INTRODUCING ENVIRONMENT MANAGEMENT SYSTEM WITHIN CONSTRUCTION SITES

SITI FAIRUS HJ ZAKARIA

A thesis submitted in fulfillment of the Requirements for the award of the degree of Master of Science (Construction Management)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > **NOVEMBER 2005**

Especially dedicated to all my family and whom had gone through with me the most difficult times, all the way

What can I possibly say that will do justice to the experiences gained in completing the whole course throughout these years? ...

ACKNOWLEDGEMENT

The author wishes to express her appreciation to Assoc. Prof. Dr. Muhd. Zaimi bin Abdul Majid for his supervision during the period of the study. And also the deepest appreciation to Assoc. Prof. Zainudin Mohamed Shamsudin for inspiring the use of Environmental Management System (EMS) as the soul of the project, enabling to take care of both study and career rather comfortably. I would like to express my gratitude to all the staff of Department of Irrigation and Drainage Malaysia in assistance given in persuing the study. Finally, thank you to all my friends who between them made life that much more interesting.

ABSTRACT

Public awareness on the fragility of the environment and the increasing need to protect environmental quality has been growing in Malaysia since the Third Malaysian Plan. Thus, those involved in the development of many new projects (proponents, designers, constructors and operators) have to accept the responsibility along with the legal obligation for environmental management and actions. Additionally, the web of regulations woven in the last three decades have tended to increase the implementation of comprehensive environmental management to avoid costly mistakes, delays or even to the extend of project cancellation. The aim of the study is to introduce Environmental Management System (EMS) within construction sites. The basic concept of environmental management is explored and the detail site environmental management procedures are explained. The levels of awareness and understanding of EMS among the construction players are also investigated throughout of the study. Identification of the improvement and the action plans to reduce the impacts on the environment are established through the pattern shows by the questionnaire survey to the project engineers on construction sites. The survey components for the study are the project engineers of the construction projects in the Department of Irrigation and Drainage (DID) within year 1999 to 2003. Statistical analysis was performed on the data collected and the results were used to formulate the conclusion of the study. The study also highlights the findings that could be used to introduce environmental management system within construction sites. The study concludes that construction players should work towards introducing EMS within construction sites. The recommended approach and action plan listed are useful to construction practitioners to manage EMS processes and assess their performance towards continual environmental improvement while continuing project development with success.

ABSTRAK

Kesedaran umum tentang kepentingan penjagaan alam sekitar dan keperluan melindungi kualiti alam sekitar telah bermula di Malaysia sejak Rancangan Malaysia Ketiga (RMKe-3) lagi. Namun begitu, pihak yang terlibat dalam pembangunan kebanyakan projek baru harus menerima cabaran terhadap tanggungjawab dan tindakan undang-undang pengurusan alam sekitar. Tambahan pula, sejak tiga dekad yang lalu pembentukan undang-undang telah diintegrasikan kecenderungannya ke arah meningkatkan perlaksanaan kefahaman pengurusan alam sekitar bagi mengelakkan risiko kos, kelewatan ataupun mengakibatkan pembatalan projek. Objektif kajian ini adalah untuk memperkenalkan Sistem Pengurusan Alam Sekitar (EMS) di tapak pembinaan. Konsep asas pengurusan alam sekitar di tapak pembinaan dibincangkan secara terperinci dalam kajian ini. Tahap kesedaran dan kefahaman EMS di antara pihak yang terlibat dengan pembinaan juga dikenalpasti melalui kajian ini. Pengenalpastian bagi penambahbaikan dan juga pelan tindakan dalam mengurangkan impak kepada alam sekitar juga dinilai melalui kaji selidik yang diedarkan kepada jurutera-jurutera projek di tapak pembinaan. Komponen kaji selidik adalah terdiri daripada jurutera-jurutera projek bagi projek-projek pembinaan yang berada di bawah Jabatan Pengairan dan Saliran Malaysia (JPS) di Semenanjung Malaysia dari antara tahun 1999 sehingga 2003. Analisis statistik telah diperolehi daripada data yang telah dikumpul dan keputusan digunakan bagi menghasilkan kesimpulan pada akhir kajian. Kajian ini menitikberatkan keputusan dan penemuan yang boleh digunakan bagi memperkenalkan EMS di tapak pembinaan. Kajian juga menunjukkan bahawa pihak yang terlibat dalam industri pembinaan sepatutnya memberikan tumpuan ke arah memperkenalkan EMS di tapak pembinaan masingmasing. Cadangan bagi mengatasi masalah dan pelan tindakan telah disenaraikan dan amat berguna bagi pekerja terlatih dalam menguruskan alam sekitar dan menilai kemahiran terhadap penambahbaikan secara berterusan di samping pembangunan projek yang berjalan dengan lancar.

TABLE OF CONTENTS

CHAPT	ER	TITLE	PAGE		
TITLE		LE PAGE	i		
	DEC	LARATION	ii		
	DED	ICATION	iii		
	ACK	NOWLEDGEMENT	iv		
	ABSTRACT				
	ABS	ГКАК	vi		
	TAB	BLE OF CONTENTS	vii		
	LIST	Γ OF TABLES	xii		
	LIST	Γ OF FIGURES	xiii		
	LIST	Γ OF ABBREVIATIONS	XV		
	LIST	Γ OF APPENDICES	xvi		
I	INT	RODUCTION	1		
	1.1	Introduction	1		
	1.2	Background of the Problems	2		
	1.3	Statement of Needs	3		
	1.4	Aims and Objectives of the Study	4		
	1.5	Scope of the Study	5		
	1.6	Importance of the Study	5		
	1.7	Research Methodology Framework	6		
	1.8	Organisation of the Thesis	8		

IITHE ENGINEERING, ECONOMICS & ENVIRONMENT10

2.1	Introdu	ction	10
2.2	The Di	lemma between Development and Environment	10
2.3	Roles c	f Engineers in Development and Environment	11
2.4	Challer	nges Posed by Construction Industry	12
2.5	Nationa	al Policy on the Environment	15
2.6	Issues and Challenges of Sustainable Construction		16
	2.6.1	Management and Organisation	16
	2.6.2	Product and Building	16
	2.6.3	Resources and Consumption	17
	2.6.4	Impacts of Construction on Urban Development	17
	2.6.5	Social, Cultural and Economic	17
2.7	Summa	ıry	18

III ENVIROMENTAL MANAGEMENT SYSTEM (EMS) 19

3.1	Introduction		
3.2	Definition of terms	20	
	3.2.1 Definition of Environment	20	
	3.2.2 Environmental Management System	20	
	3.2.3 EMS in Construction Sites	20	
3.3	A Brief History of Environmental Management	21	
3.4	Environmental Management System (EMS)	22	
3.5	Environmental Management Plan (EMP)	23	
3.6	The Importance of EMS	25	
3.7	EMS - Today's Scenario	25	
3.8	Environmental Issues	26	
	3.8.1 No Action	26	
	3.8.2 Re - Active	26	
	3.8.3 Pro - Active	26	
3.9	Beyond Compliance	28	

	3.9.1	Environmental Quality Act, 1974	27
	3.9.2	Langkawi Declaration, 1989	29
	3.9.3	Kuala Lumpur Accord on Environmental, 1990	30
	3.9.4	Kuala Lumpur Declaration on Environment, 1992	30
	3.9.5	Earth Summit – Agenda 21, 1992	30
	3.9.6	National Policy on Environment, 2002	31
	3.9.7	Fifth Ministerial Forum on Infrastructure	31
3.10	Environ	mental Legislation	31
	3.10.1	Environmental Quality Standard for compliance	31
	3.10.2	Ambient Quality Standards	32
	3.10.3	Emissions/ Discharge Standards	32
	3.10.4	Air Emissions Standards	32
	3.10.5	Noise Standards or Criteria	33
	3.10.6	Effluent Discharge Standards	33
	3.10.7	Scheduled Wastes	34
3.11	Other E	nvironmental Related Guidelines	35
3.12	Summa	ry	36

IVENVIRONMENTAL MANAGEMENT SYSTEM WITHIN
CONSTRUCTION SITES38

4.1	Introdu	action	38
4.2	Aims for Environmental Management within Construction Sites		38
4.3	Environment Management within Traditional Procurement		40
	4.3.1	Project Development	40
	4.3.2	Project Design	42
	4.3.3	Project Construction Sites	44
4.4	Enviro	nmental Management within Non-Traditional	
	Procur	ement	46
4.5	Summa	ary	46

V METHODOLOGY

5.1	Introduction		48
5.2	Questi	onnaire Study	49
	5.2.1	Sampling for survey	49
	5.2.2	Scope of sampling for study	51
5.3	Develo	53	
	5.3.1	Cover letter	53
	5.3.2	Building questionnaire	54
5.4	Data C	Collection	56
5.5	Data P	rocessing	57
5.6	Questionnaire Measure		57
5.7	Summ	ary	58

VI ANALYSIS AND DISCUSSIONS

6.1 Introduction 59 Project Background 6.2 59 Environmental Management in the Construction Sites 6.3 61 6.4 Legal Requirements 61 Environmental Aspects and Impacts 6.5 63 Environmental Management System 6.6 65 Benefit of Introducing and Implementing EMS 6.7 67 6.8 Summary 68

VII CONCLUSIONS AND RECOMMENDATIONS 69

7.1	Introduction	69
7.2	Conclusions from the findings	69

48

59

7.3	Recomm	nendations	69
	7.3.1	Partnership approach to environmental	
		Management	72
	7.3.2	Strategic action to promote good environmental	
		Practices	72
	7.3.3	Strive for Environmental-Friendly and sustainable	
		Process and resource management	74
	7.3.4	EMS framework and structure within organisation	75
7.4	Summar	ry	77

REFERENCES	78
APPENDICES A - H	XX

LIST OF TABLES

TABLE	NO.
-------	-----

TITLE

PAGE

3.1	The Year of Introduction of Environmental Legislations in Various Country Worldwide	28
5.1	List of Certified Organisation EMS ISO 14001 referring to The Scope of Works	50
5.2	Irrigation and Drainage Projects of DID in Peninsular of Malaysia (Year 1999 to Year 2003)	51
5.3	Distribution of Questionnaire	54
5.4	The Content of Questionnaire	55
6.1	Response Rate of Questionnaire Distribution	60
6.2	Average Relative Index (RI) Value of Respondents on Question C2, Question C3 and Question C4	65
6.3	Average Relative Index (RI) Value of Respondents on Question E1 and Question E2	68
7.1	EMS Framework and Structure within Organisation	84

LIST OF FIGURES

TITLE

1.1	A Schematic Diagram of the Survey	7
2.1	Role of Engineer is to Balance between Development and Environment	12
2.2	Lever Action of Development and Environment	14
2.3	The Three Pillars of the National Policy on the Environment	16
3.1	Concept of the Continual Improvement Model for Environmental Management System – International Standards	23
3.2	The Element of Environmental Monitoring Programme (EMP)	24
4.1	Basic Structure for Environmental Management in the Project Development Process	41
4.2	Enhanced Basic Structure for Environmental Management in the Project Design Phase	43
4.3	Basic Structure for Environmental Management during the Project Construction Phase	45
5.1	A Schematic Events in the Study	48
5.2	Sampling Plan for Questionnaire Study	52
5.3	Distribution of Questionnaire	54
5.4	Five (5) Ordinal Measures of Agreement by Likert's Scale	57
6.1	Training Acquired in Environmental Management	60
6.2	Conditions of Environmental Management in the Project	61

6.3(a)	Level of Awareness and Understanding towards Legal Requirements (B1)	62
6.3(b)	Level of Awareness and Understanding towards Legal Requirements	62
6.4(a)	Percentage (%) of Environmental Aspects and Impacts Related to Construction Sites	63
6.4(b)	Percentage (%) of Environmental Aspects and Impacts Related to Construction Sites	63
6.4(c)	Percentage (%) of Environmental Aspects and Impacts Related to Construction Sites	63
6.5(a)	Percentage (%) of Environmental Management System Related to Construction Sites	65
6.5(b)	Percentage (%) of Environmental Management System Related to Construction Sites	65
6.5(c)	Percentage (%) of Environmental Management System Related to Construction Sites	66
6.5(d)	Percentage (%) of Environmental Management System Related to Construction Sites	66

LIST OF ABBREVIATIONS

EMS	-	Environmental Management System	
NGOs	-	Non-Government Organisations	
ASEAN	-		
EIA	-	Environmental Impact Assessment	
DOE	-	Department of Environment	
WHO	-	World Health Organisations	
EMP	-	Environmental Management Plan	
EC	-	European Committee for Standardisation	
DSM	-	Department of Standard Malaysia	
RI	-	Relative Index	
EMAR	-	Environmental Monitoring and Audit Report	
DPR	-	Development Proposal Report	
CIDB	-	Construction Industry Development Board	
SPSS	-	Statistical Package for Social Science	
WCED	-	World Commission on Environment and Development	
MOSTE	-	Ministry of Science, Technology and Environment	
DID	-	Department of Irrigation and Drainage	

LIST OF APPENDICES

APPENDIX	TITLE		
А	Environmental related legislation and		
	implementing agency in Peninsular of Malaysia	Table 3.2	
	Environmental Quality Act, 1974 (Clean Air)		
	Regulation 1978	Table 3.3	
	Malaysian Air Quality Guidelines	Table 3.4	
	Recommended Malaysian Secondary		
	Guidelines	Table 3.5	
	Recommended Noise Exposure Limit (WHO)	Table 3.6	
	Estimated Noise Level with Distance from		
	Construction Sites due primarily heavy		
	earthmoving equipments	Table 3.7	
	Typical Noise levels from construction		
	equipments	Table 3.8	
	Parameter Limits of Effluent of Standards A		
	and Standard B, Regulations 1979	Table 3.9	
В	Cover Letter of Questionnaire		
С	Sample of Questionnaire		
D	Output of SPSS		
E	Output from Frequency Analysis (FA) and		
	Relative Index (RI)		
F	Summary of Relative Index (RI)		
G	Additional Information on Partnership		
	Approach to environmental management		
Н	Additional Information on Strategic Action		
	Plan to promote good environmental practices		

CHAPTER I

INTRODUCTION

1.1 Introduction

The Industrial Revolution sowed the seeds of today's major environmental problems, and 20th century developments fertilized them (Drobny, 1997). Awakening of the reality, action has been taken to gather commitment for conservation at international political level. Environmental Management System (EMS) comes into place.

Presently, Environmental Management System (EMS) is not compulsory within construction sites. Voluntarily implementing EMS is more important rather than pushing the construction players to comply. The environmental aspects will begin to play more significant roles in the overall planning of construction projects. EMS has to be implemented voluntarily by the project proponents of a development project. This voluntarily action has to be inculcated in oneself. Environmental management has often been resisted as being counterproductive since environmental issues may cause project delays or cancellation. Environmental management has shown a significant importance in improving productivity performance, reducing wastage and continual improvement within construction activities. The negative effects to the environment caused by construction sites will give very significant impact on the development if the environmental aspects are not properly managed by the management of every construction sites (Hendrickson et al, 2000). Construction projects pose enormous challenges to not only completing within an owner's schedule and budget but to also eliminate and minimise harmful impacts to the environment. Construction has significant impacts on the natural environment. Even a minor effect, such as a small release or spill of a hazardous substance, can cause a health or environmental threat and lead to costly cleanup activities. In many instances, a project's effect can be attributed to the lack of an adequate EMS (Pun et al, 2001).

1.2 Background of the Problem

In order to minimise negative effects to the environment due to construction activities, the project requires of implementing an approach to manage environmental issues systematically and effectively within the site. Conflicting and nuisance in complying on environmental requirements are minimal if environmental management is integrated within the project development. However, failure to include environmental management and planning can be substantial effect for the whole project development cost (Zainudin, 2005). Nevertheless, many developing countries give top priority to socio-economic development rather than caring for the nature. Environment preservation is still considered as hindrance to faster and greater development. And yet, it is only seven (7) organisations out of 310 are the certified organisation in EMS ISO 14001 related to construction works, which mean that is only 2.3% out of the figure implement EMS within construction sites (Department of Standard Malaysia, 2004).

Organisations of many kinds, including the construction industry, are imposing harmful effects upon the environment from their activities. EMS encompasses those aspects of policy, strategy, procedure and practice that form an organisation's response to its environmental condition. Hence, sustainable development has three important pillars, which are mutually supportive of each other. These pillars are economic growth, social development and environmental protection (Siah B Y, 2005). Environmental protection is not a stand-alone issue. It cannot be addressed in a vacuum without giving due consideration to its impact to the economic and social development. But still, "Malaysia not able to find a balance between development with the environment protection, this is the time for action on environment and hope that Experts and NGOs not just talk on this environmental issues but take the correct remedial approach on it", says Prime Minister at the *Fifth Ministers' Forum on Infrastructure Development in Asia-Pacific Region at Putrajaya on* 25th January 2005.

1.3 Statement of Needs

The development of the National Policy on the Environment marked the milestone in the history of environmental management in Malaysia, as it shows the commitment from nation's leader embarking sustainable development. It is hence the will of the nation to extract, develop and use resources sustainably. It provides guidance to all federal and state agencies, industrial sector, local community and other stakeholders in ensuring that environment is clean, safe, healthy and productive. While envisioning sustainable growth, environment should be integrated in the development process. Negligence on the environment should be avoided as the price to remedy is tremendous.

The efforts to promote environmental consciousness could not be one-way, which is equivalent to dictatorship, for the dictatorship would not be long lasting or correct. As oppose to that, a democratic process involving many organizations would be the right move (Koh, 1997). In the light of that, the study looks into the potential on enhancing environmental consciousness and consequently achieving pollution control through a democratic process such as by adopting Environmental Management System (EMS).

1.4 Aims and Objective of the Study

EMS emerges as a tool to enable organisations systematically managing the environment that receives or possibly receives the impact from their conducts, through self commitment and provision of resources. These EMS implementers contribute to produce desirable results in pollution control, of which collectively may be significant in approaching the indefinite sustainable development.

The aim of the research is to study the overall concept of EMS within construction sites. To achieve this aim, the following objectives have been identified:

- to investigate the awareness and understanding of EMS among the construction players;
- (ii) to identify the impact of environment when EMS is not implemented; and
- (iii) to identify and establish improvement/ action plan to reduce the impact on environment through EMS.

The acceptance of EMS among the construction players can be investigated through their understanding by doing survey in the form of questionnaire. Some questions related to awareness on EMS, management practices, legal compliance and dealing with authorities will be asked to the project proponents to assess their understanding towards on EMS.

The impacts on the environment can be identified if the construction players did not implement EMS within the construction sites, along with the difficulties in complying with the requirements as well as the strategies that might stimulate wider adoption of the voluntarily EMS.

And for the third goal, some recommendations on improvement to the current practices can be analysed from the feedbacks of the population that have been decided. This hopefully will reduce impacts on the environment by introducing and implementing EMS.

1.5 Scope of the Study

The study surveys only the project proponents of Department of Irrigation and Drainage Malaysia, which include their own experience in adopting EMS or their interaction with the external parties such as contractors or other agencies.

The study will confine to the following scopes:

- (i) the study will focus on introducing EMS within construction sites;
- (ii) concentrate on projects developed by Department of Irrigation and Drainage (DID) in Peninsular of Malaysia;
- (iii) surveys in the form of questionnaires will be conducted with the proponents of the referred projects; and
- (iv) the population taken is about 159 projects. Ten percent (10%) out of the figure is targeted as the sample. The population is separated into 4 areas which cover Northern, Central, Southern and East Coast region.

1.6 Importance of the Study

The awareness of how important EMS in the construction industry especially at construction sites is very rare. Since more construction players have shown concern on environmental management, the understanding on EMS in construction sites has become a necessity now. Their experience and feedback may answer people's curiosity on how important to implement the system and the negative effects to the environment caused by construction sites. The results of the study will contribute in terms of benefits in implementing EMS and provide guidelines and recommendations to improve current practices on site environmental management.

1.7 Research Methodology Framework

The study will provide descriptions and procedures of site environmental management practices in the construction industry. This will be obtained through literature review of journal papers, conference papers, books and web sites browsing. Besides that, the study will also be conducted through surveys in the form of questionnaires to understand how far the awareness of environmental management inculcated or implanted among construction site players. Figure 1.1 shows the schematic diagram of the survey. Theoretical framework using determined dependent and independent variables are important to design relevant questions to be asked in the process of carrying out the survey.

Figure 1.1: A Schematic Diagram of the Survey

1.8 Organisation of the Thesis

The thesis contains a total of seven (7) chapters and eight (8) appendices. In Chapter I entitled *Introduction* consists the introduction; background of the problem; statement of needs; aims and objective of the study; scope of the study; importance of the study; and research methodology framework of the study.

In Chapter II, a literature highlighted The engineering, Economics and Environment that discuss the issues on introduction of the topic, The Dilemma between Development and Environment; Roles of Engineers in Development and Environment; Challenges posed by Construction Industry; National Policy on the Environment; and also The Issues on Challenges of Sustainable Construction.

Chapter III discuss on the literature review of Environmental Management System. It is concentrated more on the brief history of environmental management; about EMS; the importance of EMS; introducing EMS; environmental issues; beyond compliance; and environmental legislations.

Chapter IV discuss on the literature review of Environmental Management System within Construction Sites. The chapter explained on the aim of environmental management within construction sites; environmental management within traditional procurement; and environmental management within nontraditional procurement.

Research Methodology is illustrated in Chapter V. Introduction and questionnaire study were the main topics. The other sub-topics are sampling, scope of sampling for the study. Development of survey components, data collection, data processing and questionnaire measure questionnaire were discussed as the main topics of this chapter. Analysis and discussions of the study are explained in Chapter VI. Basically the main approach used to analysed the data is by using the Relative Index Technique.

Conclusions and recommendations are elaborated in Chapter VII. The content in the chapter includes partnership approach to environmental management; strategic action plan to promote a good environmental practices; strive for environmental friendly and sustainable process; and EMS framework and structure within organisation. Also some recommendations to the construction site as a contribution of the study.

REFERENCES

- Abd. Majid, M. Z. and McCafer R. (1997). Discussion of Assessment of Work Performance of Maintenance Contractors in Saudi Arabia'. Journal of Management in Engineering, ASCE. Vol. 13, No. 5, pp 91.
- Alreck P.L; Settle R.B (2004). *The Survey Research Handbook 3rd Edition*. United States: McGraw-Hill/ Irwin Companies.
- Bishop P.L (2000). *Pollution Prevention: Fundamentals and Practice*. New York: McGraw-Hill.
- CIRIA (1994). Environmental Handbook for Building and Civil Engineering Projects – Construction Phase. London: CIRIA Special Publication 98.
- C.M Tam; Vivian W.Y Tam; W.S Tsui (2004). Green Construction Assessment for Environmental Management in the Construction Industry of Hong Kong. International Journal of Project Management. 563 – 571.
- Christini G; Michael F; Chris H (2004). Environmental Management Systems and ISO 14001 Certification for Construction Firms. Journal of Construction Engineering and Management. 330 – 336.
- Department of Environment (1987). Environmental Impact Assessment (EIA). Procedure and Requirements in Malaysia. Minister of Science, Technology and the Environment.
- Department of Irrigation and Drainage (2003). *DID's Project in Malaysia Vol. 5*. Unit Perlaksanaan Projek Persekutuan (UPPP).

- F Y (1999). Country Report for Environmental Assessment in Infrastructure Development Course. Osaka International Centre, Japan International Cooperation Agency (JICA).
- Griffith A (1994). *Environmental Management in Construction*. England: Macmillan Press Ltd.
- Hendrickson C.T; Horvath A. (2000). Resource use and environmental emissions of U.S construction sectors. Journal of Construction Engineering Management. 38 – 44.
- ISO 14001 Environmental Management Systems Specification with guidance for use, 1996
- Jenny T (2005). ENSEARCH's View of Good Environmental Practice in the Construction Industry. National Forum on Sustainable Construction: Good Practices in Environmental Management. Kuala Lumpur: ENSEARCH.
- Joseph S L Yip (2000). New Direction of Environmental Management in Construction: Accepted Levels of Pollution. Structural Survey. Vol. 18; pg 89-98.
- Kamal K.A (1999). Environmental Planning Approach in Planning and Development Control. Universiti Putra Malaysia: Thesis for Masters of Environment.
- Koehn E.E; Datta N.K (2003). Environment and Quality Management Systems for Construction Engineering. Journal of Construction Engineering and Management. 562 – 569.
- K F Pun; I K Hui; W K Lee (2001). An EMS Approach to Environmentally-Friendly Construction Operations. The TQM Management. Vol. 13; pg 112-119.

- Legal Research Board (2002). Environmental Quality Act 1974 (Act 127) and Subsidiary Legislation. Kuala Lumpur: International Law Book Services.
- Malaysia (2002). *National Policy on the Environment*. Bangi: Ministry of Science, Technology and the Environment.
- Martin N. Fabrick & Joseph J. O'rourke (1982). *Environmental Planning for Design and Construction*. California: A Wiley-Interscience Publication.
- Megat Kamil Azmi M R K (2005). *Strategic Action Plan Improving Environmental Practices in the Construction Industry*. National Forum on Sustainable Construction: Good Practices in Environmental Management. Kuala Lumpur: CIDB.
- Modak P.; Biswas A.K (2000). *Environmental Impact Assessment for Developing Countries*. The United Nations University: MDC Publisher Printers Sdn. Bhd.
- Mohd. Rizal M R; Indah Sulastri D Z (2005). Good Practices in the Construction Industry for the Environmental. National Forum on Sustainable Construction: Good Practices in Environmental Management. Kuala Lumpur: Association of Environmental Consultants and Contractors in Malaysia (AECCOM).
- Mohamad Said A. (2000). Environmental Impact Assessment in Malaysia: Achievements and Problems. Universiti Institut Teknologi MARA: Dissertation for MSc. Town Planning in University of Wales.
- Nadzri Y (2005). *Good Practices in Environmental Management*. Keynote address: National Forum on Sustainable Construction. Kuala Lumpur.
- Schexnayder C.J; Mayo R.E (2003). *Construction Management Fundamentals*. Singapore: Library of Congress Cataloging in Publication Data.

- Second Ministerial Conference of Developing Countries on Environment and Development (April 1992). *Kuala Lumpur Declaration on Environment and Development*. Kuala Lumpur.
- Siah B Y (2005). The Roles of Manufacturers in Achieving Effective ISO 14001 Certification. Universiti Teknologi Malaysia: Projek Sarjana – Pengurusan Alam Sekitar.
- S X Zeng; C.M Tam; Z.M Deng; Vivian W.Y Tam (2003). ISO 14000 and the Construction Industry: Survey in China. Journal of Management in Engineering. 107 – 115.
- Tan C.T. (2000). Sistem Pengurusan Alam Sekitar (EMS) di Tapak Bina. Universiti Teknologi Malaysia: Projek Sarjana Muda Kejuruteraan Awam.
- The Commonwealth Heads of Government Meeting (October 1989). *The Langkawi* Declaration on the Environment. Kuala Lumpur.
- The Fourth ASEAN Ministerial Meeting on the Environment AMME (June 1990). *The Kuala Lumpur Accord on Environment and Development*. Subang, Selangor.
- Tibor T.; Feldman I. (1998). Implementing ISO 14000: A Practical, Comprehensive Guide to the ISO 14000 Environmental Management Standards. United States of America: Irwin Professional Publishing.
- United Nations Conference on Environment and Development (June 1992). *Rio Declaration on Environment and Development*. Rio de Janeiro.
- Voorhees J.; Woellner R.A (1999). International Environmental Risk Management: ISO 14000 and the System Approach. United States of America: Lewis Publishers.

- Winch G.M (1999). *Managing Construction Projects*. London: Blackwell Publishing.
- Zainudin M.S. (1998). Application of Environmental Management System in the Construction Industries. Civil Engineering Seminar organised by Faculty of Civil Engineering UTM: Kuala Lumpur.
- Zainudin M.S. (2005). Environmental Management For Water Resources Sustainability. Integrated Water Resources Management Consultation For Senior Executives in the Public Sector organised by Department of Irrigation and Drainage: Port Dickson, Negeri Sembilan.
- Zainudin M.S. (1998). Environmental Management for Highway Development. Seminar on Environment in relation to Roads and Highways organised by Road Engineering Association of Malaysia (REAM): Kuala Lumpur.
- Zalina I (2005). Good Environmental Practice: Putrajaya's Experience. National Forum on Sustainable Construction: Good Practices in Environmental Management. Putrajaya Holding Sdn. Bhd. (PJH). Kuala Lumpur.