Universiti Teknologi Malaysia Institutional Repository

Effect of reflow profile on intermetallic compound formation

Idris, Siti Rabiatull Aisha and Ourdjini, Ali and Mohamed Ariff, Azmah Hanim and Osman, Saliza Azlina (2013) Effect of reflow profile on intermetallic compound formation. In: IOP Conference Series: Materials Science and Engineering.

[img]
Preview
PDF
3MB

Abstract

Reflow soldering in a nitrogen atmosphere is a common process consideration in surface mount technology assembly. This is because the use of nitrogen in reflow equipment may benefit the process as well as the quality of the end product, where it can increase the reliability of the solder joint. So far, many papers have reported effects of cooling speed, type of solder pastes and solder fluxes on the reliability of lead-free solder joints. While the effects of reflow conditions on intermetallic compound (IMC) formation at the solder joint such as the atmosphere during the reflow process are still unclear. The present study investigated thoroughly the effect of different reflow soldering atmosphere, which is air and nitrogen on IMC formation and growth. Several techniques of materials characterization including optical, image analysis, scanning electron microscopy and energy dispersive X-ray analysis will be used to characterise the intermetallics in terms of composition, thickness and morphology. In addition, the effects of cooling rate and isothermal aging were also studied for the solder alloy Sn–4Ag–0.5Cu on electroless nickel/immersion gold (ENIG) surface finish. From the study, it was found that reflowing under nitrogen atmosphere had better effect on IMC formation and growth compared to reflowing under air. Besides, the cooling rate of solder during reflow also appears to have a significant effect on the final structure of the solder joint, and controlling the growth behaviour of the IMC during subsequent isothermal aging.

Item Type:Conference or Workshop Item (Paper)
Subjects:T Technology > TJ Mechanical engineering and machinery
Divisions:Mechanical Engineering
ID Code:51021
Deposited By: Haliza Zainal
Deposited On:27 Jan 2016 01:53
Last Modified:27 Sep 2017 08:19

Repository Staff Only: item control page