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ABSTRACT

Solder joint reliability has been the main concern in electronic packaging
since the advent of surface mount technology. In this study, a unified constitutive
model was developed for finite element analysis of solder joint reliability. The model
is based on the Anand model and Runge-Kutta time integration scheme. The
constitutive behavior of tin-lead eutectic solder was examined based on published
experimental data to establish the material database for the analyses. Procedures to
determine the nine model parameters were developed. These parameters were
determined using monotonic constant strain rate tensile test data. Two sets of
parameters were extracted from representative groups of experimental data. The
predictive capability of the Anand model under monotonic loading was assessed by
comparing the predictions of the model under tension, strain rate jump, creep and
stress relaxation tests with the experimental data. The capability of the model to
capture the cyclic behavior of the alloy was also evaluated. Ratcheting effects, low
cycle fatigue and load-history dependence of the solder behavior were simulated and
compared with the experiments. The model is capable of predicting the behavior of
solder materials under both monotonic and cyclic loading conditions for identical
batch of specimens. However, the model is not able to simulate fracture of the
material, tertiary creep, Bauschinger effects and variations in reported experimental
data. A few recommendations were suggested to further improve the model by
considering kinematic internal variables, damage and grain size parameters to better

represent the behavior of solder materials.
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ABSTRAK

Kebolehpercayaan penghubung solder telah menjadi perhatian utama dalam
teknologi pembungkusan elektronik sejak penggunaan teknologi pajangan
permukaan, untuk kaedah unsur terhingga dalam pemodelan kebolehpercayaan
penghubung solder. Dalam kajian ini, satu model penyatuan telah dibangunkan.
Model ini adalah berdasarkan Model Anand dan skim integrasi masa Runge-Kutta.
Kelakuan solder timah-plumbum eutektik telah dikaji berdasarkan data eksperimen
yang diterbitkan bagi membangunkan kumpulan maklumat untuk analisis. Tatacara
untuk menentukan sembilan parameter model telah dibangunkan. Parameter ini telah
ditentukan dengan menggunakan data eksperimen tegangan dengan kadar terikan
malar. Dua set parameter telah diperoleh dari data eksperimen yang berkewakilan.
Keupayaan Model Anand untuk meramal pembebanan monotonic telah ditaksir
dengan pembandingan ramalan model dan data eksperimen bawah ujian tegangan,
ujian lompatan kadara terikan, ujian rayapan dn ujian pengenduran terakan.
Keupayaan model untuk meramal kelakuan aloi in bawah beban berulang-ulangan
telah dikaji. Kesan “ratchet”, kelesuan ulangan rendah dan kebergantungan solder
kepada sejarah bebanan telah disimulasikan dan dibandingkan dengan eksperimen.
Model ini berkeupayaan untuk meramal kelakuan solder bawah kedua-dua bebanan
monotonik dan ulangan untuk kumpulan spesimen yang serupa. Model ini tidak
dapat menyimulasi pematahan bahan, rayapan tahap ketiga, kesan “Bauschinger” dan
variasi dalam data eksperimen yang dilaporkan. Beberapa cadangan telah dihujahkan
untuk terus meperbaiki model ini dengan mempertimbangkan pembolehubah
dalaman kinematik, parameter kerosakan dan parameter saiz grain, supaya dapat

mewakili kelakuan solder dengan lebih baik.
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CHAPTER 1

INTRODUCTION

1.1 Overview of Surface Mount Technology (SMT)

Surface mount technology (SMT) offers a lot of advantages over the
conventional plated through hole (PTH) technology (Enke et al., 1989; Ren, 2000;
Kanchanomai et al., 2002). In a SMT process, a series of devices are simultaneously
soldered directly to a printed circuit on a board instead of soldering each device
individually. SMT is known to have lower production costs, higher package density
and easier automation. Over the past decade, various SMT compatible packaging
technologies have been developed to facilitate a wide variety of different cost, pin-
count and performance requirements of IC devices. These technologies include direct
chip attach (DCA), chip scale package (CSP), wafer level chip scale package
(WLCSP), ball grid array (BGA) and area-array solder-bumped flip chip technology,
to name only a few (Lau, 1996; Lau é.nd Pao, 1997; Lau and Lee, 1999; Lau, 2000).
Figure 1.1 shows some examples of these packaging technologies, used in four of the

major IC devices (e.g. ASIC, cache, microprocessor, and system memory) for



various clock frequencies and pin counts (Lau, 2000). Figure 1.2 shows some
schematic layouts of the examples of these packaging technologies on a printed

circuit board (PCB) (Lau, 2000).

Package Pin Counts
8

Clock Frequency (MHz)

Figure 1.1: Variation of pin counts with clock frequencies for various applications in

packaging technologies.
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Au stud conductive TAB COB Wirebonding
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Figure 1.2: Examples of several applications in packaging technologies on a PCB.

One of the most cost-effective SMT compatible packaging technologies is
direct chip attach (DCA), also called solder-bumped flip chip on board (FCOB) (Lau
and Pao, 1997; Lau, 2000). For the DCA technology, chips are directly attached to
the PCB or the flexible printed circuit (FPC) without a package or substrate. Even
though the technology has been introduced by the early 1960s, research and
development efforts on the FCOB grow significantly only after IBM at Yasu, Japan,
assembled solder-bumped flip chip on low-cost organic PCB since 1990 and the
publications by Tsukada er al (1992) in 1992. Underfill encapsulant is usually
required for FCOB assemblies. Figure 1.3 shows a typical FCOB on a low-cost

organic PCB with underfill encapsulant (Lau, 2000).

Another new class of SMT compatible technology, called chip scale package
(CSP), has also emerged during the past decade (Lau and Lee, 1999). The unique
feature of the CSP is that a small substrate (less than 1.5 times the chip size) is used

to redistribute the very fine pitch (as small as 0.075mm) peripheral array pads on the



chip to much larger pitch (0.5Smm — 1.0mm) area array pads on the PCB. The
advantages of CSP over the DCA are that with the substrate, CSP is much convenient
for test-at-speed and burn-in for Known Good Die (KGD), for handling, assembling
and rework, for die protection, shrinkage and expansion, besides advantages of less
infrastructure constraint. Figure 1.4 shows the top view of a substrate of a low-cost
chip scale package, NuCSP for memory chips and low-pin-count ASIC, delineating
the redistribution of peripheral pads on the chip to the area-array pads on the PCB

(Lau and Lee, 1999).

Being SMT compatible as well, Ball Grid Array (BGA) is another technology
that has overwhelmed the whole IC packaging industry for the past decade (Huang et
al., 2001). BGA has become the choice of the first-level and second-level
interconnection as the trend toward higher input/output, performance and yield
continues (Liu et al., 2001). Among the advantages of BGA are larger number of
I/Os, self-alignment capability, more robust assembly process, better thermal and
electrical performance, besides high throughput and low cost assemblies for mass
production (Lau, 1996; Lau and Pao, 1997; Lau, 2000; Lee and Huang, 2002).
Recently, plastic ball grid array (PBGA) with solder-bumped flip chip has been used
to house the microprocessors on organic substrates, instead of the conventional high-
cost ceramic substrates. Intel, for instance, employs its organic land grid array
(OLGA) package technology to house its top-of-the-line area-array solder-bumped
flip chip microprocessors. Figure 1.5 illustrates the schematic overview of an OLGA

package (Lau, 2000).
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Figure 1.3: A schematic view of low cost flip chip on board (FCOB).

Figure 1.4: NuCSP substrate (top side) for the 32-pin SRAM.



OLGA Package Overview

Substrate dielectric

Organic: k=3.5
Ceramic: k=9

Package interconnects Organic substrate better
Organic subs: Cu matches board thermal
Ceramic subs: W or expansion

Figure 1.5: OLGA package overview.

1.2 Reliability Concerns of Solder Joints

Solder joints play a crucial role for all these SMT compatible technologies.
Solder joints provide both the mechanical support to hold the module in position on
the PCB and the electrical connection for the passage of electrical signals, power and
ground, at both chip level and printed circuit board (PCB) level assembly (Enke ez al.,
1989; Logsdon et al, 1990; Lau, 1992; Plumbridge, 1996; Lau, 2000; Lee and
Huang, 2002). The electronic package hierarchy consists of basically four levels of
packages, namely zero level package (chip level connections), first level package

(single chip or multi-chip modules), second level package (PCB) and third level



package (motherboards) (Lau, 2000; Su, 2001). Figure 1.6 shows a schematic
representation of these four levels of packages (Lau, 2000). Solder joints, as a very
versatile connection method, has been utilized in both the first and the second level
of electronic packages, including direct chip attach (second level), chip scale package

(first level), and ball grid array (second level).

As solders are very soft alloys, there are new concerns arising, particularly
regarding the long term reliability of the solder joints connecting an SMT package to
the printed circuit board (PCB) and a silicon chip to the package (Enke ef al., 1989).
In many electronic systems, reliability losses have been found to result mainly from
mechanical failures of the solder joints rather than device malfunctions (Chandaroy,
1998; Stephen and Frear, 1999). Various sources of these mechanical failures are
reported and studied in the literature, including cyclic bending (Wu et al., 2002) and
drop impact (Mishiro ez al., 2002). However, apart from catastrophic failures such as
die or substrate cracking, the primary failures induced in electronic packages are
attributed to thermomechanical fatigue, in the forms of solder cracking, crack
propagation and interface delamination (Zhuang et al., 2001; Kuang et al., 2001,

Ciappa, 2002).

As there is a mismatch of the coefficient of thermal expansion (CTE)
between two soldered components, solder joints will inevitably suffer from cyclic
strains during power on/off and temperature fluctuations, due to both device internal
dissipation and ambient temperature changes. Progressive damage as a result of
thermomechanical fatigue is experienced in the solder joints, leading to ultimate
failure eventually. For instance, in the low cost flip chip technology, the CTE

mismatch between the silicon (CTE = 2.5 ppm/K) and a cost effective commonly



used substrate material like FR4 (CTE = 18.5 ppm/K) is as high as 16 ppm/K, which
ineluctably raises concerns over the thermomechanical fatigue reliability of the tiny
solder joints (Wiese et al., 1999). Figure 1.7 (Amagai, 1999) shows an example of
solder cracking as a result of thermomechanical fatigue. The crack appeared at the
interface between solder and the chip/substrate, one of the most common places

where solder joint failures occur (Lee et al., 1998; Zhang et al., 2000; Su, 2001).

Recent developments in the semiconductor industry only further aggravate
the situation. First, dramatic increase in the number of devices and functionality of
the latest ultra large, giga, and other yet-to-come scale integration designs has
resulted in increased chip sizes (Amagai, 1999; Zhuang et al., 2001; Lau, 2000).
According to the Semiconductor Industry Association (SIA)’s technology tends, the
chip sizes of some IC devices are forecast to be as large as 10 cm” by the year 2006
(Lau, 2000). These gigantic chips will impose severe strain on the solder joints at the
corners of the devices, where the maximum deformation of the substrate and

maximum stress in the solder joints occurred.
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Higher circuit board component densities are achieved by having smaller
package dimensions, leading to very fine feature sizes that are often more sensitive to
package induced stresses (Amagai, 1999). Higher densities and smaller feature sizes
stipulate the development of advanced packages containing a higher number of
interconnections (Wen et al., 2002). A logical consequence of such development is
the reduction in the volume of the solder joints. Smaller solder joints, however, pose
numerous mechanical considerations, for they are mechanically and electrically more
vulnerable than the larger ones. Hence, the continual miniaturization of package
dimensions imposes continuing challenges on the thermomechanical reliability

aspects of solder joints.

Meanwhile, modern electronic devices are frequently subjected to severe
operating conditions and environment, including higher temperature levels, and
fluctuating stresses and temperatures (Wade et al., 1999; Nowottnick et al., 2000).
Typical operating conditions include a high temperature environment (up to 150°C)
with frequent temperature oscillations and mechanical vibrations from 20 to 2000Hz
(McDougall, 1998; Wiese et al., 1999). In automotive applications, for example, the
electronic modules are subject to extreme operating conditions, such as cyclic
temperature variations, vibration, and humidity (Shangguan, 1999; Wilde, 2001).
Table 1.1 illustrates the severe specifications for service environments of automotive
electronic units (Wilde, 2001). These loading conditions and environments induce
higher temperatures in the creep range, high amplitude vibration and mechanical
shock. These trends in IC devices are leading to rigorous requirements on the thermal,
electrical and mechanical characteristics of the packaging devices. Consequently, the
reliability of the solder joints remains one of the greatest challenges to the package

designers and engineers.



Table 1.1:

11

Severe specifications for the automotive electronics.

Environmental Conditions
Unit ECU ECU Sensors

Environment Under the Hood On the Engine On the Engine
Classification
Temperature -40°C to 125°C -40°C to 150°C -40°C to 175°C

Range

Vibration Up to 3g Up to 10g Up to 40g
Shock Up to 20g Up to 30g Up to 50g

1.3 Finite Element Method and Lifetime Prediction of Solder Joints

The development of estimation methods to predict the reliability and the
lifetime of a particular packaging design has become of paramount importance to the
packaging industry. Many methods of estimation of the fatigue life of solder alloys
have been proposed (Solomon, 1989; Satoh et al., 1991; Pao et al., 1993; Vaynman
and Mckeown, 1993; Solomon and Tolksdorf, 1995; Subbarayan, 1996; Guo and
Conrad, 1996; Ishikawa et al., 1996; Zhang et al., 2000b). Of all these methods,
finite element (FE) method has been utilized extensively to estimate the strain range,
work density and other damage parameters of the packages. The thermomechanical
modeling has proven to permit significant cost reduction in both the design of high
reliability and the failure analysis of solder joints in the electronic packaging and

surface mount technology.
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Numerous applications of FE analyses to assess the reliability of the solders
are available in the literature. Tee et al. (2000) built a FE model to predict the fatigue
life of solder joints in their low profile fine-pitch BGA (LFBGA) during thermal
cycling tests. The effects of key package parameters, such as die size, substrate size
and solder ball size were studied. Bailey et al. (2001) employed FE in their
computational models to assess solder joints reliability. Suhling et al. (1994)
employed FE analysis to evaluate the fatigue life and reliability of solder joints used
to attach leadless ceramic chip resistors and chip capacitors to insulated metal
substrates. Lau (1998) estimated the thermal fatigue life of the solder joints of a
NuCSP assembly using the FE modeling. Solder deformations are considered to be
either temperature-dependent elasto-plastic or time-dependent elasto-plastic-creep.
Lau et al. (2000) investigated a novel and reliable wafer level chip scale package
(WLCSP) by performing nonlinear time-temperature-dependent FE analyses. The
thermal-fatigue life of the corner solder joint was predicted by the averaged creep

strain energy density range per cycle and a linear fatigue crack growth rate theory.

The usage of FE analyses is not confined to the reliability estimation only,
but also in various physical analyses, parametric studies and processing of
experimental data. In order to compare the solder joints reliability of the novel LOC-
TSOP (Lead-on-Chip Thin-Small-Outline Package) to the conventional LOC-TSOP,
Lin and Chiang (2000) used a nonlinear FE analysis to analyze the physical behavior
of packages under a thermal loading condition. It is found that the maximum plastic
strain occurred at the leadframe/solder interface inside the solder joints, where crack
initiation occurs. Moore and Jarvis (2001) employed FE analyses to find the root
cause of the observed failure modes of their BGA packages in the design of

improved reliability BGA assembly. Lee and Huang (2002) used FE analysis to
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investigate the effect of shear ram speed on the solder ball shear strength of PBGA
packages. Jonnalagadda (2002) developed a FE model to qualitatively identify the
high risk regions within the via-in-pad structure under mechanical bending. Mishiro
et al. (2002) used the numerical analysis to find the correlation between solder joint
stresses and motherboard strains in their study on the effect of the drop impact on
BGA and CSP package reliability. Wiese el at. (1999) applied FE simulation to
evaluate the experimental raw data to extract material parameters for their model.
Other examples of the applications of the finite elements analyses include the
warpage analyses (Lee, 2000; Miyake et al., 2001), the properties of substrates
(Moore and Jarvis, 2002), the effects and deformation of the underfill (Su et al., 1999;
Cheng et al., 2000), cracks (Wu et al., 1998), material selections (Khan and Molligan,
2001), testing designs (Hui and Ralph, 1997; Xie, 2000), parametric studies (Popelar,
1997; Lee and Lau, 2000; Okura et al., 2000) and interfacial fracture toughness

(Wang et al., 1999; Gu et al., 2001).

14 Constitutive Models for Material Modeling

The accuracy of FE prediction depends on the precise modeling of the
behavior of the solder materials (Frost et al., 1988). This is a significant task as the
behavior of the solder alloys throughout their service lives is complicated (Basaran
and Chandaroy, 1998; Palmer et al., 2000). As solders usually operate at high
homologous temperatures, both time-dependent creep and time-independent
plasticity are significant parts of solder deformation. Solder materials are also highly

viscoplastic, with high degree of dependence on both the temperature and strain rate.
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At elevated temperatures (room temperature with homologous temperature of 0.65 is
considered high for solders), the alloy is significantly weaker as creep and stress
relaxation occur rapidly. At lower temperatures, the alloy is stronger and creep
phenomenon is less severe. The thermomechanical properties and behavior of solder
joints depend on the microstructure as well (Basaran and Chandaroy, 1998). In

general, solder materials are significantly weaker with smaller grain sizes.

For accurate estimation of deformation responses of a package by FE
analyses, constitutive models incorporated in the analyses should be able to simulate
the deformation and stress-strain behavior of the solder alloys. A realistic
constitutive model has become an indispensable prerequisite for FE simulations of
electronic packaging devices. A good constitutive model must be able to predict and
extrapolate beyond the existing experimental measurements. This extrapolation
encompasses three main segments: from simple test data to complex histories; from
short-term tests to long-term service; and from a small number of test data to all of
the temperatures and strain rates of interest. The success of the extrapolation pivots
on the physical soundness of the models. The closer the phenomenological
description reflects the actual physical processes involved, the further it can be

extrapolated beyond the range of variables for which it was measured (Kocks, 1987).

Despite this physical soundness necessity, most currently used constitutive
models are simple models, intriguing concern over the validity and the accuracy of
the predicted results. Classical constitutive models of materials artificially separate
the inelastic strain into various parts, including time-independent plastic strain, time-
dependent creep strain and transient strain, each with its respective empirical

equations. Even though it is simpler to implement and easier to understand with such
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separation, there is a lack of physical bases for the postulate. Both the creep and
plasticity are controlled by the similar mechanisms, such as diffusion, climb,
dislocation and viscous glide (Miller, 1987). Hence, it is natural to represent both
creep and plasticity with a single set of constitutive equations. Models with such
approach are called unified constitutive models. There is an urgent need to develop

and apply such unified models in future analyses to obtain reliable results.

The Anand model is one of the most widely used unified constitutive models
for modeling solder alloy in the electronic packaging simulations. However, its
popularity is due to the simplicity and availability of the model, rather than the
suitability and accuracy of the prediction (Wang, 2001). As the Anand model is
relatively simple, with only one scalar internal variable and nine material parameters,
the model is preferred by many researchers to other unified constitutive models with
intricate, and sometimes even formidable, evolution equations. For example, the full
set of MATMOD-4V equations has 21 parameters and five complicated evolution
equations (Miller, 1987). Furthermore, the Anand model is readily applied by the
researchers, as the model is incorporated in commercial FE packages, such as
ANSYS. This makes the model exceptionally attractive to packaging designers and

engineers.

Notwithstanding its popularity, comprehensive studies on the suitability and
validity of the Anand model in representing the viscoplastic constitutive behavior of
solder materials are limited, if there is any. The Anand model was implemented
prevalently in an ad hoc manner, without proper and systematical assessment of the
accuracy of the prediction of the model, particularly when applied to the solder

materials. The capability of the model to predict cyclic behavior is obscure. Hence,
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prompt study to scrutinize the predictive capability of the Anand model is imperative

to ascertain the accuracy and reliability of the FE analyses of electronic packages.

1.5

1)

2)

1

2)

3)

4)

Objectives and Scopes of the Study

The objectives of this study are as follows:

To develop a unified inelastic strain model for solder materials.

To examine the model for mechanical responses of tin-lead solder alloys
subjected to loading conditions of electronic components.

The scope of current study includes the followings.

Gathering of published experimental data on the tin-lead solder alloy,
particularly eutectic solder. This information constitutes of mechanical
properties and behavior of the material.

Formulation of the unified constitutive model based on the work of Anand
(1985). The model is employed using Runge-Kutta integration scheme.
Procedures to determine the model parameters are developed.

Establishment and validation of sets of model parameters for eutectic tin-lead
solder alloys, based on monotonic loading data.

Examination of the predictive capability of the model for monotonic and
cyclic response of the solder alloy. The capability of the model to handle
variations in the reported data is assessed.
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A few assumptions and constraints are imposed throughout this study. These

assumptions are as follows.

1.6

1))

2)

3)

4)

The study is primarily on tin-lead near eutectic solder, with composition
Sn63-Pb37 or Sn60-Pb40. Both compositions are assumed to have similar
constitutive behavior.

The study is conducted under normal operating conditions of solder joints,
with temperatures range from -55°C to 150°C and strain rates range from
1.0E-5/s to 1.0E-1/s. Even though the model can be applied for temperature
and strain rate out of above range, the accuracy of the prediction is not critical
and will not be investigated.

Von Mises yield criteria are assumed throughout the study. Shear test data are

converted to tension data using the equations o = 743 and &= 14 /3 for

the comparison purposes.

The present study is confined to uniaxial loadings only.

Thesis Layout

Chapter 1 of the thesis describes the background and the necessity of the

current study. The development of the surface mount technology is overviewed and

the new arising concerns regarding the solder joint reliability are discussed. The

importance of finite element analyses and lifetime predictions of solder joints is

demonstrated. The need to implement physically sound unified constitutive models

in solder material modeling is delineated. The necessity to conduct comprehensive

study to assess the suitability and predictive capability of the Anand model in
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representing the constitutive behavior of solder materials is coherently illustrated.

The objectives and the scope of the study are unambiguously presented.

Chapter 2 reviews the types of solder materials currently in use, including the
lead free solders. Physical properties of eutectic tin-lead solder are adequately
reviewed, comparing data reported by various authors in the literature. The
viscoplastic constitutive behavior of eutectic tin-lead solder is critically reviewed,
building up the essential material database for the study. The diversities in the
reported experimental data and possible factors contributing to such diversities are
also discussed. The reviews of available constitutive models are presented, including

the applications of the Anand model in the literature by various authors.

Chapter 3 formulates the unified constitutive model employed throughout the
analyses in the study, based on the Anand model. Outlines of the study are presented
and experimental data utilized in the analyses are summarized. The equations for the
elastic moduli used in the analyses are derived. The flow and evolution equations in
the Anand model are studied and procedures to determine the nine Anand model
parameters are developed. The parameter sets obtained in the study are presented and
compared with the reported values in the literature. Time integration schemes
implemented in the analyses are discussed and the details of the integration are

demonstrated.

Chapter 4 presents and discusses the simulation results of current studies,
compared with the published data from the literature. To verify the model,
predictions of the Anand model using the parameters obtained are compared with

similar sets of experimental data from which the parameters are acquired. The
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predictive capability of the Anand model under monotonic loading is assessed.
Predictions of the Anand model under tensile loadings, strain rate jump tests, creep
tests and stress relaxation tests are compared with the experimental data from the
same authors. The capability of the model to extrapolate from the monotonic
experimental data to the cyclic behavior is also evaluated. Ratcheting effects, low
cycle fatigue and load-history dependence of the behavior of solder are simulated
and compared with the experimental data. The capability of the model to handle
variations in the reported experimental data is then examined. Several phenomena
that the Anand model is not able to predict are presented. Interpretation of the Anand

parameters to assess the underlying mechanisms is further discussed.

Chapter 5 concludes the finding of the study. The reported behavior of tin-
lead eutectic solder is found to vary from one source to another, even under similar
chemical composition, depending on its manufacturing processes and microstructures.
The Anand model is capable to predict the behavior of solders under both monotonic
and cyclic loadings, if the same experimental sets are considered. Significant
discrepancies are found between the predictions and the experimental data in the
directional hardening behavior, such as Bauschinger effects. The Anand model also
fails to predict the diversity in reported experimental data. Various suggestions are

proposed for the future improvement of the Anand model.
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parameter may be developed to further represent the growth of grain size

during temperature and cyclic loadings.
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