THE EFFECT OF SAMPLE PREPARATION PARAMETERS ON MAGNETORESISTANCE RATIOS (MR%) IN CO/CU NANOSTRUCTURES

LAU YEE CHEN

A thesis submitted in fulfilment of the requirements for the awards of the degree of Master of Science (Physics)

> Faculty of Science Universiti Teknologi Malaysia

> > MARCH, 2005

To my family. Without their continual support and encouragement this work would not have been possible.

ACKNOWLEDGEMENT

I would like to express my sincere appreciation to P. M. Dr. Rashdi Shah Ahmad and Prof. Dr. Samsudi Sakrani, for their excellent guidance, instrumental assistances and valuable advice which made it possible for me to implement research leading to this thesis. The valuable advice and opinions from P. M. Dr. Yussof Wahab, Mr. Mohammad Zaki Hj. Yaacob and some other lectures are also very much appreciated.

In addition, I am grateful to Dr. Agus Setyo Budi, Mr. Mohd. Nazari Kamaruddin, Madam Wan Aklim Norsalafiany Wan Ahmad, Mr. Putut Marwoto, Mr. Md. Sam Ismom, Ms. Carmen Wong and Mr. Hasbullah Antony Hasbi for their kind assistance in experimental, constructive ideas and valuable suggestion.

The scholarship award and financial support for this research from Universiti Teknologi Malaysia are really rewarding.

ABSTRACT

The research reported in this thesis is primarily aimed at establishing the fundamental understanding of magnetoresistance (MR) phenomena occurring in layered magnetic nanostructures of Co/Cu system fabricated using sputtering and electron beam method. Emphasis is given on the studies of magnetoresistance ratios (MR%) as functions of Co layer thickness, working pressure, annealing time and temperature, number of bilayer, direction of magnetic fields, and the application of buffer layer. The Co/Cu/Co sandwiches in this study were fabricated on corning glass substrates. The electrical resistance of samples was measured using the four point Van der Pauw method when magnetic fields of \pm 2500 gauss were applied. It was observed that, the MR% attained almost 10% between 2 - 6 nm of the Co layer thickness. By varying the working pressure, a maximum MR% of 11.4% was obtained at a working pressure of 2.6×10^{-3} torr. In the other hand, the MR% also increases with the increasing of annealing temperature and time. In the bilayers number, *n* various MR% was revealed by the existence of up-down fluctuations with the MR's peak and valley occurring at n = 5 and n = 8, respectively. It was also observed that, the magnetic field applied in plane to the samples with and without chromium buffer layer produced higher value MR% of compared to those applied perpendicularly. Thus, the results indicate the dependent of MR% on various preparation parameters.

ABSTRAK

Laporan penyelidikan dalam tesis ini bermatlamat untuk menghasilkan pemahaman asas mengenai fenomena magnetoresistance (MR) dalam struktur Co/Cu yang dihasilkan melalui kaedah sputtering dan electron beam. Penekanan diberikan terhadap faktor-faktor ketebalan lapisan Co, tekanan semasa proses pemendapan, masa dan suhu pemanasan, bilangan lapisan saput tipis, arah pembekalan medan magnet, dan lapisan buffer yang mempengaruhi nilai-nilai nisbah magnetoresistance (MR%). Lapisan Co/Cu/Co dalam pengajian ini dimendapkan ke atas kaca corning. Rintangan sampel diukur dengan menggunakan kaedah Van der Pauw apabila medan magnet berjumlah ± 2500 gauss dikenakan. MR% didapati meningkat ke hampir 10% apabila ketebalan lapisan Co berada di antara 2-6 nm. Dengan mengubah tekanan semasa proses pemendapan, nilai maksimum MR% berjumlah 11.4% telah dihasilkan pada tekanan 2.6 x 10^{-3} torr. Selain daripada kesan ketebalan Co dan tekanan semasa pemendapan, proses pemanasan juga turut meningkatkan nilai MR%. Kesan bilangan lapisan sampel telah menghasilkan bentuk turun naik dengan puncak dan lembah MR% masing-masing muncul semasa n = 5 dan n = 8. Disamping itu, MR% yang lebih tinggi dapat dihasilkan dengan mengenakan medan magnet dalam arah mendatar kepada sampel, sama ada terdapat lapisan buffer atau tidak. Oleh itu, hasil penyelidikan ini menunjukkan bahawa MR% adalah dipengaruhi oleh pelbagai cara penyediaan sample.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DECLARATION		ii
	DEDICATION		iii
	AKNOWLEDGEMENT		iv
	ABSTRACT		\mathbf{v}
	ABSTRAK		vii
	CONTENTS		ix
	LIST OF TABLES		xii
	LIST OF FIGURES		xiii
	LIST OF SYMBOLS		xvi
	LIST OF APPENDIX		xviii

1 INTRODUCTION

1.1	Literature Review	1
1.2	Research Objective	3
1.3	Research Scope	3
1.4	Thesis Plan	4

2 THEORY

2.1	Magn	etic Material	6
	2.1.1	Ferromagnetic Material	6
	2.1.2	Antiferromagnetic Material	8

2.2	Band	Structure	9
2.3	Thin F	Film Deposition	10
	2.3.1	Radio Frequency (RF) Sputtering	13
	2.3.2	Electron Beam (e-beam) Process	16
2.4	Thick	ness Measurement	17
	2.4.1	Film Thickness Monitor (FTM)	17
	2.4.2	Dektak3 Surface Profiler	19
2.5	The F	our-Point Probe	20
	2.5.1	Resistiviy of Arbitrarily Shaped	
		Samples	20
2.6	Giant	Magnetoresistance	22
	2.6.1	Theoretical Model	23
		2.6.1.1 Single-Current Model	23
	2.6.2	Benefit Of GMR	26

3 METHODOLOGY

3.1	Samp	le Preparation	29
	3.1.1	Deposition by RF Sputtering Method	29
		3.1.1.1 High Vacuum Coater Setup	30
		3.1.1.2 Substrate Pre-Clean	33
		3.1.1.3 Pre-sputtering Process	33
		3.1.1.4 RF Sputtering Process	33
	3.1.2	Deposition by Electron Beam Method	35
		3.1.2.1 Edwards Auto 306 Evaporation	
		Systems	36
		3.1.2.2 Substrate Pre-Clean	37
		3.1.2.3 Electron Beam Evaporation Process	37
3.2	Annea	aling Process	38
	3.2.1	Temperature Uncertainty Calibration	40
3.3	Measu	irement	41
	3.3.1	Thickness Measurements	41
		3.3.1.1 Measurement by Using FTM	42
		3.3.1.2 Measurement by Using Dektak ³	

	Surface Profiler	42
3.3.2	MR Measurement	45

4 **RESULT AND DISCUSSIONS**

4.1	Magn	etoresistance for RF Sputtering Film	48
	4.1.1	Magnetoresistance (MR) Curve	48
		4.1.1.1 Effect of Sample Thickness	50
		4.1.1.2 Effect of Working Pressure	54
		4.1.1.3 Effect of Bilayers	58
	4.1.2	Effect of Annealing Process	61
		4.1.2.1 Annealing Time	61
		4.1.2.2 Annealing Temperature	64
		4.1.2.3 Effect of Annealing Temperature	
		for Different Bilayers	68
4.2	Magn	etoresistance for e-beam Film	71
	4.2.1	Effect of Magnetic Field	71
	4.2.2	Effect of Buffer Layers	73
	4.2.3	Effect of Annealing Time on e-beam Film	76
4.3	Comp	arison Between Sputtering and e-beam Method	78

5 CONCLUSION AND SUGGESTION

	5.1	Conclusion	81
	5.2	Suggestion	83
REF	EREN	CES	85
APPI Appe	E NDIC ndix A	CIES	94
PRES	SENTA	ATIONS	96

LIST OF TABLE

TABLES NO	. TITLE	PAGE
1.1	Material and their function in system	4
3.1	Label of samples prepared by RF sputtering	35
3.2	Parameters of samples prepared by e-beam method	38
3.3	Parameters of annealing for the sample prepared by	
	RF sputtering method	39
3.4	Annealing parameter for sample prepared by e-beam	
	method	40
3.5	Thickness detected by using FTM and Dektak ³	
	Surface Profiler	45
3.6	Current and resistance values for current source	
	testing	46
4.1	Working pressure and deposition rate	55

LIST OF FIGURE

FIGURE NO	. TITLE	PAGE
2.1	A typical hysteresis loop of antiferromagnetic	
	material	7
2.2	Variation with the temperature of the susceptibility	
	for an antiferromagnetic.	8
2.3	Moment spin of an antiferromagnet	9
2.4	Thin film processes	12
2.5	Schematic of the ion-solid interactions and the	
	sputtering process	13
2.6	The schematic of RF sputtering system	14
2.7	Basic configuration of e-beam	17
2.8	Film Thickness Monitor	18
2.9	Schematic of measurement for Film Thickness Monitor	18
2.10	Dektak ³ Surface Profiler	19
2.11	A Collinear Four-point Probe	20
2.12	Four-point Van der Pauw method	21
2.13	The magnetic multilayer type, in which the	
	magnetizations are forced from natural AF-mode	
	$(\theta = 0^{\circ})$ to F-mode $(\theta = 180^{\circ})$ by H	23
2.13	GMR phenomena showing a) low and b) high resistance	24
2.14	Resistance effectiveness in parallel configuration	25
2.15	Resistance effectiveness in anti-parallel configuration	25
2.16	Basic IBM suspended head design	27
3.1(a)	High Vacuum Coater	31
3.1(b)	Control panel of High Vacuum Coater	32
3.2	Internal part of High Vacuum Coater	32

3.3	Direction of magnetic fields applied to samples	36
3.4	Edwards Auto 306 Evaporation Systems	37
3.5	Set up of annealing process	40
3.6	Graph of quartz temperature versus heater set point	41
3.7	The straight line used for thickness measurement	43
3.8(a)	Thickness of (Co/Cu) x 5 measured by Dektak ³	
	Surface Profiler	44
3.8(b)	Thickness of (Co/Cu) x 10 measure by Dektak ³	
	Surface Profiler	44
3.8(c)	Thickness of (Co/Cu) x 15 measure by Dektak ³	
	Surface Profiler	45
3.9	Magnetic fields applied in plane to sample	47
4.1	Magnetoresistance curve of Co /Cu /Co (6nm/	
	2.5nm/ 6nm) sandwich structures	49
4.2	Magnetoresistance curve for Co/Cu for 6 various	
	thickness of Co layer	51
4.3	Graph of MR% versus thickness	52
4.4	Graph of resistance versus film thickness of Co layer	53
4.5	Graph of resistance change versus film thickness	
	of Co layer	54
4.6	Effect of working pressure on MR%	56
4.7	Effect of working pressure on resistance of samples	57
4.8	Graph of resistance change versus working pressure	57
4.9	Effect of number of bilayers on MR%	59
4.10	Graph of resistance versus number of bilayers samples	60
4.11	Graph of resistance change versus number of bilayers	
	samples	60
4.12	Influence of annealing time on MR%	62
4.13	Graph of resistance versus annealing time	63
4.14	Graph of resistance change versus annealing time	63
4.15	Effect of annealing temperature as a function of MR%	
	in Co/Cu	65
4.16	MR% effect of annealing temperature as a function of	
	MR% in NiFe/Cu	65

4.17	Graph of resistance versus annealing temperature	66
4.18	Graph of resistance change versus annealing temperature	67
4.19	Graph of resistance of NiFe/Cu versus annealing	
	temperature (°C).	67
4.20	Effect of number bilayers of Co/Cu before and after	
	Annealing at 400°C towards MR%	69
4.21	Graph of resistance versus number bilayers of samples	70
4.22	Magnetoresistance curve of Co/Cu/Co (5.5 nm	
	/3.5 nm/5.5 nm) when magnetic fields applied along	
	and perpendicular to the sample	72
4.23	Easy and hard axis in Co hexagonal crystal lattice	72
4.24	Magnetoresistance Curve of Co/Cu/Co (5.5 nm/	
	3.5 nm/5.5 nm) with and without buffer layers (Cr) layer	74
4.25	Dependence of MR% on Cr buffer layer thickness in	
	Co/Cu/Co (5.5 nm/3.5 nm/5.5 nm) sandwich structures	75
4.26	Magnetoresistance curve of Cr/Co/Cu/Co (8 nm/5.5 nm	
	/3.5 nm/5.5 nm) when magnetic fields applied along and	
	perpendicular to the sample	7c
4.27	Magnetoresistance Curve of Co/Cu/Co (12 nm/2.5 nm	
	/12 nm) with different annealing time	77
4.28	Effect of annealing on Co/Cu/Co (12 nm/2.5 nm/12 nm)	77
4.29	Resistance of Co/Cu/Co (12 nm/2.5 nm/12 nm) in	
	different annealing time	78
4.30	Magnetoresistance Curve of Co/Cu/Co (12 nm/2.5 nm	
	/12 nm) prepared by RF sputtering and e-beam	
	method at two different working pressures.	80

LIST OF SYMBOLS

GMR	Gaint Magnetoresistance
MR	Magnetoresistance
MR%	Magnetoresistance ratios
SSF	Surface Spin-Flop
Н	Magnetic field
M	Magnetization
μ_0	Permeability of free space
β	Bohr magnetron
В	Magnetic induction
χ	Susceptibility
T _N	Neel temperature
E_F	Fermi Energy
n	Number of multilayers
ρ	Resistivity
R _{min}	Resistance in maximum external
	magnetic field
<i>R_{max}</i>	Resistance in zero field
R _{total}	Total resistance
ΔR	Distance between R_{max} and R_{min}
t	Thickness
<i>t</i> _{Co}	Thickness of Co layers
RF	Radio frequency
e-beam	electron beam

HVC	High Vacuum Coater
Auto 306	Edwards Auto 306 Evaporation Systems
Sccm	Standard cubic centimeter per minute
FTM	Film Thickness Monitor
Z value	Acoustic impedance
DEKTAK ³	Dektak ³ Surface Profiler
LVDT	Linear Variable Differential
	Transformer
RAM	Random access memory
MRAM	Magnetic RAM
FM-layers	Ferromagnetic layers
NM-layers	Non-magnetic spacer layers
Р	Paramagnetic
F-mode	Ferromagnetic mod
AF-mode	Anti-ferromagnetic mode
α	Direction of magnetic field
Со	Cobalt
Cu	Copper
Cr	Chromium
Fe	Iron
Ni	Nickel
NiFe	Nickel Iron
GaAs	Gallium Arsenide

LIST OF APPENDICIES

AITENDIA NO.	DESCRIPTION	
A Temp	perature Uncertainty Calibration	04

CHAPTER 1

INTRODUCTION

1.1 Literature Review

The capacity of magnetic disk systems is growing rapidly year by year with the advancement in the information-oriented society. From a statistical survey, the density of magnetic recording is increased by 60% every year (Sato, 1998). Magnetic thin films have been of great interest recently due to their technological application in magnetic sensors and magnetic random access memory (MRAM) modules (Timothy, 2001; and Yamada *et al.*, 2002).

The issue of sensitivity has drawn a lot of attention in giant magnetoresistance (GMR) materials for applications in sensors, high-density readout heads and other magnetic storage technology in this decade. Thus, the study of GMR effect was essential to investigate the thin film condition, which can produce higher GMR values while decreasing the size of the magnetic fields required to produce the effect.

The phenomenon of magnetoresistance (MR) was first observed by Lord Kelvin in 1956 (Philip, 2000), where 0.033% rise of electrical resistance was recorded in a piece of iron subjected to a magnetic fields. However, it only becomes important when the electrical resistance of permalloy thin film magnetic sensor changed by up to 2% when its magnetization direction was changed (Mahdi *et al.*, 2003).

Generally, MR sensors are made from ferromagnetic thin films. There are two major advantages of ferromagnetic thin film over bulk material. These include the high resistance and the anisotropic characteristic of ferromagnetic thin film, which can be made uniaxial (Timothy, 2001). According to David (1991), the anisotropy phenomenon ferromagnetic layers behaves like a single domain. It has one distinguish direction of magnetization in its plane, called the easy axis.

Barna and Grunberg (1992) reported that, for a given thickness of the nonmagnetic chromium layer in three-layer Fe/Cr/Fe structure, the magnetizations of Fe layers pointed in the opposite directions. According to Ping (2001), the interlayer coupling responsible for this anti-alignment is called "antiferromagnetic". Antiferromagnetism is a phenomenon in which atomic magnetic moments point in opposite directions in materials.

In 1988, Baibich *et al.* observed a similar phenomenon occurring in the antiferromagnetically coupled Fe/Cr superlattice. However, a considerable drop in the resistance occurred when a sufficiently high magnetic field of approximately 2T was applied. This effect is now known as GMR.

GMR sandwich structures were then introduced with capabilities of producing a higher GMR ratio up to 50% (Mahdi, *et al.* 2003). Generally, GMR structures consist of an ultra thin metallic non-magnetic layer of Cu or Ag (\approx 10 nm) sandwiched between two ferromagnetic metals, such as cobalt and iron. Several theoretical studies have been carried out to account for the various mechanisms occurring in GMR multilayer film (Valet, *et al.* 1996; Johnson, *et al.* 1991; and Barthelemy, *et al.* 1991)

The novel magnetic alignments were the other interesting aspects in magnetic thin films. It has been investigated for the academic interest and application in micro devices (Jiang and Bader, 2002; Matteo *et al.*, 2000; and Crew *et al.*, 2001). Magnetic multilayers were also proved to be a model system for investigating the magnetization reversal process, where a transition of surface spin-flop (SSF) was obtained in an ideal antiferromagnet (Luthi and Hock, 1983; and Rohrer, 1977). According to Timothy (2001), SSF only occurs when the direction of the top surface

magnetization is antiparallel to the bottom surface magnetization. GMR is a new and developing field. Thus, much more work was needed to explore and make use of the GMR.

1.2 Research Objectives

It is well known that GMR is very sensitive to the microstructure of the sample (Ratzke *et al.*, 1999; Herker *et al.*, 2002; and Dinia *et al.*, 2000). Thus, the main interest of this study is to determine the highest GMR effect that can be obtained in Co/Cu nanostructures. Although study of GMR effect in Co/Cu nanostructures have been reported previously, not much work was done in studying the optimum conditions of thin film, which can produce the highest GMR effect. This information is important to the computer manufactures to produce read-out heads with higher density. Thus, the objectives of this research are as follow:

- 1) To prepare Co/Cu nanostructures.
- 2) To measure and study the MR% of Co/Cu nanostructures.
- 3) To determine the highest MR% obtain in the Co/Cu nanostructures.

1.3 Research Scope

The scope of this research involves the preparation of Co/Cu nanostructures by two different methods, namely the RF sputtering and electron beam (e-beam) method. Emphasis is given on the studies of magnetoresistance ratios (MR%) as functions of Co layer thickness, working pressure, annealing time and temperature, number of bilayer, direction of magnetic fields, and the application of buffer layer in order to obtain the optimum condition for the highest MR%. The resistance of samples in this study was measured using the four-point Van der Pauw method. The following materials (Table 1.1) were chosen in order to achieve the aims of the study.

	Material	Function
1.	Cobalt (Co)	Ferromagnetic material
2.	Copper (Cu)	Non-magnetic but a good conductor
3.	Chromium (Cr)	Buffer layer

Table 1.1: Material and their function in the system

Co was chosen as the ferromagnetic material because it is one of the elements with ferromagnetic characteristic at room temperature (Anderson *et al.*; 1985 and David, 1991). Apart from that, the Curie temperature of Co is higher than other ferromagnetic materials, for example Ni and Fe. Curie temperature is the transition temperature from ferromagnetic to paramagnetic behavior. Thus, Co was chosen as ferromagnetic material, since a high temperature is needed to transform into paramagnetic behavior. Meanwhile Cu, the most common good conducting material is chosen as a non-magnetic material.

The Cr was used as a buffer layer in the system. This is due to its ability to enhance the MR% of system (Shen, *et al.*, 1999). Besides, it is easily deposited by sputtering and electron beam method (e-beam).

1.4 Thesis Plan

This thesis contains 6 chapters. Chapter I is the introductory section on the development of the research. It reviewed the problem statement and previous work

done by other researchers. This chapter also specified the aim of studies, choice of system, and outline of the thesis plan.

Meanwhile, Chapter II deals with the background of this study, which covers the theoretical aspects of the magnetic material; i.e. ferromagnetic and antiferromagnetic material, band structures, thin film deposition and method such as radio frequency (RF) sputtering and electron beam (e-beam) method, thickness measurement and GMR.

The details of the sample preparation, design of the experiment, methods of measurement of the various physical parameters such as thickness and resistivity of samples, calculation of MR% are described in Chapter III.

Chapter IV discusses all the experimental results obtained from the investigation on the effects of thin film layers thickness, working pressure, bilayers of sample, annealing process, buffer layer, direction of external magnetic fields, and different methods of sample preparation.

Chapter V summarized the findings mentioned and the condition of sample that can produce highest MR%. Finally, suggestions on future work will also be mentioned.

References

- Anderson, J. C., Leaver, K. D., Rawlings, R. D., and Alexander, J. M. (1985).*Materials Science*: 3th ed. England: Van Nostrand Reinhold (UK) Co. Ltd.
- Anonynous, H. (1999). Irreversible magnetic field dependence of the magnetic structure in GMR Co/Cu multilayers. *Journal of Research of the National Institute of Standards and Technology*. 104:207-214.
- Arkadiusz, G. (1970). *Nonparametric Magnetic Amplifiers*. Warszawa: Pitman Publishing
- Baibich, M. N., Broto, J. M., Fert, A., Nguyen F. V. D., and Petroff, F.(1988)"Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices" *Phys. Rev. Lett.* 61, 2472–2475.
- Bakish, R. (1962). Introduction to Electron Beam Technology. London: John Wiley & Sons, Inc.
- Barthélémy A. and Fert A. (1991). Theory of the Magnetoresistance in Magnetic Multilayers: Analytic Expressions from a Semiclassical Approach," *Phys. Rev. B*43(13):124–131.
- Barna, J and Grunberg, P.(1992). Spin waves in exchange-coupled epitaxial double-layers. *Journal of Magnetism and Magnetic Materials*. 82(2-3): 186-189.
- Bass, J. and Pratt, W. P. (2002). Version 7/21/01 current-perpendicular to plane (CPP) magnetoresistance. *Physica B: Condensed Matter*. 321(1-4): 1-8
- Behrisch, R. and Wittmaack, K. (1991). *Sputtering by Particle Bombardment III*. Germany: Spring-Verlag.

- Belozorov, D. P., Derkach, V. N., Nedukh, S. V., Ravlik, A.G, Roschenko, S. T., Shipkova, I.G., Tarapov, S. I., Yildiz, F., and Aktas, B. (2003). Magnetization and impedance measurements of multiplayer Co/Cu structures in millimeter waveband. *Journal of Magnetism and Magnetic Materials*. 263: 315-323.
- Boylestad, R. L. (2003). *Introductory Circuit Analysis*. Tenth Edition. United State of America: Prince Hall.
- Butler W. H., Zhang X.-G., Nicholson D. M. C., and Maclaren J. M. (1995). First Principles Calculation of Electrical Conductivity and Giant Magnetoresistance of Co-Cu Multilayers. *Phys. Rev. B* 52(13): 399-410
- Camley R. E. and Barna, J. (1989). Theory of Giant Magnetoresistance Effects in Magnetic Layered Structures with Antiferromagnetic Coupling. *Phys. Rev. Lett.* 63:664-667
- Canali, L. (2000). *Novel Scanning Probes Applied to the Study of Nanostructures*. Technische Universiteit Delft: Ph D. Thesis.
- Chapman, R. M. (1963). The effect of fabrication variables on chromium thin film resistors. *Vacuum* .13(6): 213-221.
- Colis, S., Guth, M., Arabski, J., Dinia, A., and Muller, D. (2002). Thermal stability of spin valve sensors using artificial Co/Ir based ferrimagnets. *Journal of Magnetism and Magnetic Materials*. 240:186-188.
- Coombe, R. A. (1967). *The electrical properties and applications of thin film*. London: Sir Isaac Pitman and Sons Ltd.
- Crew, C. D., Kim, J., Lewis, L. H., and Barmak, K. (2001). Interdiffusion in bilayer CoPt/Co films: potential for tailoring the magnetic exchange spring. *Journal of Magnetism and Magnetic Materials*. 233(3): 257-273

- David, J. (1991). *Introduction to Magnetism and Magnetic Materials*. London: Chapman and Hall.
- Dinia A. Persat, N., Coils, S., Ulhaq-Bouillet C., and van den Berg, H. A. M. (2000). Effect of the structural quality of the buffer on the magnetoresistance and the exchange coupling in sputtered Co/ Cu sandwiches. *Eur. Phys. J. B.* 18: 413-419.
- Donald, L. S. (1995) Thin Film Deposition. London: McGraw-Hill, Inc.
- Edwards (1992). *Instruction Manual (FTM5 Film Thickness Monitor)*. UK: Edwards High Vacuum International.
- Errahmani, H., Berrada, A., Schmerber, G., and Dinia, A. (2001) Comparative study between the effect of annealing and substrate temperature on the magnetic and transport properties of Co₂₀Cu₈₀ granular alloys. *Materials Letters*. 51:48-55
- Fert, A., Campbell, I. A. (1968). Two-current conduction in Nickel. *Phys. Rev Lett.* 21:1190.Evolution from multilayer to granular behavior via Cobalt layers fragmentation in Co/Cu multilayers. *Journal of Magnetism and Magnetic Materials.* 262(1): 7-11.

George, J. (1992). Preparation of Thin Films. New York: Marcel Dekker, Inc

- Higashihara, S., Oomi, G., Suenaga, K., Ono, T., and Shinjo, T. (2004). Effect of pressure on the giant magnetoresistance in Fe/Cr multilayers on SrTiO₃(100) substrate. *Physica B: Condensed Matter*. 57:4-16.
- Hecker, M., Thomas, J., Tietjen, D., Baunack, S., Schneider, C. M., Qiu A., Cramer, N., Camley R. E. and Celinski, Z. (2003). Thermally induced modification of GMR in Co/Cu multilayers: correlation among structural, transport, and magnetic properties. J. Phys. D: Apply. Phys. 36: 564-572.

- Jansen, F. (1997). *Handbook of Thin Film Process Technology*. London: IOP Publishing Ltd
- Jiang, J. S. and Bader, S. D. (2002). Magnetic reversal in thin film exchangespring magnets. *Scripta Materialia*. 47(8): 563-568
- John, L. V., and Werner, K. ed. (1978). *Thin Film Processes*. London: Academic Press.
- John, R T. (1981). An Introduction to Error Analysis: The Study of Uncertainities in Physical Measurements. United State of America: Oxford University Press.
- Johnson, B. L., and Camley R. E., (1991). Theory of Giant Magnetoresistance in Fe/Cr Multilayers: Spin-Dependent Scattering from Impurities. *Phys. Rev. B* 44: 9997-10002.
- Kakashi, S, and Osamu, N. (1998). Structure and giant magnetoresistance of Co/Ag granular alloy film fabricated by a multilayering method. *Journal of Thin Solid Films*. 334(1-2): 206-208
- Kiwi, M. (2001). Exchange Bias Theory J. Magnetism and Magnetic Materials 234(3): 584-595.
- Kumar, D., Narayan, J., Kvit, A. V., Sharma, A.K, and Sankar, J. (2001)
 High coercivity and superparamagnetic behaviour of nanocrystalline iron particles in alumina matrix. *Journal of Magnetism and Magnetic Materials*. 233(3):161-167
- Liu, J. M., Yang, Y., Zhou, X. H., Chen, X. Y., and Liu, Z. G., (2003). Magnetic polaran mechanism of electron transport and magnetoresistance in spin systems: a Monte-Carlo simulation. *Materials Science and Engineering B*. 99:558-562.

Loretto, M. H. (1984). Electron Beam Analysis Of Materials. London: Chapman

- Luthi, B. and Hock, R. (1983). Dipolar surface spin waves in antiferromagnets. Journal of Magnetism and Magnetic Materials. 38(3): 264-2.68
- Mahdi A. E., Panina, L. and Mapps, D. (2003) Some new horizons in magnetic sensing: high- T_c SQUIDs, GMR and GMI materials. *Sensors and Actuators* A. 105:271-285.
- Maissel, L. I. and Glang, R. (1970). *Handbook of Thin Film Technology*. New York: McGraw Hill
- Masashige, S., Hideyuki, K, and Kazuo, K. (1998). Giant Magnetoresistance in Ni-Fe/Co/Al-AlOx/Co/Ni-Fe/Fe-Mn Ferromagnetic Tunnel Junctions. *Journal* of FUJITSU Sci. Tech. 34(2):204-211
- Matteo, A. Angelo, R., and Maria, G. P. (2000). Exchange-spring behavior of hard/soft magnetic multilayers: optimization study of the nanostructure. *Physica B:Condensed Matter*.275(1-3): 120-123.
- Milton, O. (1985) *The materials science of thin films*. United States of America: Academic Press, Inc
- Philip, J. (2000). *Quantum transport in disordered magnetoresistive systems*.Rijks Universiti Groningen: Ph.D. Thesis.
- Ping, H. (2001). Studying and Modelling of the Giant Magnetoresistance Sensors.University of Manchester: Ph.D. Thesis
- Ratzke, K., Hall, M J, Jardine, D. B., Shih, WC, Somekh, R E and Greer, A. L. (1999) Evolution of microstructure and magnetoresistance in Co/Cu multilayers during annealing. *Journal of Magnetism and Magnetic Materials*. 204(1-2):61-67

- Rohrer, H., Derighetti, B. and Gerber, Ch. (2002). A spin-flop bicritical line in GdAlO_{3.} *Physica B+C*.86-88 (2): 597-598.
- Samsudi Sakrani.(1996). *Pencirian Saput Tipis*. Kursus Teknologi Bahan. Universiti Teknologi Malaysia. 29-30 Oktorber 1996.
- Sato, M., Kikuchi, H. and Kobayashi, K. (1998)." Giant Magnetoresistance in Ni-Fe/Co/Al-AlOx/Co/Ni-Fe/Fe-Mn Ferromagnetic tunnel Junctions". J. Sci. Tech.34(2): 204-210.
- Scroder, D. K., (1990). Semiconductor material and device characterization. New York: A. Wiley-Interscience Publication, John Wiley & Sons Inc.

Siegle, G. (1972). *MRV Metallpraxis/Oberflachentechnik*. London: Academic Press, Inc. 247

- Shen, H L, Li, G. X., Shen, Q. W., Li, T., and Zou, S. C. (2000) Giant magnetoresistance and structural properties in Co/Cu/Co sandwiches with Si and Cr buffer layers. *Thin Solid Films*. 375(1-2):55-58
- Smadar, S. and Nathan, W. (2001). Magnetoresistance of magnetic multilayers: understanding Ohm's law. *Journal of Physica A: Structural Mechanics and its Applications*. 302(1-4): 382-390.
- Smith, N., Zelster, A.M., Parker, M.R. (1996). GMR multilayers and head design for ultrahigh density magnetic recording. *IEEE Trans. Magn.* 32: 135.
- Tagirov, L. R., Vodopyanov, B. P, and Efetov, K. B. (2001). Ballistic versus diffusive magnetoresistance of magnetic point contact. *Phys. Rev. B.* 63: 10442.

Takahasgi, D., Miura, S., Tsunoda, M., and Takahashi, M. (2002). Enhanced

lateral grain growth and enlarged giant magnetoresistance in Co/Cu multiplayer by Fe-Si buffer layer. *Journal of Magnetism and Magnetic Materials*. 239:282-284.

- Takashi, S., and Osamu, N. (1998). Structure and giant magnetoresistance of Co/Ag granular alloy film fabricated by a multilayering method. *Thin Solid Films*. 334(1-2): 206-208
- Timothy, R. C. (2001). Growth, Characterization, and Properties of Co/ Re Superlattices. West Virgina University: Ph.D. Thesis.
- Turilli, G. Pareti, L. and Castaldi. (1999). Effects of layering and working pressure on magnetic and magnetotransport properties of as sputtered multilayered granular Co/Cu films. *Journal of Superlattices and Microstructures*. 25(4): 591-600
- Valet, T. and Fert, A.(1993). Theory of the Perpendicular Magnetoresistance in Magnetic Multilayers. *Phys. Rev. B*. 48:7099-7113.
- Valdes, L. B. (1954).Resistivity measurements on germanium for transistors. *Proc. IRE.* 42: 420-427.
- Vavassori, P. Spizzo, F., Abgeli, E., Bisero, D., and Ronconi, F. (2003). Evalution from multiplayer to granular behavior via cobalt layers fragmentation in Co/Cu multilayers. *Journal of Magnetism and Magnetic Material*. 262(1): 120-123.
- Veeco Metrology Group (1998). Installation, operation and Maintenance Manual of DEKTAK³ surface Profile Measuring System. California: Veeco.
- Vieux-Rochaz, L., Cuchet, R., and Vaudaine, M. H. (2000) A new GMR sensor based on NiFe/Ag multilayers. *Sensors and Actuators*. 81:53-56.

Vohl, V., Wolf, J. A., and Grunberg, P. (1991). Exchange coupling of

ferromagnetic layers across nonmagnetic interlayers. *Journal of Magnetism* and Magnetic Materials. 93: 403-406

- Vossen, J. L., and Kern, W. (1991) *Thin Film Process II*. London: Academic Press, Inc.
- Wang, W. D., Zhu, F., Lai, W. et al. (1999). Microstructure, magnetic properties and giant magnetoresistance of granular Cu-Co alloy. J. Phys. D: Apply Phys. 15:1990-1996.
- Wenner, F. (1915) *A method of measuring earth resistivity*. Bulletin of the Bureau of Standards. 12: 469-478.
- Wieder, H. H. (1979). Four terminal nondestructive electrical and galvanomagnetic measurements. New York: Plenum Press
- Xu, M., Fan, Y., Luo, G., and Mai, Z. (2000). Dependence of giant magnetoresistance on the thickness of magnetic and non-magnetic layers in spin-valve sandwiches. *Physics Letters A*, 272:282-288.
- Yamada, A., Houga, T., and Ueda, Y. (2002). Magnetism and magnetoresistance of Co/Cu multiplayer films produced by pulse control electrodeposition method. *Journal of Magnetism and Magnetic Materials*. 239:272-275.
- Yamamoto, H., Motomura, Y., Anno, T., Shinjo, T. (1993).Magnetoresistance of non-coupled NiFe/Cu/Co/Cu multilayers. *Journal of Magnetism and Magnetic. Materials*. 126: 437.
- Yang, W. W., Sun, H, Zhu, X.Y., and Song, W. J. (2001) A phenomenological theory of giant magnetoresistance in magnetic granular alloys. *Physica B*. 299:77-82.
- Yu, R. H., Zhang, X. X., Tejada, J., Knobel M., Tiberto P. and Allia, P. (1995).

Magnetic properties and giant magnetoresistance in magnetic granular Co_xCu_{100-x} alloys. *Phys. D: Appl. Phys.* 28:1770-1777.

Zhang, Z., Zheng, W., Zhang, G., Wang, A., X, L., Chen, J., and Ge, S. (1999)
Effect of preferred orientation on GMR and saturation fields in Co/Cu
multilayers. *Journal of Magnetism and Magnetic Materials*. 198-199: 49-51.