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ABSTRACT

A mathematical model of a generalized Power-law blood flow through a

tapered artery with an overlapping stenosis is considered. The flow is assumed to

be two-dimensional, unsteady, laminar, incompressible and axisymmetric. The artery

is considered to be elastic and time-variant due to the pulsatile flow contributed by

the pumping of heart. The continuity equation and momentum equation are derived in

the cylindrical coordinate system. Then the radial coordinate transformation is used

to transform the equations and boundary conditions in terms of radius of lumen before

they are solved numerically using a finite difference scheme. Numerical results obtained

show that the blood flow characteristics such as the velocity profiles, flow rate, resistance

and wall shear stress are significantly affected by the taper angle of artery, severity of

stenosis and time-variant nature of artery. As the taper angle increases, both axial

velocity and flow rate increase, while resistive impedance and wall shear stress decrease.

However, the radial velocity may increase or decrease with taper angle, depending on

radial distance and time. In constrast, increasing the level of stenosis causes the axial

velocity and flow rate to decrease, and resistance and wall shear stress to increase. As

time progresses, the values of axial velocity, flow rate and resistance decrease during the

first phase of cardiac cycle and increase during the second phase. Radial velocity and

wall shear stress exhibit different behavior from other flow characteristics. The value

of wall shear stress increases during the first phase and decreases during the second

phase of cardiac cycle. The value of radial velocity decreases for all time.
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ABSTRAK

Model matematik bagi aliran darah bercirikan model ‘Power-law’ umum melalui

arteri yang mengembang dan menirus dengan stenosis bertindih dipertimbangkan.

Aliran ini dianggap sebagai dua dimensi, tidak mantap, lamina, tidak boleh mampat

dan simetri pada paksi. Arteri dianggap sebagai elastik dan berubah mengikut masa

disebabkan oleh aliran darah yang bergantung kepada denyutan jantung. Persamaan

keselanjaran dan persamaan momentum diperolehi dalam sistem koordinat silinder.

Kemudian transformasi koordinat jejarian digunakan untuk mengubah persamaan

dan keadaan sempadan dalam bentuk radius lumen sebelum diselesaikan secara

berangka menggunakan skema beza terhingga. Keputusan berangka yang diperolehi

menunjukkan bahawa ciri-ciri aliran darah seperti profil halaju, kadar aliran, rintangan

dan tegasan ricih dinding secara ketara dipengaruhi oleh sudut tirus arteri, tahap

stenosis dan sifat arteri yang berubah mengikut masa. Seiring dengan peningkatan

sudut tirus, kedua-dua halaju paksi dan kadar aliran meningkat, manakala rintangan

dan tegasan ricih dinding menurun. Walau bagaimanapun, halaju jejarian meningkat

atau menurun dengan sudut tirus, bergantung kepada jarak jejarian dan masa.

Sebaliknya, peningkatan tahap stenosis menyebabkan halaju paksi dan kadar aliran

berkurangan, dan rintangan dan dinding tegasan ricih meningkat. Seiring dengan

pertambahan masa, nilai halaju paksi, kadar aliran dan rintangan menurun semasa

fasa pertama kitar kardiak dan meningkat semasa fasa kedua. Halaju jejarian dan

tegasan ricih dinding mempamerkan tingkah laku yang berbeza dari ciri-ciri aliran

yang lain. Nilai tegasan ricih dinding meningkat semasa fasa pertama dan berkurangan

semasa fasa kedua kitar kardiak. Nilai halaju jejarian berkurangan sepanjang tempoh

tersebut.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The circulatory system, also known as cardiovascular system, consists of the

heart, blood vessels and blood. It is a very crucial human system that any abnormality

can leads to malfunction of organs or other body system which in turns cause more

serious physiological problems and death. In order to understand the reason of vascular

diseases, many experimental and numerical analyses have been carried out to investigate

the blood flow through different parts of circulatory system. However, a special

attention has been given on study of blood flow in arteries.

The arteries are one of the three major types of blood vessels, other than

capillaries and veins. Arteries are the high-pressure blood vessels that transport blood

from the heart, through increasingly small blood vessels; smaller arteries, arterioles, and

capillaries. The role of systemic arteries to carry oxygenated blood is well known that

many people mistakenly think of arteries only as vessels that carry oxygenated blood.

This is not true since the blood flowing through the pulmonary artery is deoxygenated

and the blood flowing through the pulmonary vein is oxygenated. A more appropriate

distinction between arteries and veins is that arteries carry blood at a relatively higher

pressure than the pressure within veins [1].

Because of that, the structure of an artery is different from the vein. An

artery is composed of three layers. Each layer has its own functions in blood vessel
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mechanics and transport phenomena. The innermost layer, tunica intima consists

of a thin monolayer of endothelial cells that line the inner surface of the vessel.

Their anatomical location causes these cells to be subjected to large variations in

stress and strain. The middle layer, tunica media is comprised of alternating layers

of interconnected smooth muscle cells and elastic lamellae. The outermost layer,

tunica adventitia, consists of loose, more organized fiberous connective tissue and may

have less influence on mechanics [2]. The inside of the vessel where the blood flows

is called lumen of an artery. Figure 1.1 below illustrates the normal layers of an artery.

Figure 1.1: Normal layers of artery. This figure is from [3].

The normal condition of arteries and blood flow can be affected by vascular

diseases. One of the most common vascular diseases that cause serious morbidity

and death is atherosclerosis. Atherosclerosis is a disorder characterized by progressive

abnormal narrowing and occlusion of the lumen of artery. The narrowing is caused by

obstruction or stenosis, which is formed by deposition of fatty substances, cholesterol,

cellular waste products, calcium, and fibrin in the inner layer of an artery. As the

deposition continues to accumulate, it will build up into plaque. If a piece of plaque

breaks away, it can cause bleeding into the plaque. The formation of thrombus (blood

clots) around the plaque may cause the condition to get worse.

As a result, it increasingly disrupts the blood flow or completely blocks the flow

of blood to organs, body tissues and structures. It is particularly dangerous in the

coronary and carotid arteries due to the critical oxygen requirement of the heart and
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brain. The carotid arteries provide blood to the brain, while coronary arteries provide

blood to the heart. When the blood supply is limited, patients can suffer stroke and

heart attack, respectively. If renal arteries that supply blood to the kidneys are severely

obstructed, there is a serious risk of developing chronic kidney disease [1, 4]. Stenosis

also can cause an increase in the wall stiffness or a decrease in compliance of blood

vessels [1], impairing the function of the vessel in transporting blood effectively.

Many studies suggest that diseases related to abnormality occurring in blood

vessel appear to be strongly influenced by hemodynamics. It is widely accepted that

the hemodynamic concept of atherosclerosis considers the laws of fluid dynamics as the

primary factor in the mechanisms development of atherosclerosis. Regions experiencing

relatively lower levels of wall shear stress and regions experiencing oscillatory flow

reversal are believed to have higher tendency to form stenosis. It is deduced that

regions near branching, bifurcation junctions and curvature are common sites for the

formation and development of atherosclerosis [5, 6, 7, 8]. In addition, investigations

have shown that the flow behavior in the stenosed artery is quite different than one in

the normal arteries.

Figure 1.2: Example of presence of stenosis in artery. This figure is from [9].

1.2 Problem Statement

Realizing that the initiation and progression of vascular diseases are strongly

influenced by the characteristics of the blood, the flow as well as the vessels, extensive

studies have been done by researchers to acquire more knowledge on flow parameters

such as velocity, flow rate, pressure drop and shear stress. By understanding the
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fluid mechanics aspects of arterial stenoses, medical practitioners and bio-medical

engineers can design better bio-medical instruments and use more effective approaches

in treatment and diagnosis of diseases. The significance of studying the problem which

affects the worldwide community motivates the current study of blood flow in artery. In

this research, we seek to understand the properties of moving blood, the characteristics

of the flow and the effect of stenoses on the flow.

1.3 Objectives of Study

The main aim of the study is to develop a mathematical model for non-

Newtonian blood flow in a stenosed artery. In particular, the objectives are:

(i) to derive the governing equations of blood flow in terms of pressure and viscous

shear stress;

(ii) to construct the geometry of an overlapping stenosis mathematically;

(iii) to solve the governing equations numerically using finite difference method;

(iv) to analyse the velocity profile, flow rate, wall shear stress, and resistance of the

blood flow for different parameters.

1.4 Scope of Study

The study focuses on small tapered artery with overlapping stenoses. The flow

of blood is considered to be two-dimensional,incompressible, unsteady, laminar and

axisymmetric. The blood is treated as non-Newtonian fluid following generalized Power-

law model. The artery is modelled as a distensible cylindrical tube where the considered

wall motion is only due to the systolic and diastolic phase of pumping heart.
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1.5 Significance of Study

This research helps reseachers to understand the basic concept of blood flow

in constricted artery, where a mathematical model is presented to describe the

blood flow through tapered artery with an overlapping stenosis. From here, people

interested in this field can move to more challenging problems which may involved

more hemodynamic factors and flow parameters, and solve the mathematical model

with more sophisticated methods.

1.6 Outline of Study

This dissertation is divided into six chapters. This chapter presents an

introduction to the research background, objectives, scope and significance of research.

The upcoming Chapter 2 will touch on some basic rheology of blood, and review some

fluid models, types of stenoses, and methods of solution that other researchers had

work on. Chapter 3 concerns with the formulation of the problem and comprised of

six sections including the introduction. In Section 3.2, the geometry of the arterial

segment is constructed mathematically. Then, the continuity equation and momentum

equation are derived directly in cylindrical form in Section 3.3 and 3.4. In Section

3.5, the expressions for stress tensor components are given where the derivation of

the formulae can be referred in Appendix A. The mathematical model of considered

problem is stated in Section 3.6.

Next, the solution procedure is presented in Chapter 4, where Section 4.1

introduces the content of the chapter, and in Section 4.2, the equations and boundary

conditions are transformed using the radial coordinate transformation. Then, in

Section 4.3, the radial velocity component is derived from the transformed continuity

equation. The finite difference method is applied in Section 4.4 to discretize the velocity

components, stress components and boundary conditions. Discretizations of other

blood flow characteristics are also shown in this section. For numerical computation, the

solution procedure is written as a MATLAB programming code, and is supplemented

in Appendix B.
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The numerical results are discussed in Chapter 5. This chapter consists of six

sections. The first section introduces the content of the chapter. In Section 5.2, we

discuss the results for the axial velocity at different taper angles, at different axial

positions, and different times. Similar analyses are done on radial velocity in Section

5.3. Next, Section 5.4 shows the results for flow rate, Section 5.5 on resistance and

Section 5.6 on wall shear stress. The final chapter, Chapter 6 will wrap up the discussed

problem and give some recommendations for future research.
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