based gas sensors. The achievements in the
application for carbon nanotubes as arrays or sensors have been
well documented and thoroughly reviewed.10,30,33,38

Almost a decade ago, Kong et al.,25 and during the same time,
Collins et al.11 rst demonstrated that the conductance of
individual SWNTs can be changed up to three times within a
few seconds aer they are exposed to electron donating NH3

and electron withdrawing NO2 gas at room temperature, with
superior sensing performance over commercially available
sensors. The mechanism of sensing was based on direct charge
transfer between adsorbate and p-type semi conductive SWNTs
causing modulation of Fermi level in the semiconducting tubes
(Fig. 2).31

It is known that the carbon nanotube characteristics depend
strongly upon their physical features such as chirality and
diameter.46 Single-walled nanotubes are typically categorized as
either metallic or semiconductors according to their chirality.
Semiconducting SWNTs can be used in the fabrication of FET
devices able to be operated at room temperature and under
ambient conditions.13,42

It has been demonstrated that semiconducting SWNTs
experience signicant changes in conductance levels in the
presence of different gases. As depicted in Fig. 3, the proposed
gas sensor using CNT as the conducting channel has a structure
quite similar to that of the conventional metal-oxide semi-
conductor eld effect transistor (MOSFET) which consists of
one source metal, one drain metal, a silicon back gate as well as
a gate insulator.20,22 The source and drain electrodes are con-
nected by a CNT channel, while a dielectric barrier layer sepa-
rates the channel from the gate. In most studies in the
Fig. 2 Schematic of molecules donating and withdrawing electrons
on CNT.

This journal is © The Royal Society of Chemistry 2014
literature, silicon is used as the back gate, while SiO2 serves as a
dielectric layer.26,36 When gas molecules are in contact with the
CNT surface, carrier concentration will undergo a change owing
to the variability of the current between the drain and the source
which is a measurable parameter.32

In order to carry out a comparative study, it has been
attempted to implement an articial intelligence method to
develop another model. Articial Neural Network (ANN) as one
of the most accurate and powerful intelligent schemes has been
chosen as the tool in this step. The results obtained from the
constructed ANN are then compared to those from the analyt-
ical model as well as the experimental data to check which
approach provides better levels of accuracy.35,48

Articial Neural Networks is an intelligent algorithm which
has been developed based on an analogy to biological nervous
system. Various types and structures of articial neural
networks have been employed in scientic analytical studies
among which, the most common and comprehensible is one
consisting of interconnected group of neurons which are
mathematical operator units called Perceptrons.2,27

A schematic of the typical structure of an ANN comprising
Perceptrons is provided in Fig. 4. Each input value to a Per-
ceptron is multiplied by a weight and added to a bias value. The
Fig. 4 Simple artificial neural network.

RSC Adv., 2014, 4, 36896–36904 | 36897
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general mechanism of ANN includes a process in which a set of
input data are introduced to the network. Through a series of
mathematical calculations based on predened “activation
functions” for each neuron or “node”, an output value is given
by the ANN. In order for the ANN to learn to compute the
optimum output value, a training data set is introduced to the
network before the actual inputs are given to the articial neural
network.37,47

Based on a predened learning algorithm, the ANN updates
the weights and bias corresponding to each node using the
error between the calculated results from the actual inputs and
the desired output.17,43 In our study, feed-forward structure for
the neural network with Back Propagation learning algorithm
has been implemented. The experimental data has been used as
the training data set has been employed for validation and
testing. The results show satisfactory agreement between the
results from the proposed model with the experimental
counterparts.
2. Proposed models
2.1 Analytical model

It has been attempted to model the CNT band structure
beginning with modeling the single layer graphene band
structure. Employing the Taylor series expansion near the Fermi
points, the energy dispersion relation can be derived as
follows.3,6

EðkÞ ¼ �t 3ac�c

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2

3d

�2

þ kx
2

s
(1)

where ac–c ¼ 1.42 Å represents the length of carbon–carbon
(C–C) bond, d is the CNT diameter, t ¼ 2.7 (eV) denotes the
nearest neighbour C–C tight binding overlap energy, and the �
symbol has been included to account for conductance and
valence bands. We can simply write for the rst band gap energy
Eg ¼ 2ac–ct/d ¼ (0.8 eV)/d. Also, since the band structure is
parabolic near the k ¼ 0 points, it can be written:

EðkÞz Eg

2
þ ħ2kx2

2m*
(2)

where ħ is the reduced Plank constant, m* is the effective mass
of the CNT depending upon the tube diameter, kx represents
longitudinal wave vector component.5,8 The number of
conduction channels in the energy E is dened as:

MðEÞ ¼ 2
DE

DkL
¼ 3 ac�ct

L

�
4E

3 ac�ct
� 8

9d

�1=2

(3)

where L denotes the channel length. Two major factors
contribute to the conductance effect on large channels,
enabling it to follow the Ohmic scaling law based on Landauer
formula. The rst factor independent of length is the interface
resistance. The second one results from the fact that the rela-
tion between the conductance and the width is nonlinear and is
dependent upon the number of modes in the conductor.
However, these modes are the quantized parameters in the
36898 | RSC Adv., 2014, 4, 36896–36904
Landauer formula in which both factors are interrelated as
demonstrated by eqn (4):4

G ¼ 2q2

h

ðþN

�N

dEMðEÞTðEÞ
�
� df

dE

�
(4)

Where h represents the Plank constant, q denotes the electron
charge and T is the transmission probability of an injected
electron through the channel approximated as (T(E) ¼ 1) in

ballistic channels.12 Owing to the fact that the expression
df
dE

is

noticeable only near the Fermi energy,12 the conductance can be
obtained by considering the Fermi–Dirac distribution
function as.29

G ¼ 2q2

h

3ac�ct

L

�
4

3ac�ct

�1=2ðþN

�N

�
E� 2ac�ct

3d2

�1
2

d

�
� 1

1þ eðE�EFÞ=kBT

�
(5)

Changing the integral boundaries as follows, eqn (5) can be
rewritten as

G ¼ 4q2

hL
ð3ac�ctpkBTÞ12

2
4ðþN

�N

x�1=2

1þ ex�h
dxþ

ðþN

0

x�1=2

1þ exþh
dx

3
5 (6)

Where x ¼ (E � Eg)/kBT and the normalized Fermi energy is
given by h ¼ (EF � Eg)/kBT. This equation can be numerically
solved by incorporating the partial integration method.14,23,45

The general model for the conductance of carbon nanotube-
based gas sensor can be derived similar to that of silicon based
model proposed by Gunlycke.19

G ¼ 4q2

hL
ð3ac�ctpkBTÞ12

h
I � 1

2

�
h
�þ I � 1

2

�� h
�i

(7)

The conductance characteristic demonstrates the perfor-
mance of NH3 gas sensor based on CNT nanostructure. It has
been revealed that when the CNT gas sensor is exposed to NH3,
the conductance changes.44 We have proposed a model based
on the reported experimental data and the relationship between
conductance, gas concentration and temperatures follows:40

Gwg ¼ Gwog + GwgT + GwgF (8)

When the sensor is exposed to the gases in different
temperatures, we can dene three parameters for conductance,
namely Gwog, GwgT and GwgF. The rst parameter, Gwog, is the
conductance without gas; GwgT is assumed as the conductivity
changes depending on T parameter, and the last parameter,
GwgF, is based on different values of gas concentration with
constant temperature. It is shown that when CNT gas sensor is
exposed to NH3, the conductance levels changes with respect to
temperature and varying concentrations.35 As Eg results in
varying conductance of channel, the parameters that have a
strong inuence on gas sensor conductance are the gas
concentration as well as gas temperature. It has been shown
that Eg depends on temperature and gas concentration; there-
fore, we can write:
This journal is © The Royal Society of Chemistry 2014
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Table 1 Different temperature and concentration values with a and b

parameters

T (�C) F (ppm) a b

25 500 �4 0.03
50 500 �2 0.03
100 500 �1 0.03
150 500 �0.8 0.03
200 100 �0.5 0.01
200 200 �0.5 0.02
200 500 �0.5 0.03
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�
EgfF

EgfT

�
0Eg ¼ aT þ bF (9)

Finally, eqn (9) and (10) are employed to obtain the
conductance model of gas sensor as:

Gwog ¼ 4q2

hL
ð3ac�ctpkBTÞ12

h
I �1

2

���
Eg � ET

�� q
�	

kBT
�

þI �1
2

��� �
Eg � ET

�� q
�	

kBT
�i

(10)

Gwg ¼ 4q2

hL
ð3ac�ctpkBTÞ

1
2

h
I �1

2
ððaT þ bF � ET Þ � q=kBTÞ

þ I �1
2
ð � ðaT þ bF � ET Þ � q=kBTÞ

i
(11)

Based on the current–voltage characteristic of graphene
based FET devices, the performance of the gas sensor can be
evaluated by eqn (12). Assuming that the source and substrate
terminals are kept in ground potential, and applying a small
voltage between source and drain (VDS), the channel region
experiences a ow of electrons. Moreover, the relationship
between current and conductance can be replaced by Fermi–
Dirac integral shape of general conductance model of
SWCNT as:

I ¼


4q2

hL
ð3ac�ctpkBTÞ

1
2

h
I �1

2
ððaT þ bF � ET Þ � q=kBTÞ

þ I �1
2
ð � ðaT þ bF � ET Þ � q=kBTÞ

i�
� �

Vgs � Vt

�
(12)

Where Vgs is the voltage between the gate and the source and Vt
denotes the threshold voltage. I–V characteristic of the proposed
model in comparison with experimental results is depicted in
gures (a1) to (g1). An increase in the current can be associated
to the charge transfer between CNT and NH3 molecules when
the NH3 molecules are the donors. This phenomenon is also
known as chemical doping by gas molecules. It clearly gives an
illustration of the fact that there is a good agreement between
the proposed model and the extracted data.28 In the suggested
model, different temperature and concentration values are
Fig. 5 Comparative study of proposed analytical and ANN models with
regression graphs (a2).

This journal is © The Royal Society of Chemistry 2014
demonstrated in the form of a and b parameters, respectively, to
create an agreement with reported data which is tabulated as
follows (Table 1):

According to the analytical model, a is suggested as the
temperature control parameter and is obtained by iteration
method. The analytical model based on the extracted data in
our study shows that the rate of changes in conductivity
depending on temperature gives better results by:

a ¼ a ln(T) � b (13)

Parameters a and b are extracted as a ¼ 0.012 and b ¼ 0.046.
Also, b dened as a controlled parameter of gas concentration
which calculated by iterative method and shows the rate of
change in conductivity depends on gas concentration given by:

b ¼ c ln(F) � d (14)

Where the constants are calculated in the same manner as
c ¼ 1.622 and d ¼ 8.814.
2.2 ANN based model

The proposed Articial Neural Network has been developed
incorporating a network comprising three layers: one input, one
output and one hidden layer. The hidden layer consisted of
three nodes and feed-forward structure has been employed for
the ANN. MATLAB soware was utilized for programming and
the experimental data were used as the training data set as well
experimental data under 500 ppm, at 25 �C and corresponding ANN

RSC Adv., 2014, 4, 36896–36904 | 36899

http://dx.doi.org/10.1039/c4ra06291d


Fig. 6 Comparative study of proposed analytical and ANN models with experimental data under 500 ppm, at 50 �C and corresponding ANN
regression graphs (a2).

Fig. 7 Comparative study of proposed analytical and ANN models with experimental data under 500 ppm, at 100 �C and corresponding ANN
regression graphs (a2).

Fig. 8 Comparative study of proposed analytical and ANN models with experimental data under 500 ppm, at 150 �C and corresponding ANN
regression graphs (a2).
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as testing data. The built-in Neural Network tool in MATLAB
randomly selects part of the input data for training and the rest
is employed for testing. The values for the weights and bias are
also randomly chosen by the soware and updated in each
epoch using the Back-propagation learning algorithm. For each
set of input data, the corresponding plots of the I–V points as
well as the regression graph were plotted. The results are
provided in Fig. (5)–(11).
36900 | RSC Adv., 2014, 4, 36896–36904
3. Discussion and results

The diagrams depicting the I–V characteristic of CNT
corresponding to different gas temperatures at 500 ppm
concentration are illustrated in Fig. (5)–(8). The values
associated with the analytical model, as well as ANN
are compared with those extracted from experimental study.
This journal is © The Royal Society of Chemistry 2014
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Fig. 9 Comparative study of proposed analytical and ANNmodels with experimental data at T ¼ 200 �C under 100 ppm and the corresponding
ANN regression graphs (a2).

Fig. 10 Comparative study of proposed analytical and ANNmodels with experimental data at T¼ 200 �C under 200 ppm and the corresponding
ANN regression graphs (a2).

Fig. 11 Comparative study of proposed analytical and ANNmodels with experimental data at T¼ 200 �C under 500 ppm and the corresponding
ANN regression graphs (a2).
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As a consequence of the chemical interaction between the
NH3 molecules and the resultant adsorption on the CNT surface
which causes electrical charge to be transferred between them
and hence changes the carrier concentration, the channel
conductivity varies during the process. As observed from
Fig. (5a1)–(8a1) corresponding to temperatures of 25, 50, 100,
and 150 degrees, respectively, the conductance as a measure of
This journal is © The Royal Society of Chemistry 2014
the I–V characteristic has increased at higher temperatures. It is
also evident from Fig. (5a2)–(8a2) that the proposed ANN model
gives to hand better and more accurate estimates of the actual
CNT performance in the presence of gas than those provided by
the analytical model. This is veried by the fact that the
regression values during the calculations of I–V points with ANN
are remarkably close to 1. Fig. (9)–(11) depict the I–V
RSC Adv., 2014, 4, 36896–36904 | 36901
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Table 5 Model validation parameters for ANN at different gas
concentration

Temperature ¼ 200 �C

Gas concentration
(ppm) 100 200 500

MNS 0.0018 0.0017 0.0023
R2 0.9913 0.9947 0.9889
Q2 0.9843 0.9918 0.9795
RSS 0.1144 0.0560 0.1500
TSS 13.1572 10.4764 13.4709
SSE 0.2000 0.1817 0.2666
PRESS 0.2072 0.1908 0.2756
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characteristics of CNT at 200 degrees in gas concentrations
equal to 100, 200, and 500 ppm, respectively.

Physical and chemical phenomena similar to the previous
experiments occur in these cases. The illustrations reveal the
fact that when the gas concentration is higher, the CNT
conductivity increases. Also in these cases, satisfactory
agreement between the ANN results as well as the
outstanding value of regression almost equal to 1 prove the
ANN model to be superior to the analytical counterpart.
This has been shown in Fig. (9a2)–(11a2). In Tables 2–5 the
data of validation for the analytical model and ANN are
presented.
Table 2 Validation parameters for analytical model at different
temperature

Gas concentration ¼ 500 ppm

Temperature
(�C) 25 50 100 150

MNS 0.0100 0.0062 0.0068 0.0155
R2 0.8960 0.9413 0.9247 0.8202
Q2 0.8190 0.8939 0.8640 0.6278
RSS 0.4351 0.1819 0.0916 0.4060
TSS 4.1831 3.2202 1.2168 2.2577
SSE 0.7012 0.3099 0.1426 0.7122
PRESS 0.7573 0.3418 0.1655 0.8403

Table 3 Validation parameters for analytical model at different gas
concentration

Temperature ¼ 200 �C

Gas concentration
(ppm) 100 200 500

MNS 0.0325 0.0392 0.0398
R2 0.7483 0.7417 0.7321
Q2 0.3549 0.2429 0.2541
RSS 0.7855 0.8028 2.3183
TSS 3.1207 3.1076 2.3396
SSE 1.8839 2.1930 1.7924
PRESS 2.0131 2.3527 2.5291

Table 4 Model validation parameters for ANN at different
temperatures

Gas concentration ¼ 500 ppm

Temperature
(�C) 25 50 100 150

MNS 0.0025 0.0012 0.0011 0.0060
R2 0.9919 0.9934 0.9969 0.9783
Q2 0.9783 0.9985 0.9890 0.9441
RSS 0.0773 0.0489 0.0241 0.2566
TSS 9.6007 7.4485 7.6961 11.8104
SSE 0.1961 0.0812 0.0804 0.6391
PRESS 0.2079 0.0854 0.0847 0.6602

36902 | RSC Adv., 2014, 4, 36896–36904
4. Conclusion

Two different approaches namely Articial Neural Network and
analytical modelling have been employed in developing models
for the I–V characteristics of CNTs in exposure to NH3. It has
been demonstrated that the CNT experiences measureable
uctuations in conductance levels when exposed to NH3. Vari-
ations in gas concentration and temperature cause conductance
alterations, i.e. the higher gas concentration and temperature,
the higher conductivity in CNT channel. This interesting
phenomenon can be employed in gas detection devices. In the
proposed analytical model, two control parameters, namely the
temperature control parameters (a) and gas concentration
control parameter (b) are incorporated and calculated by itera-
tion method. The ANN model employs the experimental data as
the learning data set. Both models are able to produce good
results with satisfactory agreement with the extracted experi-
mental data. The ANN model, however, has proved to be able to
produce more accurate results than those by the analytical
counterpart.
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