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Abstract 

 

Electrical methods have been widely used in geophysical surveying to obtain high-resolution information 

about subsurface conditions, since the last few decades. Resistivity is an important parameter in judging the 

ground properties, especially detecting buried objects of anomalous conductivity. Electrical DC (i.e. Direct 
Current) resistivity sounding is the commonly used technique to obtain the apparent 2-D resistivity of the 

region under investigation. Acquiring the true resistivity from collected data remains a complex task due to 

nonlinearity particularly due to contrasts distributed in the region. In this work, a radial basis function neural 
network (RBFNN) metamodelling approach is proposed to solve the 2-D resistivity inverse problem. The 

model was trained with synthetic data samples obtained for a homogeneous medium of 100Ω.m. The neural 

network was then tested on another set of synthetic data. The results show the ability of the proposed 
approach to estimate the true resistivity from the 2-D apparent resistivity sounding data with high 

correlation. The proposed technique, when executed, appears to be computationally-efficient, as it requires 

less processing time and produces less error than conventional method. 
 

Keywords: DC resistivity sounding; 2-D resistivity; inversion problem; radial basis function; neural 

network; metamodelling  
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1.0  INTRODUCTION 

 

Geophysical surveys can be categorised into passive and active. 

Passive geophysical surveys involve the measurements of 

naturally occurring fields in the earth such as gravitational and 

magnetic fields, by means of measuring spatial variations in these 

fields to infer something about the subsurface geology. Active 

surveys are conducted by injecting a signal (e.g. an electrical 

current or an active radiometric source) into the earth and 

obtaining its responses to this signal. Electrical and 

electromagnetic techniques that employ active surveys represent 

the largest class of all geophysical methods. 

  DC electrical resistivity sounding method is the most 

popular technique to measure the subsurface resistivity. The 

conventional resistivity sounding is carried out on the earth’s 

surface with a specified array of electrodes in order to obtain 

apparent resistivity data with respect to the variation of horizontal 

position and vertical depth. Typically, the apparent resistivity 

distribution is presented in a pseudosection using computer 

software, hence an inversion process is essential in order to 

determine the actual resistivity of the subsurface. 

  To represent the electrical resistivity, a number of 

approaches have been devoted to 1-D resistivity inversion (see, 

e.g. in [1] and [2]) while the 2-D inversion has also been used for 

many years (see, e.g in [3] and [4]) for over the last several 

decades. Of particular interest is the recent application of 

artificial neural networks for the inversion, as described in [5] and 

[6]. The former used a resilient back propagation algorithm to 

train the networks, but remained unable to resolve the inversion 

for the complicated geological structures. The latter focused on 

high resistivity contrast anomalies, however it is unclear of the 

ability to interpret resistivity in another range that may exist in 

the investigated region. 

  This paper addresses the 2-D DC resistivity inverse problem 

by using the radial basis neural network metamodelling approach. 

The inversion results are compared with the conventional 

inversion approaches to illustrate the effectiveness of the 

proposed technique for this purpose. The remainder of this paper 

is organised as follows. Section 2 presents the literature review 

on geophysical surveying and current metamodelling 

methodologies. The proposed technique, featuring a radial basis 

function neural network for 2-D resistivity inversion is described 

in Section 3. Section 4 shows the results, followed by some 

analysis and discussion. Finally, a conclusion is drawn in Section 

5. 
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2.0  LITERATURE REVIEW 

 

1.1  Geophysical Survey Tools 

 

Electrical methods are popular in geophysical surveys, where 

they typically operate at frequencies ranging from direct current 

(DC) to >1GHz, to obtain information about the subsurface 

structure and composition [7]. Information of both structural and 

electrical properties provides important constraints for 

geophysical modelling. Structural information can be used to 

define for example the locations of faults and fractures, whereas 

electrical property information can be used to qualitatively 

characterise the rock, soil and other solid types as well as the fluid 

properties.  

  Electrical DC resistivity (ER) and induced polarisation (IP) 

are deployed in a similar manner, where the spatial distribution 

of low-frequency resistive and capacitive characteristics of soil 

can be determined [8]. Both ER and IP involve galvanic contact 

with the soil, hence may limit their application to appropriate sites 

and also require longer survey times. Modern resistivity and IP 

methods used today are very closely related to early 

developments in the 1970s, adopting the four-electrode 

measurement approach, called the Wenner four-pin method [9]. 

Extensive research in imaging prompted the development of 

multi-electrode measurement systems in the 1980s. From mid 

1990s to date, most instrument manufacturers have been able to 

offer multiplexed instruments, and in some cases multi-

measurement channel hardware, thus enabling a reduced survey 

time. A basic configuration of the electrical DC resistivity 

technique is illustrated in Figure 1.  

  The use of ground-penetrating radar (GPR) for geophysics 

applications was growing considerably in the 1970s. The 

foundations of GPR lie in the electromagnetic (EM) theory, using 

radar pulses in the microwave band (UHF/VHF frequencies) of 

the radio spectrum to detect the reflected signals from subsurface 

structures for subsurface imaging. GPR performs best in coarse-

grained materials, such as sands and gravels, which are 

transparent to radio wave signals. Its sensitivity to water content 

could also provide a technique for mapping water table and 

perched water tables [10]. 

  Electromagnetic induction (EM) is the most versatile of the 

airborne geophysical methods. It consists of both frequency 

domain EM (FDEM) and time domain EM (TDEM) approaches, 

measures the apparent electrical conductivity of the ground to 

depths ranging from a few to a few hundred meters, depending 

on the instrument chosen and the ground conductivity [11]. Both 

frequency and time domain EM methods employ a changing 

primary magnetic field created around a transmitter loop or coil 

to induce currents to flow in the ground, which in turn creates a 

secondary magnetic field sensed by the receiver coil. 

Unprocessed airborne EM data consist of the vertical (z) and two 

horizontal (x and y) components of secondary field strength (B) 

or decay rates (dB/dt) over time. Recent work has focused on 

inverting recorded EM airborne data into models that can 

accurately depict subsurface conductivity [12-14]. 

 

1.2  Metamodelling Techniques 

 

Metamodeling, considered generally as an explicit description of 

how a domain-specific model is built for a complex system, has 

been successfully used in many fields where complicated 

computer models of an actual system exist but they may require 

a considerable amount of running time. Models involving finite 

element and fluid dynamics analysis or multi-objective 

optimisation algorithms with many parameters are some typical 

examples. Metamodelling evolves from the classical Design of 

Experiments (DOE) theory, in which polynomial functions are 

used as response surfaces, or metamodels. Nowadays there exist 

a number of metamodeling techniques, such as neural networks 

[15][16], Multivariate Adaptive Regression Splines 

(MARS)[17], Response Surface Modelling (RSM)[18], etc.  

Nevertheless, there is no conclusion about which model is 

definitely superior to the others. However, insights have been 

gained through a number of recent studies, whereby Kriging 

models, Gaussian and radial basis function (RBF) processes are 

intensively investigated [19].  

 

 

Figure 1  The basic configuration of electrical DC resistivity 
measurements [9] 

 

 

  In general the Kriging model is more accurate for nonlinear 

problems and also flexible in either interpolating sample points 

or filtering noisy data. However, it is difficult to obtain and use 

because a global optimization process need to be applied to 

identify maximum likelihood estimators. On the contrary, a 

polynomial model is easy to construct, clear on parameter 

sensitivity, and cheap to work with some slight reduction in 

accuracy [20].  

  The RBFs were first used in 1988 to design Artificial Neural 

Networks [21], with two layers: a hidden layer of radial basis 

function and a linear output layer. The input of the network is 

typically nonlinear, whereas the output is linear, representing the 

weight sum from the hidden neurons. The RBF model, especially 

the multi-quadric RBF, can interpolate sample points and at the 

same time is easy to construct. It thus seems to reach a trade-off 

between Kriging and polynomials. Recently, a new model called 

Support Vector Regression (SVR) was used and tested [22] with 

a higher accuracy than all other Metamodeling techniques 

including Kriging, polynomial, MARS, and RBF over a large 

number of test problems.  

 

 

3.0  RBFNN METAMODEL FOR 2-D RESISTIVITY 

INVERSE PROBLEM 

 

In this work, we will employ a Radial Basis Function Neural 

Network (RBFNN) as the proposed metamodel to approximate 

the resistivity inversion mapping and the apparent resistivity 

values obtained from electrical sounding measurements. Here, 

each hidden neuron of the RBF implements a radial activated 

function, and various types of function has been tested as the 

activation function such as Gausian, multi-quadratic, 

polyharmonic spline and thin-plate spline [23]. Generally, a thin-

plate spline function is mostly used in time series modelling, 
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whereas a Gaussian function is preferred with pattern 

classification problems. The Gaussian function has been used as 

a standard function for the radial basis function neural network in 

MATLAB. By denoting R the number of inputs while Q the 

number of outputs, the output of RBFNN, e.g. for Q = 1, is 

calculated as 
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denotes the Euclidean norm, 

w1k  are the weights in the output layer, S1 is the number of 
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RBF centers in the input vector space.  Equation (1) can also be 

written as,

 

 

wxwx T )(),(  

 

 (2) 

where 

 

    1111)( SS

T cxcxx   

 

 (3) 

and 

 

 111211 S

T wwww 

 

 (4) 

The output of the neuron in a hidden layer is a nonlinear function 

by means of Gaussian function that is given by:  
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where is the spread parameter of the RBF. For training, the least 

squares formula was used to find the second layer weights while 

the centres are set using the available data samples. 

  Advantages of RNFNN over the multilayer perceptrons 

include the ability to effectively generate multidimensional 

interpolative approximations, to yield robustness and reliability 

in a computationally-aided design. As compared to the 

conventional method, which typically incorporates with a fixed 

algorithm in order to solve a particular problem, the RBFNN 

metamodel will flexibly learn the nonlinear mapping between the 

input and output of the system, while solving that the inversion 

problem in the context of ER geophysical surveying.  

  In order to achieve a good performance of the designed 

network as well as fast convergence during the training stage, the 

selection of input and output data sets, a training method and test 

examples is crucial. In this work, we design the RBFNN 

metamodel by selecting apparent resistivity horizontal position 

(x-axis), apparent resistivity vertical position (z-axis) and 

apparent resistivity value (ohm.meter) as the input to the network. 

The true resistivity (ohm.meter) is used as the target output of the 

network. Synthetic data are generated by using a finite element 

forward modelling code by means of the RES2DMOD simulation 

software [24]. It is a 2-D forward modelling program which 

calculates the apparent resistivity pseudosection for a user 

defined 2-D subsurface model. Here, the finite-element algorithm 

[25] is chosen to calculate the apparent resistivity values as the 

synthetic data in this study. There are two generated outputs from 

the RES2DMOD in the forms of (*.dat) and (*.txt). The first form 

consists of a matrix with four columns, horizontal distance, 

electrode spacing, number of data levels and apparent resistivity 

value. By using a prepared MATLAB m-file, the four-column 

matrix is converted to a three-column matrix (comprising 

horizontal location and depth of a datum and respective apparent 

resistivity) to become the input matrix of the RBFNN. For the 

second form, it consists of a matrix with three columns, x-

location, z-location and respective true resistivity value. 

Generally, the size (number of rows) is not equal for both forms. 

Hence, by using another prepared MATLAB m-file, this form 

will be converted to a one-column matrix (for target resistivity 

value) which is the target matrix of the RBFNN, having the same 

size as with the input matrix. Several test data sets are also 

generated from the forward modelling. The synthetic data sets 

(input data, target data and test data) are then normalised to the 

range of [0, 1] by using the mapminmax function in MATLAB, 

to allow the Gaussian activation function to squash all incoming 

data and to make the computer model execution more efficient. 

  Next, the RBFNN will be trained with several training 

iterations to achieve a prescribed mean square error (MSE) 

threshold. The designed network is tested on several test sets, 

which have not been used during the training stage. To review 

this section, the proposed algorithm for the 2-D resistivity 

mapping is summarised as follows: 

1. Define the initial input data space, P, which consists of a set 

of three-column matrices from the (*.dat) file of the forward 

modelling. 

2. Define the initial target data space, T, which consists of a set 

of one-column matrices from the (*.txt) file of the forward 

modelling. 

3. Normalise the input and output of the training data set, and 

define them as P’ and T’. 

4. Fit the RBFNN using P’ and T’ until reaching the prescribed 

MSE threshold. 

5. Define a testing data set, R. 

6. Evaluate the designed network in (4) using the normalised 

testing data sets, R’. 

7. Calculate system error, which is the difference between 

output in (6) and the target testing data. If the error is less than 

another prescribed goal, stop the process and plot the 

inversion results. Otherwise go to step 8. 

8. Set the new iteration number. Add a new input and target data 

set (by changing the anomalous body location and distance 

between electrodes) to the previous training set, and go to step 

3. 

 

 

4.0  RESULTS AND DISCUSSION 

 

4.1 Generation of Synthetic Data 

 
In this example, we evaluate the RBFNN metamodel in inverting 

the 2-D resistivity imaging data generated by using a hybrid 

Wenner-Schlumberger configuration [3]. In this study, in order to 

collect the synthetic data, we assume 36 electrodes of Wenner-

Schlumberger arrays were used with several electrode 

separations: 1 m, 1.5 m, 2 m, 2.5 m, 3 m, 3.5 m and 4 m. The 

medium was homogeneous of 100 Ω.m with the embedded 

anomalous body of 1000 Ω.m, as typically depicted in Figure 2, 

where the location of the buried object was changeable within the 

range of the homogenous medium to generate several inputs and 

target outputs for the training data set. Seven (07) training data 

sets were generated by using the RES2DMOD software to 

provide apparent resistivity values correspondingly as in real-

world measurements. Each data set consists of 240 datum points 

with a possible larger number could be iteratively added to be 

more sufficient to train the mapping. The data set arrangement for 

training and testing is shown in Table 1.  
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Figure 2  Model used to generate synthetic resistivity data set 

 

Table 1  The arrangement of the training and testing data sets (un-normalised) 

Training data sets Test data sets 

i 

Input data set, P 
Target data 

set, T 

i 

Input data set, PR 
Target data 

set, TR 

x-location 

(m) 

z-location 

(m) 

Apparent 
resistivity 

(Ω.m) 

True 
resistivity 

(Ω.m) 
x-location 

(m) 

z-location 

(m) 

Apparent 
resistivity 

(Ω.m) 

True 
resistivity 

(Ω.m) 

1 
1.5 0.075 95.0654 100 1 1.5 0.075 85.0654 100 

2 
2.5 0.075 75.8188 100 2 2.5 0.075 45.8188 100 

3 
3.5 0.075 140.4341 1000 3 3.5 0.075 50.4341 100 

… … … … … … … … … … 

240 … … … … 240 … … … … 

Total number of data for 7 training sets = 1680 Total number of data for each test set = 240 

 

 

  The RBFNN is designed with 3 radial basis centres, added 

one by one until reaching a prescribed error goal, set at 0.001. 

The spread parameter   is finely tuned at 0.3 for best output 

results. Once the training stage has terminated upon reaching the 

mean square error (MSE) goal, the network is tested by using 

other data sets that were not used for training. The time required 

for completing the inversion process (Step 1 to 7 as described 

previously) is about 25 seconds on an INTEL® Core i3 PC. 

Notably, the technique can perform the inversion on the test data 

in only a few seconds without any more training. 

 

4.2  Analysis and discussion 

 

The network performance was verified using several synthetic 2-

D data sets. An example of the results from the synthetic data is 

depicted in Figure 3. The top figure shows in pseudosection the 

apparent resistivity values collected by using finite element 

forward modelling in the RES2DMOD software.  

  The 2D resistivity inversion results are shown in Figure 3(b). 

Resistivity of the actual model, an anomalous body of 1000 Ω.m, 

is shown in Figure 3(c) for comparison. It is obvious that the 

subsurface object can be located by using the proposed method. 

Furthermore, the outer shape of the object is almost correlated to 

the actual model with the dot-line showing the exact location and 

dimension as referred to the actual model. The predicted 

anomalous body has a small blank area and the horizontal 

dimension is slightly wider than the actual dimension, however 

the location of the body is exactly the same.  

  To evaluate the performance of the proposed method, a 

comparison study is included here with results obtained from a 

conventional 2-D resistivity inversion technique based on a least 

square algorithm, available in the RES2DINV software [24] with 

the latest version, RES2DINV ver. 3.59, whereby it is claimed to 

give the inversion closely corresponding to reality.  

 

 
Figure 3  The inversion using synthetic data; (a) Apparent resistivity from 

the forward model, (b) Inversion result using RBFNN metamodel, (c) The 
actual test model 

 

 

  The comparison results are illustrated in Figure 4. There are 

three anomalies involved in this investigation. As can be seen, 

both inversion methods are able to locate correctly the position of 

the anomalies. We also determined the approximate vertical and 

horizontal dimensions of the anomalies, as presented in Table 2. 

The results show that both methods could provide mostly the 

right dimension as compared to the actual parameters, however, 

on average our proposed method contribute an average error of 



119                                                        H. Wahid & A. Ahmad / Jurnal Teknologi (Sciences & Engineering) 69:8 (2014) 115–120 

 

 

20% less than the conventional method using the mentioned 

software. 

 

 
Figure 4  Comparison results (a) Apparent resistivity from the forward 

model, (b) Inversion result using RBFNN metamodel, (c) The actual test 

model (d) Inversion result using RES2DINV ver. 3.59 (least square with 

the smoothness-constrained) 

 
Table 2  Comparison for the dimension from the inversion results (as in 
Figure 4) 

 Methods Horizontal 

dimension 

(m) 

% 

error 

Vertical 

dimension 

(m) 

% 

error 

Anomalous 

A 

RBFNN 1.95 2.63 1.07 23.57 

Conventional 1.72 9.47 1.73 23.57 

Actual 

parameter 

1.90  1.40  

Anomalous 

B 

RBFNN 2.07 0.00 2.47 9.52 

Conventional 1.78 14.01 2.27 16.85 

Actual 

parameter 

2.07  2.73  

Anomalous 

C 

RBFNN 1.61 22.22 1.93 6.76 

Conventional 1.84 11.11 1.87 9.66 

Actual 

parameter 

2.07  2.07  

 

 

5.0  CONCLUSION 

 

We have presented a radial basis function neural network 

metamodel for 2D resistivity mapping used in geophysical 

surveying. In our study, apparent resistivity values from known 

models are used for the inputs and the targets to train the proposed 

network. Testing with synthetic data indicate the ability of the 

proposed approach to converge between inputs and targets in a 

computationally-efficient manner and to exhibit good 

performance in the data inversion. The accuracy and efficiency 

of the proposed method is determined by comparing it with an 

existing conventional method using the least square with the 

smoothness-constrained and commercial software. The 

horizontal and vertical dimensions of the anomalous object, on 

average, are recovered rather accurately. 
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