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ABSTRACT 

 

 

 

Soil Moisture Ocean Salinity satellite exploits the frequency of 1.4 gigahertz 

which represents the best conditions for salinity retrieval. The new challenge is to 

interpret the observed brightness temperature into the salinity. The main objective of 

this study is to measure the sea surface salinity in the South China Sea using the 

Levenberg Marquardt algorithm. The methodology of this study involves the 

mapping of this algorithm to solve the non-linear least squares in order to obtain the 

salinity. The salinity was estimated based on the comparison between brightness 

temperature measured and brightness temperature simulated value of the successive 

iteration. The difference between both brightness temperature values is compared to 

the desired threshold at each iteration, this recursive process either updates the 

brightness temperature simulated or finally terminated if the brightness temperature 

difference is lower or higher than that threshold respectively. The salinity values 

estimated from the designed of Levenberg Marquardt algorithm tools were 

assembled, thus maps of sea surface salinity were produced. Some accuracy analyses 

were carried out to identify the appropriateness of a Levenberg Marquardt algorithm 

for the salinity retrieval. The results of the regression analysis and Pearson 

Correlation Coefficient indicate that sea surface salinity measured performs high 

correlation with the sea truth data, which is 0.9042 and ±0. 9509 psu, respectively. 

The analysis of variance by testing the hypothesis indicates that there is no 

substantial difference between the mean of sea surface salinity from the satellite and 

sea truth data. The root mean square error of measured sea surface salinity is smaller 

compared to the sea truth data values. In conclusion, the appropriateness of 

Levenberg Marquardt algorithm in inverting the salinity in the non-linear technique 

proved as a solution for ill-posed inversion that estimates the sea surface salinity 

from the Soil Moisture Ocean Salinity brightness temperature.  
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ABSTRAK 

 

 

 

Satelit Kelembapan Tanah Kemasinan Laut mengaplikasi frekuensi sebanyak 

1.4 gigahertz di mana ia merupakan jalur yang terbaik bagi penganggaran kemasinan. 

Cabaran baru ialah untuk mengadaptasi suhu kecerahan yang dicerap kepada kadar 

kemasinan. Objektif utama kajian ini adalah untuk menentukan kemasinan 

permukaan laut di Laut China Selatan menggunakan algoritma Levenberg 

Marquardt. Kaedah digunapakai dalam kajian ini melibatkan penggunaan algoritma 

tersebut untuk menyelesaikan kuasa dua terkecil tidak langsung dalam menentukan 

kadar kemasinan. Nilai kemasinan dianggar berdasarkan perbandingan di antara 

cerapan suhu kecerahan dan simulasi suhu kecerahan untuk lelaran berterusan. 

Perbezaan di antara kedua-dua suhu pencerahan dibandingkan dengan nilai ambang 

yang dikehendaki pada setiap lelaran dan proses rekursif ini samada akan 

mengemaskini semula nilai simulasi suhu kecerahan atau prosesnya ditamatkan 

sekiranya perbezaan suhu kecerahan lebih rendah atau lebih tinggi daripada nilai 

ambang masing-masing. Penganggaran kadar kemasinan daripada algoritma 

Levenberg Marquardt yang direka telah dikumpul, seterusnya menghasilkan peta 

kemasinan permukaan laut. Beberapa analisis ketepatan  dijalankan bagi menilai 

kesesuaian algoritma Levenberg Marquardt terhadap penentuan kadar kemasinan. 

Hasil bagi analisis regresi dan Pekali Hubungan Pearson menunjukkan kadar 

kemasinan laut memberikan perkaitan yang paling hampir dengan data lapangan, 

iaitu masing-masing merekodkan 0.9042 dan ±0.9509 psu. Analisis kepelbagaian 

dengan menguji hipotesis menunjukkan tiada perbezaan yang ketara di antara purata 

kadar kemasinan laut daripada data satelit dan data lapangan. Ralat punca min kuasa 

dua bagi  kadar kemasinan yang dicerap adalah lebih kecil berbanding nilai data 

lapangan. Kesimpulannya, kesesuaian algoritma Levenberg Marquardt dalam 

penyongsangan kadar kemasinan bagi teknik tidak langsung terbukti sebagai satu 

kaedah penyelesaian untuk menentukadar kemasinan laut daripada suhu kecerahan 

Kelembapan Tanah Kemasinan Laut. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of the Study 

 

 

Study on ocean becomes significant as the ocean covers almost 71 percent of 

the earth’s surface and it has larger influence and capability in transporting energy. 

As a result, this imposes knowledge on coastal characteristics and climate to be 

improved. Salinity is dissolved salt or literally defined as the total amount of 

dissolved solids in the units of 1000 grams. Interaction between lattices and water 

molecules induces salinity to form the ion which is the charged molecules. By the 

presence of molecule charges, salinity can be determined by seawater's conductivity. 

The main salt ions contributed to the seawater element are chlorine, sodium, 

sulphate, magnesium, calcium, and potassium. Seawater also contains some types of 

dissolved gases such as carbon dioxide, nitrogen, and oxygen. 

 

In the climatological aspect, salinity observation becomes an integral part of 

global ocean observations designed ultimately to monitor interannual to interdecadal 

processes as of the idea is to understand uncertainties of El-Nino Southern 

Oscillation (ENSO) forecasting, global warming and other climate variations 

(Lagerloaf et al., 1995). In fisheries, the lower salinity level that originated from the 
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fresh water end turns sea grass blades to yellow and thus this adversely impacts the 

breeding ground for fish, prawns and other aquatic lives (Thorhaug et al., 2006). 

 

 Salinity plays an important role in the earth’s water cycle in which it 

subsequently affects the weather and climate by means of temperature salinity that 

drives the ocean currents. The change in salinity is mainly caused by the additional 

or removal of freshwater from land. The salinity of sea water is normally about 30 to 

35 psu (practical salinity unit) in open ocean but tends to be variable in coastal water 

coming from the fresh water output, tidal fluctuations and etc (Thorhaug et al., 

2006). Several studies have reported that the reflectance spectra of certain seagrass 

species indicating the physiology of the seagrass are strongly and significantly 

affected by low salinity level (Thorhaug et al., 2006). Level of salinity in water can 

be classed in different types based on the electrical conductivity and salt 

concentration tabulated in Table 1.1. 

 

Table 1.1: Class of salinity level in water (Rhoades et al., 1992).  

 

Water class 
Electrical 

conductivity (dS/m) 

Salt 

concentration 

(mg/l) 

Type of water 

Non-saline <0.7 <500 Drinking and irrigation 

water 

Slightly saline 0.7 - 2 500-1500 Irrigation water 

Moderately 

saline 

2 - 10 1500-7000 Primary drainage water 

and groundwater 

Highly saline 10-25 7000-15 000 Secondary drainage 

water and groundwater 

Very highly 

saline 

25 - 45 1 5 000-35 000 Very saline 

groundwater 

Brine >45 >45 000 Seawater 

 

Sea water or ocean is strongly related to hydrologic water cycle in the context 

of providing sustainability of the origin of the sea water. The water vapor evaporates 

from the ocean surface and gaseous are released from the molten igneous rocks 

which provide functionality in cooling the earth. Later, the earth’s surface becomes 
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cool until reaching the level below the boiling point temperature. Rain takes part in 

the continuous process to gain the humidity of the ground and flows to the watershed 

and the ocean.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: The hydrologic water cycle (from 

http://www.Greenewatersheds.Org/Cycle.Html). 

 

The sun heat distils pure water from the sea surface and keeps the salt 

remains in the ocean that later contributes to the oceans salinity. All these processes 

are schematically presented as hydrologic water cycle in Figure 1.1. The hydrologic 

water cycle is the continual exchange of water between the Earth and the atmosphere 

which explains the existing of oceans water and sources of the salts.  

 

Conventional methods to observe sea surface salinity (i.e., by means of 

hydrolab taken in the excursion by vessel) are very time consuming, expensive and 

limited to small area. On the other hand, remote sensing technique has proved as an 

efficient technique in mapping the sea surface salinity at regional or global scale. 

Several algorithms have been introduced to measure the sea surface salinity by 

space-borne data.  
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1.2 Problem Statement  

 

 

Traditional methods that extract salts directly from the ocean are very time 

consuming, expensive and limited to small area coverage. For instance, the 

estimation of net Evaporation minus Precipitation (E-P) has high correlation with sea 

surface salinity and therefore is used to relatively estimate the sea surface salinity. 

Even though the net E-P provides better understanding of the thermohaline 

circulation and later this technique helps to improve the estimation of latent heat 

flux, E-P measurement imposes massive manpower, high time consuming and very 

costly.  

 

Sea surface salinity retrieval by remote sensing technique proved as an 

efficient technique in mapping the salinity at regional or global scale. In the context 

of Malaysian coastal waters, focus more on the sea-truthing than satellite-based 

measurements are mainly reported. The satellite derived sea surface salinity was 

majorly formulated by means of optical bands at which interferences by weather, 

cloud covers and atmospheric induced error are regularly encountered. There is also 

concern on the impact of seasonal monsoon towards the sea surface salinity 

particularly at the east coast of Malaysia where the study on impact is necessary for 

biological production and ocean ecology studies. 

 

Most of the satellite derived sea surface salinity was obtained by optical 

remote sensing data though this approach has disadvantages of interferences 

produced by atmospheric condition, weather and cloud covers. This is not a case for 

the microwave radiometer type satellite called Soil Moisture and Ocean Salinity 

(SMOS) which has been deployed in space in 2009 by which high degree of ocean 

salinity and soil moisture are retrieved using microwave sensor. Yet, the salinity 

product estimated from the Microwave Imaging Radiometer Using Aperture 

Synthesis (MIRAS) have yet been calibrated and validated as this 1.4GHz L-band 

sea surface salinity variant is ill-pose solution. As a result, high order non linear 

solution is needed and provides complicated solution. 
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1.3 Objectives 

 

 

The aim of this study is to measure the sea surface salinity using the SMOS 

data over the South China Sea. Therefore, the objectives of this study are: 

 

1. To develop a tool for the SMOS sea surface salinity retrieval based on a 

non-linear inversion algorithm using the ocean surface brightness 

temperature data. 

2. To validate the SMOS sea surface salinity retrieval over the coastal water of 

Malaysia using the corresponding in-situ measurements. 

3. To map the ocean salinity distribution of South China Sea from SMOS data. 

4. To determine the impact of seasonal monsoon on the estimated SMOS sea 

surface salinity. 

 

 

 

 

1.4 Scope of Study 

 

 

The scopes of this study are as follows,  

 

1. Soil Moisture and Ocean Salinity (SMOS) data providing sea surface salinity 

information within large area of 35 kilometre and revisiting time of 3 days 

with accuracy between 0.5 to 1.5 psu for a single observation is used as the 

primary data. Level 1C data is projected on an Icosahedral Synder Equal Area 

(ISEA 4H9) grid provides a uniform inter cell distance of 15 km. 

 

2. Klein and Swift model (1977) and semi-empirical models are considered to 

compute the brightness temperature in both conditions of flat sea surface and 

rough sea surface as those models provide systematic and straight ward 

estimation procedures.  
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3. Levenberg Marquardt technique is chosen to solve for the non-linear 

optimization and inversion on the SMOS brightness temperature pixels 

because the technique provides simultaneous estimation of sea surface 

salinity, sea surface temperature and wind speed. 

 

4. Sea truth data of sea surface salinity and sea surface temperature were used 

for algorithm validation and the fieldwork was carried out in the coastal water 

of east coast of Peninsular Malaysia on June 2008 and June 2009. Besides 

that, some sea truth data were obtained from the related agencies namely 

Universiti Malaysia Terengganu (UMT) and Southeast Asian Fisheries 

Development Center (SEAFDEC). 

 

5.  For calibration and validation of the SMOS data, regression analysis 

provides better overview on the accuracy of SMOS derived sea surface 

salinity.  

 

 

 

 

1.5 Significance of Study 

 

 

This is the first study of SMOS data application in the Malaysia coastal water 

that involves extensive data processing (i.e., SMOS data acquisition, brightness 

temperature estimation and validation) and development of iterative non-linear 

inversion algorithm. The SMOS mission is dedicated to continuously measure the 

ocean salinity and soil moistures over the globe at the higher degree of accuracy in 

space and time. This study would serve to the salinity mapping over coastal water in 

east coast Peninsular Malaysia and give benefit to fisheries, aquaculture and habitats 

for coral reef and sea grass. Salinity affects water density that controls the sinking of 

water and the patterns of evaporation over the ocean. This would therefore improve 

the knowledge of the water cycle and thus gives better understanding of climate 

change. Salinity information helps to constrain the hydrological cycle and by 



7 

 

 

 

incorporating high degree of accuracy of salinity may improve ocean circulation 

modelling and data assimilation (Yueh et al., 2000). 

 

Validation and calibration of SMOS salinity product may serve to local 

satellite mapping in order to improve the accuracy of data product. In this case, 

discrepancy of satellite salinity product is reduced so that increases its data reliability 

in space and time. As result, high accuracy remote sensing data offer more effective 

salinity mapping technique and more cost efficiency covering large ocean areas than 

that of conventional ones. Study on the impact of seasonal monsoon to the salinity 

distribution give significance overview for the ocean bio geochemical identification 

namely shellfish productivity, aquaculture, ice melt process, major river run-off 

events and fish location dependent parameters (Castillo et al., 1996; Morita et al., 

2001). 

 

 

 

 

1.6 Study Area 

 

 

The study area is in the South China Sea as shown in Figure 1.2. The area 

covered from 2°30’σ and 103°00’E to 6°00’σ and 105°00’E that governs open 

seawater with low and high salinity range. There are various surrounding marine 

resources and habitats that rich with coral reefs, sea grass and seaweeds and therefore 

this area is also known as the Exclusive Economic Zone (EZZ). The change in 

salinity in turn affects the coral reefs, sea grass and seaweed habitats that eventually 

intervenes the growth and life of fish, prawns, sea cucumber and other marine 

resources. The South China Sea is the marginal sea and connects to the East China 

Sea (ECS), the Pacific Ocean in northern and also links with the Java Sea and the 

Sulu Sea in the south. The South China Sea is one of the busiest ocean routes and 

networks for ships. 
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Figure 1.2: Location map of the study area. 
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