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ABSTRACT 

Solid particles flow in a pipeline is a common means of transportation in 

industries.  Pharmaceutical industries, food stuff manufacturing industries, cement 

and chemical industries are some of the industries to exploit this transportation 

technique.  For such industries, monitoring and controlling materials flow through 

the pipeline is essential to ensure plant efficiency and safety of the system. The 

pipeline transportation used in this research makes use of electrodynamic sensors 

which are charge to voltage converters.  The process flow data is captured fitting an 

array of 16 such sensors around the circumference of the pipe to capture the inherent 

charge on the flowing solid materials. A high speed data acquisition card 

DAS1800HC is used to interface the sensors to a personal computer which processes 

the data using linear back projection algorithm (LBPA) and filtered back projection 

algorithm (FBPA). Data captured for this purpose is in the range of mass flow rates 

26 g/s to 204 g/s.  A Visual C++ programming language is used to develop an 

application program to compute the image reconstruction algorithms and display the 

tomograms which represent the concentration profiles at a measurement cross-

section of the pipe.  A neural network based flow regime identifier program is 

developed in Matlab environment.  Baffles of different shapes are inserted to 

artificially create expected flow regimes and data captured in this way are used in 

training and evaluating the network’s performance. This research has produced 

filtered back concentration profiles of each flow regimes owing to the technique of 

neural network method of flow regime identification.     
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ABSTRAK 

Aliran partikel pepejal di dalam paip aliran adalah satu cara pengangkutan di 

dalam industri. Ini adalah kerana pengangkutan mampu mengelak pembaziran akibat 

tumpahan dan mengurangkan risiko di dalam mengendalikan bahan-bahan 

merbahaya. Industri farmaseutikal, industri penghasilan bahan makanan, simen, dan 

industri kimia adalah beberapa industri yang menggunakan kaedah pengangkutan 

ini. Untuk industri-industri seperti ini, pengawasan dan pengawalan bahan-bahan 

yang mengalir di dalam paip aliran adalah penting untuk memastikan kecekapan 

plant dan keselamatan sistem tersebut. Pengangkutan paip aliran yang digunakan di 

dalam kajian ini menggunakan penderia elektrodinamik yang merupakan merupakan 

penukar cas kepada voltan. Data aliran proses diambil daripada satu tatasusunan 16 

penderia-penderia yang diletakkan di sekeliling paip untuk merakam sifat cas pada 

bahan-bahan pepejal yang mengalir. Satu kad perolehan data DAS18000HC 

berkelajuan tinggi telah digunakan sebagai pengantaramukaan diantara penderia-

penderia kepada komputer peribadi yang memproses data yang sama menggunakan 

algoritma linear back projection (LBPA) dan algoritma filtered linear back 

projection (FBPA). Bahasa pengaturcaraan Visual C++ digunakan untuk 

membangun satu program aplikasi untuk menghitung algoritma-algoritma 

pembinaan semula imej dan memaparkan tomogram yang mewakili profil tumpuan 

pada satu pengukuran kawasan-keratan rentas paip. Satu rangkaian neural 

berasaskan program pengecam aliran rejim dibangunkan menggunakan persekitaran 

Matlab. Penghadang pelbagai bentuk telah dimasukkan untuk menghasilkan aliran 

rejim jangkaan dan data yang telah dirakam digunakan di dalam latihan dan 

penilaian prestasi rangkaian. Kajian ini telah menghasilkan pembaikan profil 

tumpuan hasil daripada pengecaman rejim aliran menggunakan teknik kaedah 

rangkaian neural. 
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CHAPTER 1 

INTRODUCTION

1.1 An Overview of Process Tomography 

Tomography is a Greek term which stands for cross-sectional picture.  It 

involves obtaining cross-sectional images of a body or a process.  One of the earliest 

applications of tomography is in the field of medicine where a particular plane in a 

human body is imaged using this technique for diagnosis purposes. 

The application of tomographic methods in industries for the purpose of 

better process control, optimization and efficient production is known as process 

tomography.  Though the application of modern tomographic techniques only dates 

back few decades, process tomography has found applications in various industries 

such as chemical, oil, gas, food processing, biomedical, pharmaceuticals and  plastic 

products manufacturing industries. 

The use of process tomography is not limited to only obtaining cross-

sectional image of processes.  It can also be used to obtain velocity profiles and 

mass-flows rate or volume flow rates.  Depending on the sensing mechanism used 

process tomography can be used in processes involving solids, liquids, gases and any 

of their mixtures. 

Electrical tomography is one of the most investigated fields in process 

tomography.  It is non-invasive, cost effective, safe and easy to implement 

technique.  Electrical charge tomography is a system used in imaging particulate 
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flow in pipelines using electrodynamic sensors (charge-to-voltage transducers).  It’s 

a passive transducer where the field is generated by the flowing solid particles.

The motivation for using electrodynamic sensors as the sensing device in 

tomography arises from the fact that many flowing materials pick up charge during 

transportation, primarily by virtue of friction of fine particles amongst themselves

and abrasion on the walls of the conveyor (Cross, 1987). 

Based on the above fact electrodynamic sensors can be used to measure the 

charge on the flowing materials and convert it to voltage so that spatial information

of the flowing material in the cross-section of the conveyor could be obtained. 

In this research a circular array of 16 electrodynamic sensors is fitted to the 

circumference of the conveying pipe to detect the inherent charge on the flowing 

particles.  Each electrodynamic sensor detects the charge on the particles flowing in 

its sensing zone and transforms the sensed charge in the form of corresponding 

electrical signal (voltage) level.  In the same manner all the 16 electrodyanmic

sensors yield the level of sensed signal.  The signals from the array of 

electrodyanmic sensors are conditioned and amplified to a level suitable for data 

acquisition system.  The data acquisition system then converts the simultaneously

captured data to a digital format.  The data acquisition system is used as an interface 

between the sensors and the personal computer (PC) used in data storage and 

processing.  These data are then manipulated using image reconstruction algorithms

to obtain tomographic images in an offline method.  The flow data are also used in 

obtaining flow rates, concentration, size and phase distribution. An overview of 

process tomography block diagram is shown in Figure 1.1. 

Sensor array

Data Capture
Concentration

Profile

Neural
Network
Identifier

100mm

Figure 1.1:  An overview of a Process Tomography System
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1.2 Importance of Research 

Particulate material handling by pneumatic conveying is extensively used in 

many industries such as food stuff processing, pharmaceutical, plastic product 

manufacturing, textiles, paper manufacturing, solids waste treatment and others. 

The importance of research into pneumatic conveying can be viewed from 

the following points. 

1. Safety problems:  hazardous chemical transportation by formal means (road,    

      ships and rail) are risky and could endanger the environment through    

      leakages. 

2. Waste reduction:  spillage in pneumatic conveying can easily be detected and 

taken care of before the waste is significantly large.

3. Pollution control:  many factories release waste into the atmosphere via 

chimneys which could be harmful particulate maters for the environment.  

This situation can be monitored through electrical charge tomography 

techniques.

4. Explosion hazard:  the accumulation of static charge on solid materials being 

conveyed in industries could reach a level that can cause fire.  This situation 

can also be monitored through electric charge tomography technique. 

5. Blockage of conveyor:  unexpected foreign material presence with in the 

conveyor can affect efficiency of transportation which may be detected and 

avoided in time.    



4

1.3 Problem Statement 

Electrical charge tomography is the most suitable technique for imaging of 

solids flow in pneumatic pipelines whenever the solids phase density is low.  There 

are a number of works done in applying electrodynamic tomography system to 

produce tomographic images of solid particles flow in pneumatic pipelines using 

tomographic image reconstruction algorithms.  However, electrodynamic sensors 

being near sensor dominant has affected the accuracy of the resulting tomograms 

calculated using the linear back projection image reconstruction algorithm (section 

3.4.2.1 of chapter 3). 

In order to rectify this drawback of electrodynamic sensors, a second image 

reconstruction algorithm called filtered back projection algorithm (section 3.4.2.2, of 

chapter 3) is introduced.  This algorithm combines filter masks to compensate for the 

lost signal strength for units further away from the sensors.   However a situation 

arises when the conveyed flow regime is different from full flow (uniform particles 

distribution).

The filter masks for different flow regimes are different and therefore prior 

knowledge of flow regime being conveyed is necessary in order to determine the 

right filter mask.  This research investigates artificial neural networks technique of 

flow regimes identification from row sensors output data so that tomograms of better 

accuracy can be obtained.   

1.4 Aims and Objectives of the Research 

The aim of this research is to detect the inherent charge on dry moving solid 

particles using electrodynamic sensors and to provide data of concentration profiles 

to verify the existing mathematical models using neural network as a tool.

The specific objectives of the research are to: 
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1.  Become familiar with process tomography and artificial neural network concepts.  

2.  Design a measurement section for a pneumatic conveyor. 

3.  Test the complete measurement section on the gravity conveyor. 

4.  Measure peripheral pneumatically conveyed particles concentration profiles. 

5.  Simulate four different flow regimes by inserting baffles to obtain training data

     for a neural network to identify flow regimes. 

6.  Generate concentration profiles over the cross-section of the conveyor. 

7.  Identify the flow regimes in a pneumatic conveyor using artificial neural network

     technique.

8.  Make suggestions for future works based on the acquired results.

1.5 The Thesis Outline 

Chapter 1 presents general introduction to tomography and process tomography. 

Chapter 2 presents an overview of different sensing mechanisms suitable for 

measurement of pneumatically conveyed particles. An electrodynamic system is 

proposed and artificial neural network based flow regimes identification is outlined. 

Chapter 3 describes several mechanisms by which solid particles conveying in 

pneumatic pipeline acquire charge.  The working principles of electrodynamic 

sensors are reviewed and the sensitivity models of electrodynamic sensors are 

developed.
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Chapter 4 presents the principles of artificial neural networks and proposes the use of 

back-propagation network for flow regime identification.  Weights and biases 

adaptation equations for the back-propagation network are derived. 

Chapter 5 discusses the overall electrodynamic tomography measurement system.  

The configuration of electrodynamic sensors array, the gravity flow rig, data 

acquisition and storage, the artificial flow baffles and application development are 

described.

Chapter 6 presents the results using electrodynamic sensors, the performance of 

neural network in identifying flow regimes, concentration profiles and tomographic 

images. 

Chapter 7 presents the overall conclusion and suggestion for future research.
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Different solid materials and different particle size materials should be used 

to determine the suitability of the measurement system for different materials 

and sizes. 

Calculating concentration profiles directly from sensors output by using 

neural network techniques (without using image reconstruction algorithms) 

should be considered.
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