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ABSTRACT 

 
 
 
 

Visibility algorithms have recently regained attention because of the ever 

increasing size of polygon datasets and more dynamic objects in a scene. Dynamic 

objects handling makes large polygon datasets impossible to display in real time with 

conventional approaches.  Therefore, occlusion culling techniques are required for 

output-sensitive rendering.  Most scenes are displayed with static objects and only a 

few use dynamic objects in their visualization. In this thesis, the aim of the research 

carried out, is to handle dynamic objects efficiently with faster frame rate display. 

This algorithm is implemented using portal occlusion culling and kD-tree, which is 

suitable for indoor and architectural scenes. An occlusion culling technique was 

developed for handling dynamic objects in static scenes using dynamic bounding 

volume. Dynamic objects are wrapped in bounding volumes and then inserted into 

spatial hierarchical data structure as a volume to avoid updating the structure of 

every dynamic object at each frame. Dynamic bounding volumes are created for each 

occluded dynamic object by using physical constraints of that object and are assigned 

with a validity period.  These bounding volumes and validity periods are later 

inserted into kD-tree.  The dynamic objects are ignored until the bounding volume is 

visible or the validity period has expired.  After numerous tests and analysis have 

been done, dynamic bounding volume culling shows better performance than portal 

culling especially when there are many low speed dynamic objects in the scene.  

Dynamic bounding volume culling proved to be efficient in avoiding enormous 

calculations of dynamic object’s position thus improves the rendering speed.   
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ABSTRAK 

 
 
 
 

Algoritma ketampakan mula mendapat perhatian semula kerana saiz dataset 

poligon di dalam suatu pemandangan menjadi bertambah besar dan bilangan objek 

dinamik pula bertambah banyak. Adalah mustahil untuk memaparkannya objek 

dinamik dalam masa nyata dengan menggunakan teknik yang sedia ada.  Oleh yang 

demikian, pengabaian pemandangan adalah diperlukan untuk penjanaan lorekan 

output yang sensitif. Dalam pemvisulan, kebanyakan pemandangan dipaparkan 

menggunakan banyak objek statik berbanding dengan paparan yang menggunakan 

bilangan objek dinamik yang sedikit.  Dalam tesis ini, matlamat penyelidikan adalah 

untuk mengurus objek dinamik dengan lebih efisien beserta keupayaan paparan 

kadar kerangka yang cepat. Algoritma yang dicadangkan, sesuai untuk pemandangan 

dalaman dan arkitektural, dilaksanakan menggunakan pengabaian pemandangan 

portal dan pepohon-kD . Satu teknik pemandangan telah dihasilkan dengan 

menggunakan isipadu kekangan dinamik bagi menguruskan objek dinamik dalam 

pemandangan statik. Objek dinamik terkandung di dalam isipadu kekangan dan 

kemudiannya dimasukkan ke dalam struktur data hierarki sebagai sebuah objek 

isipadu. Proses ini bertujuan untuk mengabaikan pengemaskinian struktur data 

tersebut dalam setiap objek dinamik pada setiap kerangka.  Isipadu kekangan 

dinamik yang dihasilkan bagi setiap objek dinamik menggunakan kekangan fizikal 

objek tersebut akan dihadkan tempoh jangkahayat. Tempoh jangkahayat dan isipadu 

kekangan seterusnya dimasukkan ke dalam pepohon-kD. Objek dinamik akan 

diabaikan sehinggalah isipadu kekangan kelihatan atau tempoh jangkahayatnya telah 

tamat. Selepas beberapa ujian dan analisis dijalankan, teknik pengabaian 

pemandangan isipadu kekangan dinamik menunjukkan prestasi yang lebih baik 

berbanding dengan teknik pengabaian pemandangan portal terutamanya apabila 

kelajuan objek dinamik adalah rendah. Pengabaian pemandangan isipadu kekangan 

juga terbukti lebih efisien dalam mengabaikan pengiraan yang banyak dalam 

menentukan posisi objek dinamik dan juga boleh meperbaiki kelajuan lorekan.  
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CHAPTER 1 

 
 
 
 

INTRODUCTION 

 
 
 
 

3D computer graphics have recently gained great popularity.  In addition to 

the classical uses of three-dimensional (3D) graphics, such as computer-aided design 

(CAD), military simulations and special-effect animation in movies, games and 

commercials, new applications are sprouting that are accessible to computer users 

worldwide.  Since the very beginning, visibility determination has been a major 

problem for applications with millions of polygons [4].  Even though graphic 

hardware capability has increased tremendously, fast and efficient computation is not 

achievable by rendering the whole scene. To achieve the reality illusion, finely-

detailed and smooth scenes must be displayed at a high refresh rate at least 30 frames 

per second [7].  But these are contradicting requirements; detailed scenes require 

large, complex models and these models take a long time to render, even when 

hardware support such as Z-buffering is available.  If the scenes are dynamic, 

containing moving objects, then this problem become worse because additional time 

is needed to update the model to reflect these objects motions.  This makes the 

required rendering rate hard to attain. 

 
 

Due to more demanding graphic requirement to render increasing size of 

datasets in the scene and more dynamic objects, visibility algorithms have been 

revisited by researchers. It is impossible to display these scenes in real time with 

conventional approaches.  Visibility culling intend at omitting invisible geometry 

before actual hidden surface removal is performed.  Many of the researches focus on 

algorithms for computing tight estimation of visible sets by only drawing visible sets 

which the subsets of primitives which contributes at least one pixel of the screen.  
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Interactive three-dimensional computer graphics and animation with dynamic 

objects have gained popularity in 3D game over the last few years.  However, their 

further acceptance is inhibited for dynamic game scenes by the amount of 

computation they involve [4].  If the game scenes are dynamic, containing moving 

objects, then additional time is needed to update the model to reflect these objects’ 

motions.  This makes it hard to attain the goal of interactivity in real-time game 

which requires images to be rendered at rate of about 30 frames per second.  Hence, 

unwanted calculation should be ignored with visibility culling before sending to 

rendering pipeline. 

 
 
 
 
1.1 Background  

 
 

Pioneering the work in visibility algorithm includes Jones [13] and Clark 

[14].  However, recently, Airey [15], Teller and Sequin [16] and Greene, Kass and 

Miller [10] have revisited visibility algorithm and discovered new method to speed 

up occlusion culling using object base and image base algorithm.  

 
 
Plantinga [17] proposed important data structure in computer vision called 

scene graph.  Aspect graph encodes analytically all the information for efficient 

display.  However, the worst complexity is high and in three dimensions, it can be 

large as O(n9) number of segments.  Therefore, it turns out that computing aspect 

graph is computationally impractical. 

 
 

Airey et al. [15] and Teller and Sequin [3, 16] proposed an occlusion culling 

algorithm for static architectural scene and developed foundation for the recent 

works.  This conservative technique needs to be pre-computed to calculate potential 

visible sets or PVS.  Their technique is suitable for indoor architectural scenes where 

rooms inter-connected with another with portal.  Their works were further extended 

by Luebke and Georges  [18].  Instead of region based visibility, they proposed point 

based visibility.  Luebke and Georges perform on the fly visibility calculations using 
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depth traversal of the cells using screen space projection of the portals.  However, to 

develop a dynamic scene, it needs to update hierarchical data structure. 

 
 
 A similar way to look at the occlusion is shadow generated from a light 

source from the viewpoint.  Therefore, Hudson et al [19] proposed an approach on 

dynamically choosing a set of occluders and computing their shadow frusta, which is 

used for culling the bounding boxes of a hierarchy of objects.  However, it still needs 

to depend on the speed to update hierarchy data structure for dynamic scenes.  

Brittner, Havran and Slavik [20] improved the method described by Hudson using 

kD-tree.  They combined the shadow frusta of the occluders into an occlusion tree. 

 
 
 Greene [10, 21] uses an octree for object precision and a Z-pyramid for image 

precision.  The Z-pyramid is a layered buffer with a different resolution at each level.  

While the hierarchical Z-buffer algorithm is primarily intended for static scenes, 

Greene’s PhD thesis [21] mentions a few ideas for handling dynamic objects.  

However, none of them has been implemented or seriously explored.  Z-buffer in the 

hardware needs to be modified to allow real-time performance.  

 
 

A similar method with hierarchical Z-buffer was proposed by Zhang [22].  It 

decouples the visibility test into an overlap test and a depth test.  It also supports 

approximate visibility culling where objects that are visible through only a few pixels 

can be culled using an opacity threshold.  This method needs to preprocess a 

database of potential occluders.  For dynamic scenes, both the potential occluder set 

and hierarchical data structure are omitted and object bounding boxes are used 

instead.  However, due to the omission of hierarchical data structure, this method is 

not output sensitive for increasing size of dynamic models.  

 
 

Naylor et al. [11, 12] proposed an algorithm that performs output-sensitive 

visibility calculation using kD-tree. A kD-tree (axis-aligned binary space 

partitioning) tree can represent the scene itself without additional data structure.  The 

construction of kD-tree tree is very time consuming but it is only constructed once as 
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preprocessing stage and subsequently used for visibility calculation from many 

viewpoints. 

 
 
 
 
1.2 Motivation 

 
 
Current occlusion culling algorithms scenes [3, 11, 12, 15, 16, 18, 19 22] are 

not suitable for dynamic scenes because these algorithms highly depend on spatial 

hierarchical data structures and pre-computation.  It consumes longer time [35] to 

build the spatial hierarchical data structure compared to just render the whole scene 

from any viewpoint.  The scene structure is built during pre-processing because it 

consumes a lot of time and all the polygons in the structure are static. Polygon 

datasets cannot be altered in real-time to represent current dynamic position.   

 
 
Some of the existing algorithms allow the exploitation of temporal coherence 

in animation sequences [7]. However, they are restricted to walkthrough animations, 

in which the scene is static and only the viewpoint moves through it.  If there is any 

dynamic object in the scene, data structured that represent the scene will be outdated. 

Data structure needs to be modified for every frame to represent dynamic objects’ 

positions and their movements. Even though it is possible to update the hierarchical 

structure, it consumes a huge amount of time. For example, a small movement of a 

polygon in a scene which is represented in a BSP tree will cause the whole tree 

structure need to be changed. In addition, if this update is not done carefully, it might 

use more processing and might results far too much time longer than the normal 

rendering of all the objects in the scene.  The hierarchical tree update for dynamic 

object movement should be avoided especially when they are not even visible to 

achieve output sensitive rendering. However, when the dynamic objects are visible, 

they should render include them in the scene hierarchical tree.  

 
 

Obviously, it is impossible to reconstruct the data structure by utilizing 

current hardware capability when the dynamic objects move in the scene. More 

calculations needed to update the data structure for the scene with dynamic objects.  
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The data structure should not hold the dynamic objects. The existing data structure 

should be updated for the dynamic objects motions, rather than being initialized from 

scratch [7].   

 
 
It will waste time to update the structure for occluded dynamic objects as well 

as for visible ones.  The update should only be performed in the visible parts of the 

data structure to preserve output-sensitivity.  Invisible dynamic objects should be 

ignored until the dynamic objects in predefined path might visible from the 

viewpoint.  Most of the scenes are static and only few objects are dynamic.  

Therefore, more efficient algorithm should be developed without trading 

performance. A mechanism is needed to ignore hidden dynamic objects most of the 

time but notified when they might no longer be hidden.  Using the proposed 

algorithm, real time dynamic scene can be produced using normal personal 

computers.  

 
 
 
 
1.3 Problem Statements 

 
 

Current algorithms are not suitable for dynamic scene occlusion culling 

because the data structure used by occlusion culling method is updated to indicate the 

dynamic object’s current position.  Binary space partition tree data structure is not 

fast enough to update in real-time.  The update should only be performed if the 

objects might be visible.  The algorithm should ignore most of the occluded objects 

most of the time, but notified when they may be exposed, and displays them as 

necessary.  

 
 
 

 



 6

1.4 Objectives 

 
The objectives of this research are as following: 
 

i. To alter hierarchical Axis-Aligned BSP (kD-tree) tree to adapt occlusion 

culling of dynamic objects in indoors scene. 

 
ii. To minimize updating the kD-tree structure for every dynamic object at each 

frame except when the dynamic objects are visible. 

 
iii. To develop a method that will be able to handle multiple dynamic objects in 

the scene, while maintaining the image quality and frame rate. 

 
 
 
 
1.5 Scopes  

 
The scope of this research are as following: 
 

i. Only indoor scenes will be used to test the algorithm.  

 
ii. Maximum number of dynamic objects in the scene will be limited to 10 to 

simplify the scene.  

 
iii. The proposed algorithm will be implemented with David P.Luebke and Chris 

Georges [18] algorithm.  It is an intuitive algorithm ideally suited for 

visualization of indoor scenes such as those found in architectural models.   

 
iv. kD -tree [11] will be used as hierarchy data structure for the scene. 

 
v. This algorithm is hardware independent and focused in increasing the 

performance in handling dynamic object.  

 
vi. The algorithm is based on the observation that the possible movements of 

dynamic objects may be subject to some known physical constraint, which 

might be known from physical simulation or by a user interface.  

 
vii. Efficiency of algorithms will be measured frame per second quantitatively by 

using fixed amount of polygon in the scene. 
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1.6 Contributions 

 
 

As discussed in the research motivation and problem statement, since most of 

the spatial hierarchical data structures are hard to update in real-time, they are 

unsuitable for dynamic scenes occlusion culling.  Therefore, a technique is proposed 

in the thesis to adapt dynamic objects in current spatial hierarchical data structure. 

Stated here are the research contributions from this algorithm: 

 
i. kD-tree can adapt and handle static and dynamic objects in the same spatial 

hierarchical tree. 

 
ii. Updating the trees can be minimized in each frame for dynamic objects, thus 

increasing the application’s performance.   

 
iii. Dynamic objects are treated in different manner but still using the same 

occlusion culling algorithm as the static scenes.  Therefore, there is no need 

to develop entirely different occlusion culling technique for dynamic objects. 

 
iv. Using the proposed technique, more efficient application handling dynamic 

objects in real-time can be developed.  Frame rate can be maintained since 

dynamic objects are also are culled.  

 
The algorithm that proposed in this research suitable for the applications that 

emphasize on the performance for dynamic virtual indoor environments.  Stated here 

are the applications that will benefit from this research: 

 
i. Game 

First and third person shooter game requires large dataset of polygon to 

represent the indoor scenes.  Since most of the domestic computer capability 

is limited, there is a need to optimise the game to achieve playable 

performance to run the game.  Therefore this algorithm can be used to 

increase the speed of the game together with other optimisation. 
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ii. Simulation Environment 

This algorithm also can be implemented in simulations of indoor environment 

such as virtual reality applications while saving computations for other usage. 

 
iii. Film Industry 

Rendering models in an animation is a time consuming task.  Rendering the 

environments can be faster by implementing this algorithm for the indoor 

scenes or closely wrapped scenes. 

 
 
 
 
1.7 Organization of Thesis 

 
 

This thesis consists of six chapters as described below: 

 
i. Chapter 1 briefly introduces the culling methods and their research 

background.  Current issues and problem statement are also defined. 

Objectives and scopes of research are stated clearly.  Finally, research 

contributions are discussed. 

 
ii. Chapter 2 discusses in details all the techniques available for occlusion 

culling and categorized them accordingly.  Beside those, spatial hierarchical 

trees are also discussed.  Comparison for occlusion culling techniques was 

done to reveal pros and cons of each technique reviewed. 

 
iii. Chapter 3 explains the research methodologies that have been applied. 

Algorithms used for this method are stated clearly.  

 
iv. Chapter 4 describes how DBV culling is implemented in rendering engine.  

Beside those, engine specifications and hardware and software requirements 

are stated. 

 
v. Chapter 5 shows the test results and analysis for each test.  Using three tests 

for each scene uses four types of scene to test the algorithm. 

 
vi. Chapter 6 summarizes this research and states future works that can be done. 
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