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ABSTRACT 

 

Robot localization has been a challenging issue in robot navigation. In recent 

years, there has been increasing interest in topological localization. One popular 

approach for vision based topological localization is the appearance based method, 

where the image can be used for recognition in its basic form without extracting local 

features. The general aim of this work is to develop a room recognition system using 

appearance-based method for topological localization. In this work, the room 

recognition is achieved by matching color histogram of image using the Artificial 

Neural Network. A hardware module and a software module have been developed 

for this project. The hardware module consists of a catadioptric sensor system 

implemented on a mobile platform. The software module encompasses several sub 

modules namely image acquisition; image pre-processing; histogram plotting; 

histogram filtering, sampling and normalization; neural network for offline training 

and testing, and finally real time room recognition. A few experiments have been 

conducted to evaluate the performance of the system and the results have been 

favorable. Testing for suitable network setting was also carried out and a 

recommendable setting was proposed. 
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ABSTRAK 

Lokalisasi robot merupakan satu isu yang mencabar dalam navigasi robot. 

Sejak kebelakangan ini, terdapat perhatian yang meningkat terhadap lokalisasi secara 

topologikal. Salah satu kaedah yang popular bagi lokalisasi topologikal 

menggunakan ‘penglihatan’ adalah melalui pendekatan berasaskan penampilan, di 

mana imej dapat digunakan untuk pengenalan dalam bentuk asas tanpa mengekstrak 

ciri-ciri tempatan. Objektif keseluruhan projek ini adalah untuk menghasilkan satu 

sistem pengenalan bilik yang menggunakan kaedah berasaskan penampilan bagi 

lokalisasi topologikal. Dalam projek ini, pengenalan bilik dicapai dengan 

memadankan histogram warna menggunakan Jaringan Neural Buatan (Artificial 

Neural Network). Satu modul perkakasan dan satu modul perisian telah dihasilkan 

bagi projek ini. Modul perkakasan merangkumi sistem penderia catadioptric yang 

diimplementasikan atas platform bergerak. Modul perisian pula merangkumi 

beberapa sub-modul iaitu pengambilan imej; pra-pemprosesan imej; pemplotan 

histogram; penapisan histogram; pensampelan; normalisasi; jaringan neural untuk 

latihan dan pengujian secara offline; dan akhir sekali, pengenalan bilik secara nyata. 

Beberapa eksperimen telah dijalankan untuk mengevaluasi pencapaian sistem ini dan 

keputusan yang diperoleh adalah memuaskan. Pengujian turut dilaksanakan untuk 

mendapatkan aturan yang bersesuaian dan satu aturan saranan telah dicadangkan.  
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CHAPTER 1 

INTRODUCTION 

 

Autonomous mobile robots designed to move freely in the world have the 

same problems as humans when navigating. The world is a complex environment 

and if robots only move around without ‘looking’ at where their action takes them, 

they might get lost due to the imperfections in their moving mechanisms and the 

environment. The research here therefore, focuses on a topological localization 

strategy that employs vision and neural network for the robot to ‘see’ its 

surroundings and then estimate its own location.   

1.1 Challenges in Mobile Robot Navigation 

In order for a mobile robot to perform its assigned tasks, it often requires a 

representation of its environment, a knowledge of how to navigate in its 

environment, and a method for determining its position in the environment. These 

problems have been characterized by the three fundamental questions of mobile 

robotics, which are “Where am I?”, “Where am I going?” and “How can I get there?’ 

(Leonard  and Durrant-Whyte, 1991).  

 

The first question is one of localization. The robot has to know where it is in 

a given environment based on what it sees and what it was previously told. The 

second and third questions are essentially those of specifying a goal and being able to 

plan a path to achieve that goal. Therefore, finding a robust and reliable solution to 
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the first question of localization is a precursor to answering the remaining two 

questions. This can be related with the example of going into a bookshop. You will 

firstly need to know where you are standing (localization) and where is your 

destination relative to your current position (identifying goal) so that you can plan 

which direction you should take in order to reach your destination (path planning). 

This is why many researchers (Duckett and Nehmzow , 2001; Cox and Wilfong, 

1990; Fox, 1998; Borenstein et al.,1996) maintained that localization is one of the 

most fundamental problems in mobile robotics.  

1.2 An Overview of Robot Localization  

Robot localization is the problem of estimating a robot’s pose relative to a 

map of its environment (Fox et al., 1999). A wide variety of localization methods 

have been proposed and a number of successful laboratory prototypes have been 

developed. Some of these systems have been validated in larger environments, 

generally consisting of enclosed areas within public buildings (Yamauchi and 

Langley, 1997; Weiss and von Puttkamer, 1995; Burgard et al., 1998; Thrun et al., 

2000; Duckett and Nehmzow, 2000) and some attempts have been made for 

localization in outdoor environments (Kweon and Kanade, 1991; Takeuchi and 

Herbert 1998).  

 

The localization issue can usually be categorized as being geometric or 

topological (Andreasson and Duckett, 2004, Ulrich and Nourbakhsh, 2000). 

Geometric approaches attempt to estimate the position of the robot as accurately as 

possible (x, y, θ) with respect to the map’s coordinate system. Topological 

localization gives a more abstract position estimate, for example “This is the coffee 

room”.  

 

The task of localization can again be divided into two sub-problems: position 

tracking and global localization. In position tracking, a robot knows its initial 

position and only has to accommodate small errors in its odometry as it moves (Fox 



 

 

3

et al., 1999). The global localization is the ability to estimate the position of the robot 

without knowledge of its initial location and the ability to relocalize if its position is 

lost (Fox, 1998). Global localization hence, has to solve a much more difficult 

localization problem, that of estimating its position from scratch.  This includes the 

kidnapped robot problem where the robot is all of a sudden transferred or 

‘kidnapped’ to another location without the robot being aware of this.  

 

Some researchers, however, categorize the localization tasks using different 

terms. Yamauchi et al. (1998) divided the localization tasks to that of continuous 

localization and place recognition. Continuous localization is like driving downtown 

without getting lost which is similar to position tracking. In contrast, place 

recognition is like waking up in a hotel room and trying to determine which city one 

is in. In place recognition approaches, accurate coordinates are not needed and thus, 

place recognition approaches are normally used in topological localization.  

 

 In determining its location, a robot needs access to two kinds of information. 

First is the information or map, either gathered by the robot itself or supplied by an 

external source during the training or initialization phase. This map specifies certain 

features of the environment that are time-invariant and thus can be used to determine 

a location. The second kind of information is the navigational information which the 

robot gathers from its sensors during navigation. Generally, when a map or 

information of the environment is available, the robot position is computed thanks to 

a matching technique applied between currently observed part of the environment 

and the global map. 

1.3 Problem Background  

 Over the past few years, there has been tremendous scientific interest in 

algorithms for estimating a robot’s location from sensor data. Many different 

approaches have been introduced to handle various challenges in the robot 
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localization problem. A few challenges have been identified as dynamism of 

environment, noise and errors, computational cost and ease of use.  

 

 A robot may be confronted with the problem of dynamic environment. Due to 

the changes of furniture arrangement, the environment may look different from the 

representation of a robot’s initial map.  This raises the question of how to make a 

robot localization method robust against such dynamic effects. 

 

 A general factor that complicates the robot localization is the existence of 

noise and errors, particularly in the sensor readings. To perceive changes in the 

environment, the robot has to sense repeatedly and often. However, knowledge 

gained via sensing is incomplete, inaccurate and uncertain. One example is the use of 

odometry sensors which count the revolutions that the wheels make while moving 

and turning. The readings can be used to help in estimating the displacement over the 

floor to give an indication of the location of the robot. Due to wheel slippage and 

irregularities of the floor texture, the odometer readings may give inaccurate results. 

With more revolutions, the cumulative error increases.  

 

 Another issue in localization system for robot is computational power. For a 

robot to accurately determine its location, a detailed metric map will be a good input. 

However, this type of maps requires extremely large memory and for the matching 

algorithms to quickly determine a robot’s location in such a detailed map, a very fast 

processing is needed. The computational cost is even higher if the robot is to do real 

time image processing. Often, a two-dimensional map is used to avoid the 

computation and space explosion that a three-dimensional representation may entail 

(Kaelbling et al., 1998; Nourbakhsh et al., 1995; Schultz et al., 1999; Simmons and 

Koenig, 1995). Statistical sampling is also used to alleviate this computational 

burden at the cost of completeness (Dellaert et al., 1999).  

 

 Some approaches for robot localization face the problems in terms of ease of 

use when a robot is transferred to a new domain. It will require a period of 

initialization or retraining. Methods of localization which involve artificial 

landmarks or beacons need a lot of additional engineering effort and modification of 
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the environment when a robot has to change or expand its environment. Localization 

method which employs metric mapping will even need a new set of representation.  

1.4 Project Objectives 

The objective of this work is therefore to design a topological localization 

strategy which can potentially help a robot recognize its surroundings despite the 

dynamism, errors and computational limitations. Strategically, the system should 

require no or little alteration when used in a new domain.  

 

 The objectives of this project are: 

1. To develop a room recognition system using vision sensor and artificial 

neural network 

a. To develop hardware combination for color based sensing. 

b. To develop an algorithm for room recognition using color histogram. 

c. To implement Multi Layer Perceptron (MLP) network as recognition 

engine. 

2. To evaluate the performance of the room recognition system. 

3. To propose a suitable setting for the room recognition system. 

1.5 Outline of the Proposed Approach 

The interest of this work is primarily in the place recognition aspect of the 

topological localization problem. Putting together the issues to be solved, a room 

recognition method employing vision and neural network for robot topological 

localization is introduced. The proposed approach can be outlined as follows:  
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1. Adopting topological map as the world representation. 

2. Room recognition (global localization) using visual information obtained 

from camera. 

3. Image matching using Artificial Neural Network. 

4. Testing and evaluating this combination of sensor and techniques in an 

unmodified indoor environment.  

 

In this approach, the topological representation of the world is chosen 

because creating such map takes little effort as there is no need to measure the 

dimensions of the environment. By nature of their compactness, it has the potential 

for representing environments which are several magnitudes larger than those which 

can be tractably navigated using metric maps. Topological localization uses a graph 

representation that captures the connectivity of a set of features in the environment. 

Nodes of the graph represent locations while arcs represent the connectivity between 

the locations.  The topological map of a section of the P08 Robotics Building is 

shown in Figure 1. This map and section of the building were used during testing. 

 

 

 
 

Figure 1.1 Topological map of the indoor environment 

A robust localization system requires a sensor that provides rich information 

in order to allow the system to reliably distinguish between adjacent locations. For 

this reason, a color web camera is used as the sensor. The images captured during the 

training stage need to be representative of the environment. In order to keep the 

number of necessary reference images low, the ‘fish-eye’ camera set-up which 

provides a 360° circular image of its surroundings is implemented (Greiner and 

Isukapalli, 1994; Betke and Gurvits, 1997). An example of fish-eye field of view 

image is shown in Figure 1.2. 

 

 

 

Research Room Pantry Robotic Lab 



 

 

7

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Sample image of fish-eye field of view 

This vision-based localization system must be trained before it can be used in 

an environment. During training, representative images are captured from the 

environment and associated with corresponding locations. Classification of images is 

done through the Multi Layer back propagation technique. At runtime, the acquired 

image is compared to the map’s reference images. The location whose reference 

image best matches the input image is then considered to be currently visible 

location. Image matching is achieved through the same neural network.  

 

For validation, this localization system is tested in an indoor environment. All 

tests were performed in unmodified environments.  

1.6 Outline of Thesis 

The remainder of this thesis is organized in four main chapters. Chapter 2 

reviews related works on robot localization and existing methods for vision-based 

system focusing on appearance based method. Chapter 3 describes the development 

methodology and guidelines in designing an appearance based room recognition 

system for robot localization. Chapter 4 explains the theory and concept of the 
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appearance based room recognition system design. Chapter 5 describes the hardware 

and software implementation of the system. Chapter 6 presents the experimental 

results of the system performance analysis. Finally, Chapter 7 concludes the thesis 

with summary of contributions and suggestions for future development.  

 

Designing a robot that can navigate and operate in a real world environment 

is a challenging task. The most fundamental competence it should have is the 

localization capability. To localize, a robot needs to have external sensor information 

and be able to give an estimate of its location. Localization is made complicated due 

to a few factors such dynamism of environment, noise and errors, limitations in 

computational resources and the ease of use of the system. Various techniques and 

sensors have been introduced to tackle these issues. In this work, a vision-based 

topological localization system is developed and investigated for an unmodified, 

indoor environment. 
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enhancement, the system can be made to return several fuzzy states of 

answers for Room A – for example, CONFIDENT RIGHT for (0.9, 0.01, 0.0) 

; NOT CONFIDENT RIGHT for (0.4, 0.0,0.0) ; CONFUSED for  (0.4, 0.4, 

0.0) or WRONG for (0.0,0.9,0.0). When in NOT CONFIDENT or 

CONFUSED states, a dynamic voting system can be designed to vote for a 

confident answer to hopefully increase confidence and recognition rate.  

 

4. The aluminium rod which serves as a mounting platform for the webcam, 

reflector ball and shade is generating some occlusion factor in the system. 

The rod can be replaced with a transparent glass cylinder. Ideally, the items 

can be mounted within the transparent glass cylinder to avoid any occlusion 

in the view. Then, the system can be fused with orientation tracking sensors 

such as magnetic compass to determine a robot’s current heading position.  

 

5. The software module can be modified to incorporate multiple color spaces for 

future investigations in color and recognition.  

 

6. Currently, the laptop used for this room recognition work is different from the 

laptop used to control the BeMR in previous work by Yeong (2005). The 

integration of both systems on the same laptop will be excellent to present a 

multi purpose service robot with global localization capability that can be 

controlled with a portable device.  

 

The appearance based room recognition system successfully developed in this 

work offers a partial solution to the problem of mobile robot localization in an 

unmodified indoor environment. Many improvements can still be carried out to 

improve the system with more capabilities and higher accuracy.  
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