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Abstract

High precision orbit determination Is a key requirement In presice relative and
absolute positioning by the Global Positioning System (OPS) The Gauss-Jackson 8"
Order Process using the predictor corrector scheme is used in the study to
perform the orbit integration. The mathematical expressions, accuracy and
efficiency of the method are discussed Results show that the Gauss-Jackson
numerical procedure proved to be a precise and efficient method for the GPS orbit
determination.

1.0 Introduction

Numerical integration was Introduced into dynamical astronomy by Cowell
after the discovery of the eighth satellite of Jupiter The method has been applied
extensively by others in investigation of the motion of satellites, such as the Halley's
comet. Formulae for numerical integration have been developed since the seventeenth
and eighteenth centuries by many mathematicians, such as Newton and Gregory.

Roy (1978) demonstrated that the numerical method of solving the equations of
motion Is simple and fast compared to the analytical method. This view Is shared by
many others, for example, Merson (1973) and Herrick (1972). The analytical
solutions of the satellite equations of motion are based on complex theories of
classical mechanics, truncated Infinite series and deal with large amounts of algebra
Thus the direct analytical solution of the satellite perturbed motion Is not possible.
For GPS satellites the best analytical theories produce orbits with an accuracy of 20 to
30 metres. King et al (1985)

In the numerical approach of solving the equations of motion, the perturbed
accelerations can be modelled as accurately as they are known. Hence, there is no
appoxInation made in the solution. The availibility of high speed computer and
numerical Integration software enables large number of equations to be solved with a
high order of accuracy. The round-off or truncation errors that effect the accuracy of
the orbits are relatively small when large and fast computers are used and the
computation carried out with double precision. Hence the numerical solution will
normally provide an orbit of very high precision

The Gauss-Jackson numerical formulae had been used successfully for the
computation of near-earth orbiting satellites, such as the GEOS-3 and LAGEOQOS
satellites. Theoretially the Gauss-Jackson formulae are suitable for computing GPS
satellite since Its orbit is more circular than those of the GEOS-3 and LAGEOS.



In (his article the numerical integratlon procedure of salellite orbit is
reviewed. This leads to the dlscussion on the malhemaiical expressions of the
Gauss-Jackson 8P arder process in integrating the GPS orbit. Results of the study
of Lthe error estimates of the prediclor and correclor formulae, and integration step
length of the method are also presented.

20 Numerlcal Integration of the Equations of Motion

In simple Ltermu orbil legration is the process of computing the satellife
slate veclors, le, either the six orblial elemenls or in a reclangular coordinale
system the satellile posltion and velocily veclors at the required epoch.

Numerical integraiion methods of evalualing the satellite equation of
motion are classilied into two procedures, the single-step and the mulli-step
melhod. The single-step method requires tnlerpolation or extrapolation schemes
to oblain the vartables, bul it does nol require a "starting procedure [process of
determining the solution of the dillerential equations at the necessary number of
abscissca poinis to start ihe numericall formulae used in the inlegrallon process).
The multi-slep method ls an Herallve solution of solving the equalions of motlon,
usually carried oul using prediclor corrector numerical inlegralor scheme, All
numerical formulae require a special starlirg  procedure before the predictor-
corrector formulae can operate

Accouniing for the elfect of the perturblng forces. (he equalions of the
perturbed satellile malion 1s glven as

. Gm, ..
r = F'-P"T‘, +4- I'r
a

(L

where,

is the vector Irom (he cenlre of mass of the earth lo Lthe cenfre of mass
of the satélllle,

Is

|rsi is the vector lenglh ol the satellite,

me is Lhe mass of the earth,

g is the universal gravilalienal corslant,

ff is Lthe total perlurbing acceleralion acling on the satellite

The first termn in equation (1} represents {he radiaily symmetric part of the
earth's gravily {leld, which {s the dominant term and represents the cenlral-
acceleration. The tolal perturbing acceleration of the separale forces which include
the non-cenlral component of the gravilational altraclen of the earih, the third
body effects (altraction of the sun, moon and planels}, solar radiailon pressure,
lidal effects (solid earth Udes and ocean tides), almospheric alr drag and propulsion
force.
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The formulation and the numerical integration of the equations of motion
of a satellite are carried oul in Lhe inertial (non-rotating) reference sysiem which is
based on the fundamenlal asironomical system and currenily maintlained by I[ERS
{International Earlh Rolallng Service).

In order 10 use numerlcal solulion, equation (1} can be wrilten in the {orm of

¢
x(t) = x, + [ xdt (2)

:u

t
X(t) = x, + | xdt (3)
iy

where,

Xp Is the initial position veclors.
X Is the inilial velocily vectors and

tp  is the time ol starling epoch

The initial position and velocity veclors, known as the initial conditions,
for the integration process lo slart musl be approximately known. For GPS salellite
orbit can be compuled using the broadceasl ephemeris. The initial conditions need
to be improved and the estimation of the correclions are oblained through an
iterative least squares solution using GI’S observalions known as orbit
tmprovement. In the orbll improvement process the orbital parameters,
corrections for the initial conditions, coordinales of (he tracking stalions and any
perturbing parameters are es{imated slmullancously.

The satellile stale veclors are evaluated as a function of time by numerically
integrating equations (2) and (3], either by (he single-step or mulli-step method.

The subsequent safellité position and velocily vectors, x), X], Xo_ Xg, ete, along the
orbit are compuied at diserete time according 1o the integration siep length use,

2.1 Single -Step Method

To stmplify the discusslon, an Independent variable Is introduced via the
first order dillerential equalion.

ds
§ = — = f(¢ 4
§= f(e,s) {4)

where {(t,s) dentotes some [unclion of Llime, t. and S Is the variable, Successive

values of S can be vbtained in the same way as equaltions (2) and {3} by integrating
the function .,

.s(t)=so+[f(t,a)dt (5)
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where 8gq Is the inllial value of S al time lg. Equation (3) Is then evalualed
numerically. In the single-siep method the next value ol the variable is obtained in
one slep by making use of the current value. The (k+1) th yvalue of the vartable is
glven by

!k-l‘-h
(3k+1):3k+/ f(t, 8)dt {6)
ty
where
3 = s(tg) = sty + kh) (7)

and h is the integratlon step length. Tn solving (he eguations of motion by the
single-step method the integral in equalion (6! is evalualed using only the value of

the current slep, S). The subscquent values of Lhe variable $). Sg, elc, can be
computed by successive applications of 1the method.

22 Multi-step Method

As mentioned earlier, the multi-slep meihod i{s an ileralive process of
evaluating the differeniial eguations using prediclor-corrector formulae. When an
nih order multi-step method is used, the predicted (lk+ 1D value of the variable, say
{Sk+1)1, is oblained by a predictor farmula making use the previous {n+1) value.
This value is now used, along with the previous n values, to evaluate the correcled
value of the variable, say (Sk4+92J)o. using a correclor formula. I the difference
belween the corrected and previocus value exceeds a certain limit, the correclor
formula s reapplled using the most receni avallable value of {Sx4+1). The
inlegration process is continued until the end of the Inlerval is reached. In order lo
apply the mulli-step method, the [irst (n+1) of 8, e the starling values for the
integration procedure, must be determined, before any numerical formulae can be
used. These values can be comiputed by the single-siep method. Various methods of
starting procedures are avallable, such as the Runge-Kulla method, Roy (1987},
Bulcher process and the Herrick methed, Merson (1973).

3.0 The Gauss-Jackson Process

The Gauss-Jackson Process, alternalively known as Gauss-Jackson
"Second-Sum” {ormulae or procedure of numerical inlegratlon was developed by
Gauss and laler perfecled by Jackson. In this study the orbil integration is perfomed
by the 8th order formulae with the equations of motion formulated into the Cowell
equations. The Gauss-Jackson 8th order process s a mulli-step approach and
therefore the equations of motion must be inlegrated by some means for 8 steps to
give a table of acceleration values al 9 points. In the study the values are delermined
using an iteralive starting scheme, Sinclair (1987).

18



vated
1ed in
ible is

(63

(7)

y the
ue of

in be

is of
n an
, say
alue.
cted
enee
clor
The
2T {0
the

1 be

s of
87],

S0n

ned
vell
ind
3y Lo
1ed

2

In the Cowell equalions, the salelllle second order equallons of motion arise
when the acceleratllons of Lhe posilion coordinales are trealed direclly. The
acceleration components ol the satellile are then computed as the function of time

using

Ty = f(ti, i, iy 20, Tiy i, ) (8)
yi = flte, 24, 4, 20, o, v, 2) (9)
v = f{&, & Yo, E, T Y Z) (10)

where 1 is any integer. For simplicily only the {irst{ acceleration component of the
satellite is considered in the integration process. As the Gauss-Jackson process is of
the mulll-step {ype, the procedure ol evaluating the dilferential equations described
in section 2.2 holds. The inlegration is carried out using an equal step-length, h,
starting at a specilled epoch so that

h:tk+l‘—tk (I]J

where 1 is the epoch, k is equal 1o 0, 1, 2, T and | is the order ol the integration
process. The full dertvation ol the Gauss-Jackson 8th order formulae are glven in
Shertf (1989). Notalion [k, xk and Xy are used Lo denole the accelaralion, posiiion
and velocily at slep k of the integration. The Gauss-Jackson process 15 most
convenient using the backward dlllference eperalor { ¢ ), such that

Vie=fe— fa (12)

V=V e -V (13)

The first sum and second sum operator are denoted, respectively, by ¥ ~! andVy ? which
are such that '

- -1
f=V T -V i (14)
Vi =V -V f (15
The acceleratlon ). 02,.........., fo, and the firsl and second sumn at step 9

required Lo slart the Gauss-Jackson formulae to inlegrale from siep 9 to slep 10 are
computed by the lle alive slarting scheme. 1t 5 mare convenlent Lo use abbreviated
nolation vi for 7sf, especlally for programing purpoeses, The [irsl and second sums,
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respectively, are computed from the following tormulae,

Vi_,kl_x =h™ i - Aofie ~ 41Vigy - ‘12v,k+1
-_A vlk+2 - ‘IQV; k42 {(16)
and
r -2 -2
Vi,k__l =h 7Xi,k Bﬂfl L — BE : k+]
~ByViy ~ B Vi — (17)

where the serles of A and B cocificlents are given tn table 2. The pattern of the
dilfference can be seen in table 1. From the known values at 9 polnts computed from
iterative starting scheme, the right hand part of the table above the diiagonal Iine is
formed. Then the first sum at step 4.9, )4 , and second sum al slep 3, V.4 , respecitvely
are calculaled using equalions (16) and {1‘7] and the rematnder of thé’ sum above the
line are compleled by addition. In order {o continue the table, the prediclor
formulae for Inlegraling the velocity and position are required. These {ormulae
replace the function fil,s) In equation (5). The Gauss-Jackson prediclor formulae
for velocily and posilion, respectively, are given by

i .
Serr = R{VI 4 Fofix + 3 FiVi) e
i=1
and
!
Xik+1 = hz{V:f +Cofix + Z C}-ka} o
. j:l !

where F and C are he coelliclents, listed intable 3. The predictor [ormulae use the
difference above the diagonal line of Lable 1, xi k+1 and xi, k+1 are then substituted
in the accelaralion farmulae to give the predizled value of {{ k1. and the new row
cf backward differences and sum is completed. If a predictor only scheme in
required, the cycle (s complele and the process is discribed as a PE-method.
However, 1t is relutively fasl Lo use correclor formulae. The Gauss-Jackson
corrector formulae for velocity and postiion, r:spectively, are given by

ii,k+1 = h{v‘k + Euf; k41 T Z E; v: k+1} (20)
=1
and
xlk+,~h{vkk+Dgf.k+1+ZD V) (21)
j=1
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where E and D are ithe coefficients listed In table 4. After applylng equalions {20)
and (21) the backward dilferences are recalculated. The procedure is considered
complele at this stage and is described as a PE[CE) method. Since the applications of
the corrector formulae is relatively fast, it is convenient to apply equation (20} and
(21} the second time. The latest corrected value of fi k4 1 compared with the previous
value. I the difference exceeds a certain Hmit, the corrector formulae are reapplied
using the most recent values of the variables until the accuracy required is satisfied.

a1 Error Estimates Of The Method

The accuracy of the convengence of the iteration is estimated by recording
the maximum difference between any of the three components of the position
vectors for the penultimate and final iteration. Therelore this gives the actual
convengence error of the penultimate iteration, and is a pessimistic estimate of the
final iteration.

The error estimates of the formulae are obtained from the integration using
the final corrected initial conditions. In this example the orbit is computed for one
satellite revolution, le, 12 hours. The Improvemenl stage of computing Llhe starting
values is repeated as many times as specified. At least 3 lterations are needed for
reasonable accuracy, and 5 iterations will usually give more than sufficient
accuracy.

The following error estimates are ablained when the integration is carrled
out using integration step length of 5 minutes interval.

{.  The maximum truncation error of formulae for position is 0.80x10-9
metres.

{i. The maximum convergence error of penultimate iteration is 0.71x108
metres.

fif. The estimated convergence error of the final ileration ts 0.43x10°9
metres.

{v. The maximum truncation error of formulae for velocities is 0.43x10-8
meires per second.

v. The convergence error of penultimate iteration for the partial

derivatives of position with respect to initial position 1s 0.17x10°7
(dimensionless),

vi., The convergence error of penultimate iterallon for the partial

derivatives of position with respect to initial velocity in 0.15x10°20
seconds

The accuracy of the integrated orbit in this case is determined by comparing
the integrated coordinates with the precise ephemenides obtained from the Centre
for Space Research, University ol Texas, USA ([CSR/UT). These ephemerides are
expected to be accurate to 1 to 2 metres.

32 Analysis of Integration Step Length

In numerical orbit integralion the size of Lhe infegration must be able to cope
with the perturbations caused by the high order tesseral components of the gravity
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field. However the high altitude of the GPS satellites enables the use of high order
integration formulae and large integration step lengih. In this invesligation
various sizes of inlegration silep length ranging from 2 to 30 minutes were tested.
The GPS orbits were computed for 7 days.

The results show that the error estimate increases with the size of the
Integration step length, showing a significant value when the integration step
length is 20 minules and above. Step length of 15 minutes and below were able to
produce orbit accuracy ol about 0.25 metres, figure 1. The error plots are very
simflar to those of the satellile clock frequency offsels, where the peak to peak
frequency variations are due to the thermal cycling of the satellite clock.

Experiments also show that the accuracy of the integrated orbit decreases
with orbit length. For example, using an integration step length of 20 minutes, the
arbit accuracy decreases [rom 0.5 metres for 1 day orbit to 3.5 metres for 7 day orbit
figure 2. The errors in the along-track and radial components clearly indicate the
presence of both short and long peried perturbations, while the cross-track
components Indicates only short period periurbation. The short period
periurbation, 12 hours, are due to tidal effects of the sun and moou which accur
iwice a day. The perlods of the perturbations remain constant for the 7 day orbit
while the amplitude increases with the orbit length. The study shows lor long orbit
computation an ontegration step length of more than 20 minutes interval could not
cope with the short and long perturbations caused by the high order tesseral
components of the gravity fleld.

4.0 Conclusions

Based on the investigations of the Gauss-Jackson 8th grder numerical
formulae for orbit integration, the following conelusions on {he meihod are made.

a)  Since the Gauss-Jackson process is a multi-step method of numerical
integration, it requires initial conditions, as well as starting values.
The GPS broadcast ephemeris provides a good approximation for
computing the values for the Initial condilions and, consequently,
only few terations are required in the orbit improvement process.

b)  The orbital parameters can be determined from satellite observations
using the variational equalions. Since among oiher factors, the
initial conditions determine the accuracy of the computed orbit, if they
are poorly eslimated the orbit improvement process using the
observations has to be iterated several times.

c) With the advent of modem compulers, the numerical solution is an
efficient and fast process of solving the equations of motion. The use
of the corrector formulae is relalively fast. since the number of
Inleration at each Integrating sitep to oblain a certain specified
accuracy is reduced. Large integrating step length can be used and,
consequently, it reduces the integrating time to a large extend for the
specifled orbit length. For example, the computation of a GPS orbit
lenglh up to 7 days an integration step length of 15 minutes is sufficient
to produce an orbit with an accuracy of about 0.25 metres.

d) The numerical sclution is a precise method of orbit determination
since there is no approximation in the solullon. The perturbing forces
alfecling Lhe satellite motion can be modelled as accurately as they are
known,
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Table 1 : Sum and Difference Table for the
Gauss Jackson Eight Order Process
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A ] B
o -1/2 0 /2
1 -1/2 1 0
2 1/24 2 -1/240
3 11/720 3 0
4 -11/1440 4 31/60480
5 -191/60480 5 O
6 191/120960 6 - 28973628800
7 2497 /3628800 7 0
3] - 2497 /7257600 8 317/22800600
9 - 14797/95800320 9 0 )
10 14797/ 191600640 10 - 6803477/2615348736000
11 02427157 /2615348736000 11 0
12 - 92427157 /5230697472000 12 3203699/62 76836966400

Table 2: Coelllcients [or Gauss-Jackson Formulae

¢ ¥ Fj
0 1712 o 172
1 1/12 1 5/12
2  19/240 2 3/8
3 3/40 3 251/720
4 883/12096 4  95/288
5 275/4032 5 19087/60480
6 33953/518400 6 5257/17280
7  B8183/128600 7  1070017/3628800
8 3260433/53222400 8 25713/89600
9 4671/78848 9 46842253/95800320
10 13698779093/237758976000 10 4777223/17418240
11 2224234463/39626496000 11 703604254357/2615348736000
12 132282840157/2414168064000 12 106364763817/402361344000

Table 3: Coefliclienis [or Gaunss-Jacksonn Formulae
45




J Dy J 5

0 1/2 0 -1/2

1 0 1 -1/12

2 -1/240 2 -1/24

3 -1/240 3 -19/720

4 -221/60480 4 - 3/160

5 -19/6048 5 -863/60480

6 - 9829/3628800 6 - 275/24192

7 -407/172800 7 - 33953/3628800

8 - 330157/159667200 8 - 8183/1036G800

9 - 24377/13305600 9 - 3250433/479001600

10 - 4281164477/2615348736000 10 - 4671/788480

11 - 70074463/47551795200 11 - 13695779093/2615348736000
12 - 1197622087 /896630995200 12 - 2224231463/47551795200

Table 4;: Coelfictentis lor Gauss-Jackson Formulae
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Figure 1

Orbit errors using integration step length of 15 min. interval




Figure 2

Orbit errors using integration step length of 20 min. interval

L0 S wloag-1rach

oo i aclies

iy 1-tracl
1.5}

MM\ M/\ |

| |

ertar [y sebres

-~
”

DL W

=14

-1 )
aal

L% o ndisl
11
7.5 r
2.4 |
1.5

t.o

> L”m VAT n[\ﬂ n(\_ﬂ il ﬁ:...@,.,,
e

-0.%

et iy eelieg

-1 %1

-0 |

-1.1 t
-0

48




