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ABSTRACT 

 

 

Spin waves theory is one of important concept in surface physics study. Its 

concept becomes a method to study the low-temperature properties of magnetic 

materials with ordered magnetic moments. In this study, our scope will be on the 

discussion of spin wave theory at ferromagnetic overlayer. Green’s function is used to 

find a mathematical model of simple one overlayer system for ferromagnetic material. 

From the model, the density of states (DOS) of spin waves is studied according to their 

exchange interactions at the surface. The surface softened effect will be taken into 

consideration to see any significant impact on different ratio of surface exchange 

integral values. 
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    ABSTRAK 

 

 

Teori gelombang spin adalah satu konsep yang penting dalam kajian fizik 

permukaan. Konsep ini menjadi cara untuk mengkaji sifat bahan magnet pada suhu 

rendah dengan momen magnet tersusun. Dalam kajian ini, skop kita adalah 

perbincangan tentang teori gelombang spin pada lapisan tambahan Ferromagnet. Fungsi 

Green di gunakan untuk mendapatkan model matematik mudah untuk system lapisan 

tambahan untuk bahan ferromagnet. Dari model ini, ketumpatan keadaan gelombang 

spin akan di kaji berdasarkan kepada interaksi tukarganti pada permukaan. Kesan 

perbandingan nisbah nilai tukarganti akan di pertimbangkan untuk jika terdapat kesan 

pada perbezaan nisbah di nilai interaksi tukarganti.     
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CHAPTER 1 

 

 

RESEARCH FRAMEWORK 

 

1.1 Introduction 

 

In solid state physics, a crystal can be defined as a regular, ordered arrangement 

of atoms over a large scale. The atoms may be of a single type or the repetition of a 

complex arrangement of different types of atoms. The crystal can be thought of as 

consist of two separate parts: The lattice and the basis. The lattice is an ordered 

arrangement of points in space, while the basis consists of simplest arrangement of 

atoms which is repeated at every point in the lattice to build up the crystal structure. 

Many crystals have an ordered magnetic structure.  This means that in the absent of an 

external field, the mean magnetic moment of at least one of the atoms in each unit cell of 

the crystal is non-zero. These magnetic moments interact to give cooperative magnetic 

phenomena like ferromagnetism in situations where these are a large number of atoms 

together in solids. 

Besides, the mean magnetic moment of all Ferromagnetic material has the same 

orientation and polarity provided that the temperature of the ferromagnetic material does 

not exceed a critical value, which is called Curie temperature. The Curie temperature Tc 

is the temperature above which the spontaneous magnetization vanishes (Kittel.C.,1998). 

This implies an existence of an internal field of more accurately the atomic field. The 

field originates from quantum mechanical interactions between electrons. The magnetic 
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order in ferromagnetic material is the result of correlation between the directions of the 

electron spins on individual atoms. This correlation is in turn due to the fact that the 

space symmetry of the wave function depends on the magnitude of the resultant spin of 

the system of electron. 

Nowadays, as the technology has become the backbones of human’s life, 

magnetic material plays an important role in human’s life. The applications of magnetic 

material can be seen through the interplay of magnetism in branches of physics and 

technology such as in electrical appliances, industrial machineries, business, 

communication appliances, transportation, medical technologies and further knowledge 

research and development. 

Magnetism is an example of how advancement in science could shape future 

technologies for human being. Although the phenomenon was known from ancient times 

and important development in its understanding came in nineteenth century, it was only 

with the advancement of quantum mechanics in the late 1920’s that the full 

understanding of the magnetic properties of solids was achieved. From that 

understanding it has been possible to design and use new magnetic materials which are 

fundamental for technology advancement.  

Started from the ancient world until recent technological development, 

magnetism has been a mysterious, almost magical phenomenon. The miners who 

obtained the ore to underpin the iron age were familiar with the extraordinary properties 

of one component of their product. This substance which we call magnetite, derived 

from its ancient Greek name, it is known to be a special oxide of iron. The piece of this 

material would attract or repel each other depending on the way in which they were 

oriented, and if suspended freely appeared to align relative to the north/south axis of the 

earth. The fact that this direction coincide with the polester suggested that heavenly 

forces were at play and let to it being characterized as a lodestone. Moreover, it was 

found that these properties could be transmitted to metallic iron either by rubbing it with 

lodestone or working it in a special way but these properties were unique to these 

materials and were not found in other rocks or in metals such as silver and gold. (Dan 

Wei,2008) 
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Magnetic phenomenon had been detected and researched since the early time of 

human civilization. This field is the second oldest research field in the world (Howson, 

1994). The first magnetic effect was found with the discovery of a mineral magnetite 

material. This material was named lodestone. The material has been utilized for basic 

components in compass which function as reference for North-South direction. Since 

then, the research in magnetism never stops to decipher more properties and behavior of 

this mysterious material. The first scientific research on magnetism was done by an 

English scientist, William Gilbert (1540-1603) who published a book named De 

Magnete. He had carried out various type of experiment to study the properties of 

magnetic materials and finally he made a conclusion that the earth itself is a giant 

magnet which has north and south pole (Jorgensen, 1996). In 19 century, the scientists 

have found the relation of magnet and electricity. Since this great discovery, the research 

of electromagnetism has become very popular topic and expanded vastly until it gives 

impact on industrial evolution in Europe. The creation of electric generator and electric 

motor has become a cornerstone of industrial advancement.  

Research and development activity in magnetism never stop. In 20th century, 

scientists discovered the electrons and atoms in the magnet from the view of quantum 

mechanics. The magnetic properties of the atom and molecules had been an interest to 

the researches. This modern quantum physics explained that the two major effects which 

contribute to the magnetism of an atom are the electron spin and the movement of 

electron in the orbital. From this understanding, new field of research created. It is called 

surface magnetism. This field focuses on the thermodynamics properties variance at the 

surface of the material. 

By comparison, the research in surface magnetism is still new. In brief, magnetic 

surface waves are excitation of the transverse component of the magnetization, whose 

amplitude is localized near the surface of a magnetically ordered system. These waves 

are characterized by wave vector k|| parallel to the surface, and one or more (sometimes 

complex) attenuation constants, which describe the excitation amplitude as a function of 

distance into the crystal normal to the surface. 
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Magnetic surface waves are predicted by both microscopic and macroscopic 

theories. In the microscopic Heisenberg theory, surface spin waves occur because of 

abrupt changes in the exchange interactions at and near the surface. In macroscopic 

magnetostatic theory, they are associated with shape dependent demagnetization fields. 

In general, dipolar, exchange, crystal orientation, applied magnetic field orientation, size 

and shape effects influence the magnetic surface wave dispersion (Shamsuddin 

Ahmad,1990) 

The name surface magnon or surface spin wave is used for surface waves for 

which the exchange interaction is the dominant energy at low temperature, T=0. Surface 

spin waves of ferromagnets have been the subject of extensive study. 

 

1.2 Research Background 

Recently, the study of ferromagnetic surface and interface has become the field 

of interest to many physicists, mathematicians and industrialist. The application of 

magnetism has become the cornerstone of new technology discovery. Generally, there 

are three types of magnetic materials which are ferromagnet, antiferromagnet, 

paramagnet and diamagnet. Most of surface magnetism researches are interested in 

ferromagnets because of its vast application in technology. 

Ferromagnetism is the basic mechanism by which certain materials form 

permanent magnets and exhibit strong interactions with magnets; it is responsible for 

most phenomena of magnetism encountered in everyday life for example, electric motor 

operation. 

The attraction between a magnet and ferromagnetic material is the quality of 

magnetism first apparent to the ancient world, and to us today. Ferromagnetism leads the 

study of spin waves. In terms of the history of solid state physics, the concept of spin 

waves has been established a long time ago, starting from 1930 by Bloch’s work but in 

the past the ideas have generally proved to be of theoretical rather than of experimental 

interest. However, recently results of experimental work demonstrate that spin waves 
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really do exist in magnetic materials and that they are more than merely a mathematical 

entity. The spin wave theory is a method for investigating low temperature properties of 

magnetic materials with ordered magnetic moments. The method consists essentially in 

the description of low-lying energy levels of a system of an enormous number of 

strongly interacting spin moments in terms of spin waves or magnons. 

The spin of an electron, combined with its orbital angular momentum, results in a 

magnetic dipole moment and creates a magnetic field. The classical analogue of 

quantum-mechanical spin is a spinning ball of charge but quantum has distinct 

differences, such as the fact that it has discrete up and down states that are not described 

by a vector; similarly for orbital motion, whose classical analogue is a current loop. In 

many materials specifically, those with a filled electron shell, however, the total dipole 

moment of all the electrons is zero that is the spins are in up or down pairs. Only atoms 

with partially filled shells (i.e., unpaired spin) can experience a net magnetic moment in 

the absence of an external field. Ferromagnetic materials contain many atoms with 

unpaired spins. When these tiny magnetic dipoles are aligned in the same direction, they 

create a measurable macroscopic field. 

These permanent dipoles often called simply “spins” even though they also 

generally include orbital angular momentum tend to align in parallel to an external 

magnetic field, an effect called paramagnetism. A related but much weaker effect is 

diamagnetism, due to the orbital motion induced by an external field, resulting in a 

dipole moment opposite to the applied field. Ferromagnetism involves an additional 

phenomenon, however the dipoles tend to align spontaneously, without any applied 

field. This is a purely quantum-mechanical effect.   

According to classical electromagnetism, two nearby magnetic dipoles will tend 

to align in opposite directions (which would create an antiferromagnetic material). In a 

ferromagnet, however, they tend to align in the same direction because of the Pauli 

Principle tow electrons with the same spin cannot also have the same position, which 

effectively reduces the energy of their electrostatic interaction compared to electrons 

with opposite spin. Mathematically, this is expressed more precisely in term of the spin-
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statistics theorem because electrons are fermions with half-integer spin, their wave 

functions are antisymmetric under interchange of particle positions. This difference in 

energy is called the exchange energy. (Jiles D.,1998).To study surface ferromagnetism, 

we have to use Green function. Green function will give a better calculation in 

ferromagnetic surface and overlayer since it is more understandable. 

 

1.3 Problem statement 

This research will study the density of state at one overlayer semi infinite ferromagnet 

substrate by considering only nearest neighbor atom. The research also will focus on the 

soften effect of exchange integral of 
J

J  .   

1.4 Research Objectives 

This study embarks on the following objectives: 

1.4.1 To derive a mathematical model for one overlayer ferromagnet  

1.4.2 To find the density of state (DOS) of spin waves at semi-infinite surface 

of ferromagnet and investigate the softened effect 

 

1.5 Scope of research 

 This study uses the Heisenberg Model. An assumption has been made that is the 

electrons of the atom in ferromagnetic materials are moving within their atoms. This 

study only considers the nearest atoms will affect the density of states (DOS) of spin 

waves. 

In this study, Green function is applied to explore the properties of density of 

states (DOS) of spin waves. We consider the spin waves where their excitations only 

exist at low temperature. If the total number of spin waves present in a system is 
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relatively small, and this so at low temperature, interactions between spin waves are 

insignificant and thus low-lying energy eigenvalues of the system are additively 

obtained from the energy of the spin waves. If the energies of free spin waves and their 

mutual interactions are known, it is possible to calculate with accuracy the 

thermodynamic properties of the system at low temperature such as the spontaneous 

magnetization. At low temperature, only long-wavelength spin waves will excite 

thermally. 

Generally, spin waves theory can be discussed based on two mutually exclusive 

model: the localized moment model (Heisenberg Hamiltonian model) and the band or 

itinerant model (Hubbard Hamiltonian model). In the Heisenberg model, 

ferromagnetism properties are assumed to be affected by localized electrons at each 

atom in the crystal where the electrons move locally at one significant ion. On the other 

hand, in Hubbard model, the electron are said to move freely from one ion to another in 

the narrow energy band. It is found experimentally that the d-electron I transition metals 

have properties of both itinerant model and localized model. However, for long-

wavelength spin waves we can map the spin wave problem for a metallic ferromagnet 

described by the itinerant model onto an equivalent problem described by Heisenberg 

model of a ferromagnetic insulator (Mathon, et.al. 1994). Since we are only interested in 

long-wavelenght spin waves, we shall assume throughout this thesis that the Heisenberg 

model is applicable. 

 

1.6 Significant of Research 

The purpose of this study is to find the density of states of spin waves at 

ferromagnet surface and which contribute to the determination of temperature 

dependence of magnetization according to exchange interactions. The result obtained 

from this study will enrich the technical reports, references and reading material in the 

field of surface physics. The better understanding in surface magnetization will help the 

industry to enhance the quality of magnetic products. Experts believe that one day tiny 

magnets could be implanted on a computer central processing unit (CPU) chip because 
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system data could be recorded in magnets. Consequently, computer would never need to 

boot up. Therefore this research is very important in order to explore the better 

properties of ferromagnetic surface.     

 

1.7 Thesis Layout 

In chapter one, research framework will be discussed. The brief introduction of 

this research contains the important explanation of ferromagnetic surface and overlayer. 

This chapter also includes the objectives, scope, significance and thesis layout. 

In chapter two, the in concept of magnetism and physics of solid state material 

will be studied in detail. Furthermore, the Heisenberg model of ferromagnetism will be 

explored in this chapter since this topic is very useful for the next chapter. This chapter 

also covers other important topics that will be used in the next chapter to give the first 

view of what this research is all about. 

Chapter three will start with the brief description of ferromagnetism. Then it is 

followed by explanation of spin waves theory. Furthermore, this chapter will also cover 

the topic of Green function that will be applied in the discussion of spin waves theory in 

infinite and semi-infinite ferromagnet Heisenberg crystal. 

Chapter four will explain Green function derivation of the ferromagnetic system 

in one layer. The calculation also will lead to density of state (DOS) equations for semi 

infinite and the softening effect will be taken into consideration to see how difference in 

exchange integral ration could affect the density of state of a system. 

Chapter five will discuss the result and conclusion of the research findings.  
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