

DYNAMIC SCENE OCCLUSION CULLING IN ARCHITECTURAL SCENES

BASED ON DYNAMIC BOUNDING VOLUME

BALDEVE A/L PAUNOO @ BALU

A thesis submitted in fulfilment of the

requirements for the award of degree of

Master of Science (Computer Science)

Faculty of Computer Science and Information Technology

Universiti Teknologi Malaysia

APRIL 2006

 iii

In dedication to my beloved mother, family and friends.

 iv

ACKNOWLEDGEMENT

The author would like to extend his grateful appreciation to all those who

have contributed directly and indirectly to the preparation of this thesis. First of all,

the author would like to extend his gratitude and thanks to Professor Madya Daut bin

Daman for his supervision and efforts in improving the technical content and quality

of this work. The author is also grateful to the Ministry of Science, Technology and

the Innovation (MOSTI) for sponsoring his studies. Thousand thanks to Wong Yin

Fong and my family upon their boundless support, help and encouragement during

this research. The author extends his gratitude to Lee Kong Weng, Saandilian and

Yusrin for their help and support in the course of his work. The author also would

like to express his thanks Mr. Zaprjagaev Alexander who is a freelance graphics

programmer in Tomsk, Russia for his kind assistance in new rendering technology.

 v

ABSTRACT

Visibility algorithms have recently regained attention because of the ever

increasing size of polygon datasets and more dynamic objects in a scene. Dynamic

objects handling makes large polygon datasets impossible to display in real time with

conventional approaches. Therefore, occlusion culling techniques are required for

output-sensitive rendering. Most scenes are displayed with static objects and only a

few use dynamic objects in their visualization. In this thesis, the aim of the research

carried out, is to handle dynamic objects efficiently with faster frame rate display.

This algorithm is implemented using portal occlusion culling and kD-tree, which is

suitable for indoor and architectural scenes. An occlusion culling technique was

developed for handling dynamic objects in static scenes using dynamic bounding

volume. Dynamic objects are wrapped in bounding volumes and then inserted into

spatial hierarchical data structure as a volume to avoid updating the structure of

every dynamic object at each frame. Dynamic bounding volumes are created for each

occluded dynamic object by using physical constraints of that object and are assigned

with a validity period. These bounding volumes and validity periods are later

inserted into kD-tree. The dynamic objects are ignored until the bounding volume is

visible or the validity period has expired. After numerous tests and analysis have

been done, dynamic bounding volume culling shows better performance than portal

culling especially when there are many low speed dynamic objects in the scene.

Dynamic bounding volume culling proved to be efficient in avoiding enormous

calculations of dynamic object’s position thus improves the rendering speed.

 vi

ABSTRAK

Algoritma ketampakan mula mendapat perhatian semula kerana saiz dataset

poligon di dalam suatu pemandangan menjadi bertambah besar dan bilangan objek

dinamik pula bertambah banyak. Adalah mustahil untuk memaparkannya objek

dinamik dalam masa nyata dengan menggunakan teknik yang sedia ada. Oleh yang

demikian, pengabaian pemandangan adalah diperlukan untuk penjanaan lorekan

output yang sensitif. Dalam pemvisulan, kebanyakan pemandangan dipaparkan

menggunakan banyak objek statik berbanding dengan paparan yang menggunakan

bilangan objek dinamik yang sedikit. Dalam tesis ini, matlamat penyelidikan adalah

untuk mengurus objek dinamik dengan lebih efisien beserta keupayaan paparan

kadar kerangka yang cepat. Algoritma yang dicadangkan, sesuai untuk pemandangan

dalaman dan arkitektural, dilaksanakan menggunakan pengabaian pemandangan

portal dan pepohon-kD . Satu teknik pemandangan telah dihasilkan dengan

menggunakan isipadu kekangan dinamik bagi menguruskan objek dinamik dalam

pemandangan statik. Objek dinamik terkandung di dalam isipadu kekangan dan

kemudiannya dimasukkan ke dalam struktur data hierarki sebagai sebuah objek

isipadu. Proses ini bertujuan untuk mengabaikan pengemaskinian struktur data

tersebut dalam setiap objek dinamik pada setiap kerangka. Isipadu kekangan

dinamik yang dihasilkan bagi setiap objek dinamik menggunakan kekangan fizikal

objek tersebut akan dihadkan tempoh jangkahayat. Tempoh jangkahayat dan isipadu

kekangan seterusnya dimasukkan ke dalam pepohon-kD. Objek dinamik akan

diabaikan sehinggalah isipadu kekangan kelihatan atau tempoh jangkahayatnya telah

tamat. Selepas beberapa ujian dan analisis dijalankan, teknik pengabaian

pemandangan isipadu kekangan dinamik menunjukkan prestasi yang lebih baik

berbanding dengan teknik pengabaian pemandangan portal terutamanya apabila

kelajuan objek dinamik adalah rendah. Pengabaian pemandangan isipadu kekangan

juga terbukti lebih efisien dalam mengabaikan pengiraan yang banyak dalam

menentukan posisi objek dinamik dan juga boleh meperbaiki kelajuan lorekan.

 vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 Topic i

 Declaration ii

 Dedication iii

 Acknowledgements iv

 Abstract v

 Abstrak vi

 Table of Contents vii

 List of Tables xi

 List of Figures xiii

 List of Symbols xvii

 List of Appendices xviii

1 INTRODUCTION 1

 1.1 Background 2

 1.2 Motivation 4

 1.3 Problem Statements 5

 1.4 Objectives 6

 1.5 Scopes 6

 1.6 Contributions 7

 1.7 Organization of Thesis 8

2 LITERATURE REVIEW 9

 2.1 Introduction 9

 2.2 Culling Definition 10

 2.3 Point Visibility vs. Region Visibility 12

 viii

 2.4 Conservative Visibility, Approximate

Visibility and Exact Visibility

13

 2.5 Space and Algorithms Classification 14

 2.6 Aspect Graph 14

 2.7 Object Space

2.7.1 Visibility From-Region

 16

16

 2.7.1.1 Cell And Portals 16

 2.7.1.2 Extended Projections 17

 2.7.2 Visibility From-Point 19

 2.7.2.1 Cell and Portals 19

 2.7.2.2 Shadow Culling 20

 2.7.2.3 BSP Tree Culling 21

 2.8 Image Space 23

 2.8.1 Ray Casting 23

 2.8.2 Hierarchical Z-Buffer 23

 2.8.3 Hierarchical Occlusion Map (HOM) 26

 2.8.4 Hardware Assisted Occlusion Culling 27

 2.8.5 OpenGL Assisted Occlusion Culling 28

 2.9 Data Organization and Traversal

2.9.1 Scene Graph and Spatial Database

 29

29

 2.9.2 Spatial Subdivision Structures 29

 2.9.2.1 Bounding Volume

Hierarchy

30

 2.9.2.2 Regular Grids 31

 2.9.2.3 Octrees 32

 2.9.2.4 Loose Octrees 34

 2.9.2.5 Recursive Grids 34

 2.9.2.6 Hierarchical Uniform

Grids

35

 2.9.2.7 BSP-Tree 35

 2.9.2.8 Axis-Aligned BSP 36

 2.10 Current Issues 37

 2.11 Summary 38

 ix

3 METHODOLOGY 40

 3.1 Introduction 40

 3.2 Dynamic Bounding Volumes 41

3.3 Phase 1: Adapting kD-tree for Dynamic

 Bounding Volumes

43

3.4 Phase 2: Dynamic Bounding Volume

 Validity Periods

44

 3.5 Phase 3: Portal Rendering with Dynamic

 Objects

45

 3.6 Dynamic Bounding Volume Algorithm 48

 3.7 Algorithm to Calculate DBV 49

 3.8 Storing Dynamic Object’s Information 50

 3.9 Retrieving Dynamic Object’s Information 50

 3.10 Scene Map Structure 54

 3.11 Reduction of Communication Messages 55

4 IMPLEMENTATION 56

 4.1 Introduction 56

 4.2 Implementation 57

 4.2.1 Map Mesh 57

 4.2.2 Object and Material Linker Module 61

 4.2.3 Dynamic Objects 61

 4.2.4 Dynamic Objects’ Motion 63

 4.2.5 Engine Specifications 64

 4.2.6 Hardware and Software Requirements 65

5 TESTS RESULTS AND ANALYSIS 66

 5.1 Introduction 66

 5.2 Test Bed Setup 67

 5.3 General Occlusion Performance Tests 68

 5.4 Occlusion Culling Tests 69

 x

 5.5 Scene 1 : One Visible Dynamic Object and

 No Hidden Dynamic Object

70

 5.5.1 Test 1 : Number of Polygons in

Dynamic Objects

70

 5.5.2 Test 2 : Dynamic Object’s Speed 72

 5.6 Scene 2 : One Visible Dynamic Object and

 Multiple Invisible Dynamic Object

74

 5.6.1 Test 1 : Number of Polygons in

Dynamic Objects

74

 5.6.2 Test 2 : Number of Dynamic Objects 76

 5.6.3 Test 3 : Dynamic Objects’ Speed 78

 5.7 Scene 3 : Varying Number of Visible and

 Invisible Dynamic Objects

 80

 5.7.1 Test 1 : Number of Polygons in

Dynamic Objects

 80

 5.7.2 Test 2 : Number of Dynamic Objects 82

 5.7.3 Test 3 : Dynamic Objects’ Speed 84

 5.8 Scene 4: Varying Number of Visible and

 Invisible Dynamic Objects and Static

 Objects.

86

 5.8.1 Test 1 : Number of Polygons in

Dynamic Objects

86

 5.8.2 Test 2 : Number of Dynamic Objects 88

 5.8.3 Test 3 : Dynamic Objects’ Speed 90

6 CONCLUSION 92

 6.1 Analysis 92

 6.2 Summary 94

 6.3 Future Works 95

 REFERENCES 97

 Appendix A 101

 xi

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Summary of occlusion culling algorithms 39

4.1 Engine specifications 64

4.2 Hardware requirements 65

4.3 Software requirements 65

5.1 Hardware specifications 67

5.2 Software specifications 68

5.3 Test statistics 69

5.4
Test results for number of polygons in dynamic

objects effect in scene 1

70

5.5
Test results for effect of dynamic object’s speed in

scene 1

72

5.6
Test results for number of polygons in dynamic

objects effect in scene 2

74

5.7
Test results for effect of number of dynamic

objects in scene 2.

76

5.8
Test results for effect of dynamic objects’ speed in

scene 2

78

5.9
Test results for number of polygons in dynamic

objects effect in scene 3

80

5.10
Test results for effect of number of dynamic

objects in scene 3

82

5.11
Test results for effect of dynamic objects’ speed in

scene 3

84

 xii

5.12
Test results for number of polygons in dynamic

objects effect in scene 4

86

5.13
Test results for effect of number of dynamic

objects in scene 4

88

5.14
Test results for effect of dynamic objects’ speed in

scene 4

90

 xiii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Three types of visibility culling – view-frustum

culling, back-face culling and occlusion culling.

 10

2.2 Output-sensitive rendering allows models of

unlimited complexity to be rendered at real-time

rate.

11

2.3 The aspect graph of tetrahedron 15

2.4 The partitioning and the aspect graph for the

tetrahedron

15

2.5 Visibility computations in architectural

environments. (a) In grey: part of the scene visible

from the black cell. (b) A stabbing line (or

sightline) through a sequence of portals.

17

2.6 Extended projection of an occluder and an occludee 18

2.7 Portal rendering in indoor scenes 20

2.8 Relationship of bounding volume to frusta 21

2.9 Three polygons facing light source (viewpoint) and

the corresponding SVBSP tree

22

2.10 The hierarchical Z-buffer algorithm 24

2.11 The hierarchy of occlusion maps 27

2.12 Bounding volume hierarchy 31

2.13 Regular grid 32

2.14 Octree 33

2.15 Recursive grids 34

 xiv

2.16 (a) A binary partitioning of the plane, with lines

denoted by letters and regions by numbers; (b) the

corresponding 2D BSP tree.

36

2.17 kD-tree structure 37

3.1 DBV culling architecture 41

3.2 Dynamic object in bounding volume 43

3.3 kD-tree tree with dynamic bounding volume

(DBV)

43

3.4 Portal culling 46

3.5 Portal rendering with occluded dynamic objects

(red box) and visible dynamic objects (green box)

47

3.6 Data structure needed for the algorithm 48

3.7 DBV is calculated using validity period 49

3.8 DBV is calculated using validity period 50

3.9 Flow chart for dynamic object when validity period

expired

52

3.10 Flow chart for dynamic objects in every frame

before rendering

53

3.11 Scene map structure 54

4.1 Scene map wire frame 58

4.2 Scene map with assigned texture 58

4.3 Sector class 59

4.4 Node class 60

4.5 Portal class 60

4.6 Object and material linker file 61

4.7 Number of polygons in dynamic objects changed

using polygon tessellation.

62

4.8 Dynamic object inserted into the scene 62

4.9 Spline created in 3D modeller 63

 xv

5.1 Number of dynamic objects’ polygons vs. FPS for

scene 1

71

5.2 Number of dynamic objects’ polygons vs. time

elapsed per frame for scene 1

71

5.3
Dynamic objects’ speed vs. FPS for scene 1.

73

5.4 Dynamic objects’ speed vs. time elapsed per frame

for scene 1.

73

5.5 Number of dynamic objects’ polygons vs. FPS for

scene 2.

75

5.6 Number of dynamic objects’ polygons vs. time

elapsed per frame for scene 2.

75

5.7
Number of dynamic objects vs. FPS for scene 2.

77

5.8 Number of dynamic objects vs. time elapsed per

frame for scene 2.

77

5.9
Dynamic objects’ speed vs. FPS for scene 2

79

5.10 Dynamic objects’ speed vs. time elapsed per frame

for scene 2.

79

5.11 Number of dynamic objects’ polygons vs. FPS for

scene 3.

81

5.12 Number of dynamic objects’ polygons vs. time

elapsed per frame for scene 3.

81

5.13
Number of dynamic objects vs. FPS for scene 3.

83

5.14 Number of dynamic objects vs. time elapsed per

frame for scene 3.

83

5.15 Dynamic objects’ speed vs. FPS for scene 3 85

 xvi

5.16 Dynamic objects’ speed vs. time elapsed per frame

for scene 3.

85

5.17 Number of dynamic objects’ polygons vs. FPS for

scene 4.

87

5.18 Number of dynamic objects’ polygons vs. time

elapsed per frame for scene 4.

87

5.19 Number of dynamic objects vs. FPS for scene 4. 89

5.20 Number of dynamic objects vs. time elapsed per

frame for scene 4.

89

5.21 Dynamic objects’ speed vs. FPS for scene 4 91

5.22 Dynamic objects’ speed vs. time elapsed per frame

for scene 4.

91

6.1 Number of dynamic objects’ polygons vs. frame

rate difference.

92

6.2 Number of dynamic objects vs. frame rate

difference.

93

6.3 Dynamic objects speed vs. frame rate difference. 94

 xvii

LIST OF SYMBOLS

S - Subset of polygons

Pn - Polygon

p - Light point

A - Set of polygons in shadow

Rn - Set of polygons in the scene

P - Light surface

 xviii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Rendering Engine Class

 101

CHAPTER 1

INTRODUCTION

3D computer graphics have recently gained great popularity. In addition to

the classical uses of three-dimensional (3D) graphics, such as computer-aided design

(CAD), military simulations and special-effect animation in movies, games and

commercials, new applications are sprouting that are accessible to computer users

worldwide. Since the very beginning, visibility determination has been a major

problem for applications with millions of polygons [4]. Even though graphic

hardware capability has increased tremendously, fast and efficient computation is not

achievable by rendering the whole scene. To achieve the reality illusion, finely-

detailed and smooth scenes must be displayed at a high refresh rate at least 30 frames

per second [7]. But these are contradicting requirements; detailed scenes require

large, complex models and these models take a long time to render, even when

hardware support such as Z-buffering is available. If the scenes are dynamic,

containing moving objects, then this problem become worse because additional time

is needed to update the model to reflect these objects motions. This makes the

required rendering rate hard to attain.

Due to more demanding graphic requirement to render increasing size of

datasets in the scene and more dynamic objects, visibility algorithms have been

revisited by researchers. It is impossible to display these scenes in real time with

conventional approaches. Visibility culling intend at omitting invisible geometry

before actual hidden surface removal is performed. Many of the researches focus on

algorithms for computing tight estimation of visible sets by only drawing visible sets

which the subsets of primitives which contributes at least one pixel of the screen.

 2

Interactive three-dimensional computer graphics and animation with dynamic

objects have gained popularity in 3D game over the last few years. However, their

further acceptance is inhibited for dynamic game scenes by the amount of

computation they involve [4]. If the game scenes are dynamic, containing moving

objects, then additional time is needed to update the model to reflect these objects’

motions. This makes it hard to attain the goal of interactivity in real-time game

which requires images to be rendered at rate of about 30 frames per second. Hence,

unwanted calculation should be ignored with visibility culling before sending to

rendering pipeline.

1.1 Background

Pioneering the work in visibility algorithm includes Jones [13] and Clark

[14]. However, recently, Airey [15], Teller and Sequin [16] and Greene, Kass and

Miller [10] have revisited visibility algorithm and discovered new method to speed

up occlusion culling using object base and image base algorithm.

Plantinga [17] proposed important data structure in computer vision called

scene graph. Aspect graph encodes analytically all the information for efficient

display. However, the worst complexity is high and in three dimensions, it can be

large as O(n9) number of segments. Therefore, it turns out that computing aspect

graph is computationally impractical.

Airey et al. [15] and Teller and Sequin [3, 16] proposed an occlusion culling

algorithm for static architectural scene and developed foundation for the recent

works. This conservative technique needs to be pre-computed to calculate potential

visible sets or PVS. Their technique is suitable for indoor architectural scenes where

rooms inter-connected with another with portal. Their works were further extended

by Luebke and Georges [18]. Instead of region based visibility, they proposed point

based visibility. Luebke and Georges perform on the fly visibility calculations using

 3

depth traversal of the cells using screen space projection of the portals. However, to

develop a dynamic scene, it needs to update hierarchical data structure.

 A similar way to look at the occlusion is shadow generated from a light

source from the viewpoint. Therefore, Hudson et al [19] proposed an approach on

dynamically choosing a set of occluders and computing their shadow frusta, which is

used for culling the bounding boxes of a hierarchy of objects. However, it still needs

to depend on the speed to update hierarchy data structure for dynamic scenes.

Brittner, Havran and Slavik [20] improved the method described by Hudson using

kD-tree. They combined the shadow frusta of the occluders into an occlusion tree.

 Greene [10, 21] uses an octree for object precision and a Z-pyramid for image

precision. The Z-pyramid is a layered buffer with a different resolution at each level.

While the hierarchical Z-buffer algorithm is primarily intended for static scenes,

Greene’s PhD thesis [21] mentions a few ideas for handling dynamic objects.

However, none of them has been implemented or seriously explored. Z-buffer in the

hardware needs to be modified to allow real-time performance.

A similar method with hierarchical Z-buffer was proposed by Zhang [22]. It

decouples the visibility test into an overlap test and a depth test. It also supports

approximate visibility culling where objects that are visible through only a few pixels

can be culled using an opacity threshold. This method needs to preprocess a

database of potential occluders. For dynamic scenes, both the potential occluder set

and hierarchical data structure are omitted and object bounding boxes are used

instead. However, due to the omission of hierarchical data structure, this method is

not output sensitive for increasing size of dynamic models.

Naylor et al. [11, 12] proposed an algorithm that performs output-sensitive

visibility calculation using kD-tree. A kD-tree (axis-aligned binary space

partitioning) tree can represent the scene itself without additional data structure. The

construction of kD-tree tree is very time consuming but it is only constructed once as

 4

preprocessing stage and subsequently used for visibility calculation from many

viewpoints.

1.2 Motivation

Current occlusion culling algorithms scenes [3, 11, 12, 15, 16, 18, 19 22] are

not suitable for dynamic scenes because these algorithms highly depend on spatial

hierarchical data structures and pre-computation. It consumes longer time [35] to

build the spatial hierarchical data structure compared to just render the whole scene

from any viewpoint. The scene structure is built during pre-processing because it

consumes a lot of time and all the polygons in the structure are static. Polygon

datasets cannot be altered in real-time to represent current dynamic position.

Some of the existing algorithms allow the exploitation of temporal coherence

in animation sequences [7]. However, they are restricted to walkthrough animations,

in which the scene is static and only the viewpoint moves through it. If there is any

dynamic object in the scene, data structured that represent the scene will be outdated.

Data structure needs to be modified for every frame to represent dynamic objects’

positions and their movements. Even though it is possible to update the hierarchical

structure, it consumes a huge amount of time. For example, a small movement of a

polygon in a scene which is represented in a BSP tree will cause the whole tree

structure need to be changed. In addition, if this update is not done carefully, it might

use more processing and might results far too much time longer than the normal

rendering of all the objects in the scene. The hierarchical tree update for dynamic

object movement should be avoided especially when they are not even visible to

achieve output sensitive rendering. However, when the dynamic objects are visible,

they should render include them in the scene hierarchical tree.

Obviously, it is impossible to reconstruct the data structure by utilizing

current hardware capability when the dynamic objects move in the scene. More

calculations needed to update the data structure for the scene with dynamic objects.

 5

The data structure should not hold the dynamic objects. The existing data structure

should be updated for the dynamic objects motions, rather than being initialized from

scratch [7].

It will waste time to update the structure for occluded dynamic objects as well

as for visible ones. The update should only be performed in the visible parts of the

data structure to preserve output-sensitivity. Invisible dynamic objects should be

ignored until the dynamic objects in predefined path might visible from the

viewpoint. Most of the scenes are static and only few objects are dynamic.

Therefore, more efficient algorithm should be developed without trading

performance. A mechanism is needed to ignore hidden dynamic objects most of the

time but notified when they might no longer be hidden. Using the proposed

algorithm, real time dynamic scene can be produced using normal personal

computers.

1.3 Problem Statements

Current algorithms are not suitable for dynamic scene occlusion culling

because the data structure used by occlusion culling method is updated to indicate the

dynamic object’s current position. Binary space partition tree data structure is not

fast enough to update in real-time. The update should only be performed if the

objects might be visible. The algorithm should ignore most of the occluded objects

most of the time, but notified when they may be exposed, and displays them as

necessary.

 6

1.4 Objectives

The objectives of this research are as following:

i. To alter hierarchical Axis-Aligned BSP (kD-tree) tree to adapt occlusion

culling of dynamic objects in indoors scene.

ii. To minimize updating the kD-tree structure for every dynamic object at each

frame except when the dynamic objects are visible.

iii. To develop a method that will be able to handle multiple dynamic objects in

the scene, while maintaining the image quality and frame rate.

1.5 Scopes

The scope of this research are as following:

i. Only indoor scenes will be used to test the algorithm.

ii. Maximum number of dynamic objects in the scene will be limited to 10 to

simplify the scene.

iii. The proposed algorithm will be implemented with David P.Luebke and Chris

Georges [18] algorithm. It is an intuitive algorithm ideally suited for

visualization of indoor scenes such as those found in architectural models.

iv. kD -tree [11] will be used as hierarchy data structure for the scene.

v. This algorithm is hardware independent and focused in increasing the

performance in handling dynamic object.

vi. The algorithm is based on the observation that the possible movements of

dynamic objects may be subject to some known physical constraint, which

might be known from physical simulation or by a user interface.

vii. Efficiency of algorithms will be measured frame per second quantitatively by

using fixed amount of polygon in the scene.

 7

1.6 Contributions

As discussed in the research motivation and problem statement, since most of

the spatial hierarchical data structures are hard to update in real-time, they are

unsuitable for dynamic scenes occlusion culling. Therefore, a technique is proposed

in the thesis to adapt dynamic objects in current spatial hierarchical data structure.

Stated here are the research contributions from this algorithm:

i. kD-tree can adapt and handle static and dynamic objects in the same spatial

hierarchical tree.

ii. Updating the trees can be minimized in each frame for dynamic objects, thus

increasing the application’s performance.

iii. Dynamic objects are treated in different manner but still using the same

occlusion culling algorithm as the static scenes. Therefore, there is no need

to develop entirely different occlusion culling technique for dynamic objects.

iv. Using the proposed technique, more efficient application handling dynamic

objects in real-time can be developed. Frame rate can be maintained since

dynamic objects are also are culled.

The algorithm that proposed in this research suitable for the applications that

emphasize on the performance for dynamic virtual indoor environments. Stated here

are the applications that will benefit from this research:

i. Game

First and third person shooter game requires large dataset of polygon to

represent the indoor scenes. Since most of the domestic computer capability

is limited, there is a need to optimise the game to achieve playable

performance to run the game. Therefore this algorithm can be used to

increase the speed of the game together with other optimisation.

 8

ii. Simulation Environment

This algorithm also can be implemented in simulations of indoor environment

such as virtual reality applications while saving computations for other usage.

iii. Film Industry

Rendering models in an animation is a time consuming task. Rendering the

environments can be faster by implementing this algorithm for the indoor

scenes or closely wrapped scenes.

1.7 Organization of Thesis

This thesis consists of six chapters as described below:

i. Chapter 1 briefly introduces the culling methods and their research

background. Current issues and problem statement are also defined.

Objectives and scopes of research are stated clearly. Finally, research

contributions are discussed.

ii. Chapter 2 discusses in details all the techniques available for occlusion

culling and categorized them accordingly. Beside those, spatial hierarchical

trees are also discussed. Comparison for occlusion culling techniques was

done to reveal pros and cons of each technique reviewed.

iii. Chapter 3 explains the research methodologies that have been applied.

Algorithms used for this method are stated clearly.

iv. Chapter 4 describes how DBV culling is implemented in rendering engine.

Beside those, engine specifications and hardware and software requirements

are stated.

v. Chapter 5 shows the test results and analysis for each test. Using three tests

for each scene uses four types of scene to test the algorithm.

vi. Chapter 6 summarizes this research and states future works that can be done.

 97

REFERENCES

1. Appel, A. Some techniques for shading machine renderings of solids. AFIPS

1968 Spring Joint Computer Conf., volume 32, 1968.

2. Sutherland, E., Sproull, R. F and Schumaker, R. A. A characterization of the

hidden surface algorithms. ACM Computer Surveys, March 1974.

3. Coorg, S. and Teller, S. Real-time occlusion culling for models with large

occluders. Proceedings of the 1997 Symposium on Interactive 3D Graphics,

Providence, Rhode Island, ACM SIGGRAPH, Apr. 1997

4. Coden, D., Chrysanthou, Y., Silva, C. T., Durand, F. A. Survey of Visibility

for Walkthrough Applications. ACM Computer Surveys, 2000.

5. Foley, J. D., Dam, A. V., Feiner, S. K., and Hughes, J. F. Computer

Graphics, Principles and Practice, Second Edition. Addison-Wesley,

Reading, Massachusetts, 1990.

6. Sudarsky, O. and Gotsman, C. Dynamic scene occlusion culling. IEEE

Transactions on Visualization and Computer Graphics, January 1999.

7. Sudarsky, O. Dynamic Scene Occlusion Culling. Phd Thesis, Israel Institute

of Technology, January 1998.

8. Myllarniemi, V. Dynamic Scene Occlusion Culling, Computer Graphic

Seminar Spring, Helsinki University of Technology, Spring 2003.

9. Saona-Vazquez, C., Navazo, I. and Brunet, P. The visibility octree. a data

structure for 3D navigation, 1999

10. Greene, N., Kass, M. and Miller, G. Hierarchical z-buffer visibility.

Proceedings of SIGGRAPH 93, 1993.

11. Fuchs, H., Zvi Kedem, and Naylor, B. F. On visible surface generation by a

priori tree structures. Computer Graphics, ACM SIGGRAPH, July 1980.

12. Naylor, B. F. Partitioning Tree Image Representation and Generation from

3D Geometric Models. ACM SIGGRAPH, 1994.

13. Jones, C. B. A new approach to the ‘hidden line’ problem. Computer

Journal, 14(3), August 1971.

 98

14. Clark, J. H. Hierarchical geometric models for visible surface algorithms.

Communications of the ACM, October 1976.

15. Airey, J. Increasing Update Rates in the Building Walkthrough System with

Automatic Model-Space Subdivision and Potentially Visible Set Calculations.

PhD thesis, University of North Carolina, Chappel Hill, 1991.

16. Teller, S. J. and Sequin, C. H. Visibility preprocessing for interactive

walkthroughs. Computer Graphics (Proceedings of SIGGRAPH 91),

25(4):61–69, July 1991.

17. Plantinga, H. Conservative visibility preprocessing for efficient walkthroughs

of 3D scenes. In Proceedings of Graphics Interface ’93, Toronto, Ontario,

Canada, May 1993. Canadian Information Processing Society.

18. Luebke, D and Georges, C. Portals and mirrors: Simple, fast evaluation of

potentially visible sets. In Pat Hanrahan and JimWinget, editors, 1995

Symposium on Interactive 3D Graphics, pages 105–106. ACM SIGGRAPH,

April 1995.

19. Hudson, T, Manocha, D., Cohen. J., Ming Lin, Hoff, K. and Zhang, H.

Accelerated occlusion culling using shadow frusta. In Proceesings of ACM

Symposium on Computational Geometry, 1997.

20. Bittner, J., Havran, V. and Slavik, P. Hierarchical visibility culling with

occlusion trees. In Proceedings of Computer Graphics International ’98,

June 1998.

21. Greene, N. Hierarchical Rendering of Complex Environments. PhD thesis,

University of California at Santa Cruz, June 1995.

22. Zhang, H., Manocha, D., Hudson, T., and Hoff III, K. E. Visibility culling

using hierarchical occlusion maps. In SIGGRAPH ’97 Conference

Proceedings, pages 77–88, Los Angeles.

23. Durand, F., Drettakis G., Jo˜elle Thollot, and Puech, C. Conservative

visibility preprocessing using extended projections. Proceedings of

SIGGRAPH 2000, July 2000.

24. Ivan, E. Sutherland, Sproull, R. F., and Schumacker, R. A. A characterization

of ten hidden-surface algorithms. ACM Computing Surveys, March 1974.

25. Durand, F. 3D Visibility: Analitical Study and Applications. Siggraph’2000

course notes on Visibility. 2000.

 99

26. Airey, J. M., Rohlf, J. H. and Brooks F. P. Jr. Towards image realism with

interactive update rates in complex virtual building environments. Computer

Graphics (1990 Symposium on Interactive 3D Graphics), March 1990.

27. Greene, N. and Kass, M. Error-bounded antialiased rendering of complex

environments. In SIGGRAPH ’94 Conference Proceedings, pages 59–66,

Orlando, Florida, July 1994. ACM Computer Graphics, vol. 28, no. 4.

28. Klosowski, J T., Held, M., Joseph S. B., Sowizral, H. and Zikan, K. Efficient

collision detection using bounding volume hierarchies of k-dops. IEEE

Transactions on Visualization and Computer Graphics, January- March

1998.

29. Severson, K. Visualize Workstation Graphics for Windows NT. HP product

literature.

30. Bartz, D., Meiner, M. and Httner, T. Opengl-assisted occlusion culling for

large polygonal models. Computer & Graphics, 23(5):667–679, 1999.

31. Bartz, D., Meiner, M. and Httner, T. Extending graphics hardware for

occlusion queries in opengl. In Proc. Workshop on Graphics Hardware ’98,

pages 97–104, 1998.

32. Rubin, S. and Whitted, T. A 3-dimensional representation for fast rendering

of complex scenes. Computer Graphics (Proceedings of SIGGRAPH 80),

14(3):110–116, July 1980.

33. Glassner, Andrew. Space subdivision for fast ray tracing. IEEE Computer

Graphics and Applications, 1984.

34. Batagelo, H. C. and Shin-Ting Wu. Dynamic Scene Occlusion Culling Using

a Regular Grid. XV Brazilian Symposium on Computer Graphics and Image

Processing (SIBGRAPH’01), October 2002.

35. Helin, V. Hierarchies for Occlusion Culling. Seminar on Computer Graphic,

Helsinki University of Technology. Spring 2003.

36. Jevans, D. and Wyvill, B. Adaptive voxel subdivision for ray tracing. In

Proceedings of Graphics Interface ’89, pages 164–172, June 1989.

37. Cazals, F., Drettakis, G. and Puech, C. Filtering, clustering and hierarchy

construction: a new solution for ray-tracing complex scenes. Computer

Graphics Forum, 14(3):371–382, August 1995. ISSN 1067-7055.

38. Bentley, J. L. Multidimensional Binary Search Trees Used for Associative

Searching. Communication of the ACM, 18(9), September 1975.

 100

39. Agarwal, P. K., Arge, L. and Vitter, J. S. Bkd-tree: A Dynamic Scalable kd-

tree. Proceedings of SSTD’03, 2003

40. Koenderink J. J. and Doorn A. J. van: The internal representation of solid

shape with respect to vision. Biol. Cybernet. 32, 211-216.

41. Schrocker, G. Visibility Culling for Game Application. Thesis. Institute for

Computer Graphics and Vision, Graz University of Technology, April, 2001.

42. Ranta-Eskola, S. Binary Space Partioning Trees and Polygon Removal in

Real Time 3D Rendering. PhD. Thesis. Computing Science Department,

Uppsala University, 2001

43. Baumker, A. and Dittrich, W. Fully dynamic search trees for an extension of

the BSP model. Proceedings of the eighth annual ACM symposium on

Parallel algorithms and architectures, 233 – 242, 1996

44. Earnshaw, R. A., Chilton, N. and Palmer I. J. Visualization and virtual reality

on the Internet. In Proceedings of the Visualization Conference, Jerusalem,

Israel, Nov 1995.

	Pengesahan kerjasama.pdf
	
	BAHAGIAN A – Pengesahan Kerjasama*
	BAHAGIAN B – Untuk Kegunaan Pejabat Sekolah Pengajian Siswazah

	Judul.pdf
	BALDEVE A/L PAUNOO @ BALU
	

	Acknowledgement.pdf
	ACKNOWLEDGEMENT

