DESIGN PHASE CONSTRUCTABILITY CONCEPTS IN HIGHWAY PROJECTS

SITI HAFIZAN BINTI HASSAN

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Science (Construction Management)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > NOVEMBER 2005

To my beloved mother and father, my families, my lecturers, my friends and my special friend.....Thanks for the everlasting love and supports.....

ACKNOWLEDGEMENTS

First and foremost, grateful thanks to Allah S.W.T for guiding and helping me in this dissertation. Giving me chances in a way to complete it.

I would like to extend my deepest appreciation and thanks to my supervisor, Ir. Dr. Rosli Mohamad Zin for his continuous guidance and encouragement in the effort to complete this thesis.

I would also like to thank to all the engineers and architects who participated in the questionnaires survey and field interviews and also to those who were involved directly or indirectly in the completion of this project.

Last but not least is my appreciation and gratitude to my mum, Puan Wan Fatimah, my dad, Encik Hassan, my brother, Encik Abdul Aziz, my families, my friends, Idris, Nik Zilazmi, Fareh, Roslina, Lenny, Aiza and Hasnizar for their understanding, support and encouragement.

ABSTRACT

Nowadays, highway construction projects suffer from lack of constructability, which causes many problems; traffic, substantial number of changes, poor planning, disputes, cost overruns, poor safety practices and time delays. Some researchers have realized the seriousness of this shortfall and have suggested solutions to resolve it. Previous studies indicate that, overall constructability is not being implemented to its full potential in highway sector. So, this study tries to explore constructability implementation in the local construction industry particularly the highway sector. The aim of the study is to establish guideline that can be used by engineers in order to improve constructability of highway project design. The findings of the study shows there were eighteen design phase constructability concepts that are 'very important' and 'important' in highway sector. For the level of application, it was found that most of the concepts are in 'medium application'. It can be concluded that the engineers have the constructability knowledge but lack of understanding of the concepts. Based on the survey exercise, a guideline has been developed consisting of two parts which are 'very important' and 'important'. It is expected that by having this guideline, engineers will be able to apply this concepts effectively in highway project design in Malaysia.

ABSTRAK

Kesan daripada kurangnya aplikasi kebolehbinaan dalam pembinaan jalanraya pada masa kini telah menyebabkan berlakunya banyak masalah dalam pembinaan seperti lalulintas, perubahan rekabentuk, perancangan yang lemah, pertikaian, kos projek yang melebihi nilai projek sebenar, sistem keselamatan yang lemah, serta kelewatan masa penyiapan projek itu sendiri. Para penyelidik telah mengenalpasti betapa seriusnya masalah ini dan telah mencadangkan beberapa penyelesaian dalam menyelesaikannya. Kajian terdahulu menunjukkan bahawa keseluruhan kebolehbinaan ini tidak dilaksanakan secara sepenuhnya di dalam projek jalanraya. Maka, kajian ini cuba meninjau perlaksanaan kebolehbinaan ini di dalam projek pembinaan jalanraya setempat. Matlamat kajian ini adalah untuk menghasilkan satu garis panduan agar boleh digunakan oleh para jurutera dalam usaha untuk mempertingkatkan lagi penggunaan kebolehbinaan dalam fasa rekabentuk di dalam projek jalanraya. Hasil daripada kajian ini menunjukkan bahawa lapan belas konsep kebolehbinaan yang dikaji adalah 'sangat penting' dan 'penting' dalam projek jalanraya. Dari segi tahap penggunaan konsep ini pula, didapati bahawa semua lapan belas konsep yang dikaji di bawah kedudukan 'penggunaan pertengahan'. Dapat disimpulkan bahawa jurutera di Malaysia mempunyai pengetahuan mengenai kebolehbinaan ini, tetapi kurangnya pemahaman dari segi konsep-konsepnya. Berdasarkan pemerhatian kajian yang dijalankan, garis panduan telah dibentuk di mana ia mengandungi dua bahagian iaitu 'sangat penting' dan 'penting'. Adalah dijangkakan bahawa dengan adanya garis panduan ini, jurutera boleh mengaplikasikan konsep-konsep ini secara berkesan di dalam rekabentuk projek-projek jalanraya di Malaysia.

TABLE OF CONTENT

CHAPTER	TITLE	PAGE

THESIS TITLE	i
DECLARATION SHEET	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xiv
LIST OF APPENDIX	xvi

1	INTRODUCTION		1
	1.1	Introduction	1
	1.2	Problem Statement	3
	1.3	Aim and Objectives of the Study	4
	1.4	Scope of Research	4
	1.5	Research Methodology	4

LITE	RATU	RE REVIEW	6
2.1	Const	ructability Definitions	6
2.2	Gener	al Overview Constructability in	7
	Highv	vay Project	
	2.2.1	Government Agency Observations	8
	2.2.2	Design Firm Observations	11
	2.2.3	Construction Firm Observations	14
2.3	Const	ructability in the Highway	14
	Const	ruction Project Process	
	2.3.1	Feasibility Design Stages	16
	2.3.2	Design Stages	17
	2.3.3	Construction	18
	2.3.4	Operation	18
2.4	Maxir	num Benefit of Constructability	19
2.5	Const	ructability Concepts in Highway Projects	22
2.6	Desig	n Phase Constructability Concepts	32
	2.6.1	Carry Out Thorough Investigation of the Site	34
	2.6.2	Design for Minimum Time Below Ground	36
	2.6.3	Design for Simple Assembly	39
	2.6.4	Encourage Standardisation/Repetition	40
	2.6.5	Design for Preassembly or Modularisation	40
	2.6.6	Analyse Accessibility of the Jobsite	41
	2.6.7	Employ Any Visualisation Tools	42
	t	to Avoid Physical Interference	
	2.6.8	Investigate Any Unsuspected Unrealistic	42
	(or Incompatible Tolerances	
	2.6.9	Investigate the Practical Sequence of	43
	(Construction	
	2.6.10	Plan to Avoid Damage to Work by	43
		Subsequent Operations	

2

2.6.11 Consider Storage Requirement at	43
the Jobsite	
2.6.12 Investigate the Impacts of Design on	44
Safety during Construction	
2.6.13 Design to Avoid Return Visit by Trade	45
2.6.14 Design for the Skills and Resources	45
Available	
2.6.15 Consider Suitability of Designed Materials	46
2.6.16 Provide Detail and Clear Information	45
2.6.17 Design for Early Enclosure	46
2.6.18 Consider Weather Effect in Selecting	
Materials or Construction Methods	47
Summary	48
	 2.6.11 Consider Storage Requirement at the Jobsite 2.6.12 Investigate the Impacts of Design on Safety during Construction 2.6.13 Design to Avoid Return Visit by Trade 2.6.14 Design for the Skills and Resources Available 2.6.15 Consider Suitability of Designed Materials 2.6.16 Provide Detail and Clear Information 2.6.17 Design for Early Enclosure 2.6.18 Consider Weather Effect in Selecting Materials or Construction Methods Summary

3 RESEARCH METHODOLOGY

2.7

4

3.1	Introduction	50
3.2	Research Process	50
3.3	Determining the Research Objectives	51
3.4	Steps in Methodology	52
	3.4.1 Conceptualization	52
	3.4.2 Literature Review	53
	3.4.3 Questionnaire	53
	3.4.4 Analysis	56
3.5	Development of Guidelines	57
DAT	A ANALYSIS AND DISCUSSION	
4.1	Introduction	58

- 4.2Respondent's Background594.2.1Type of Organization59
 - 4.2.2 Level of Education 60

	4.2.3	Field of Specialization	61
	4.2.4	Position in Organization	62
	4.2.5	Numbers of Years Practiced in Designing	63
	4.2.6	Numbers of Years Practiced in Working	64
4.3	Level	of Importance	66
	4.3.1	Frequency Analysis	66
	4.3.2	Average Index Analysis	77
4.4	Level	of Application	81
	4.3.3	Frequency Analysis	81
	4.3.4	Average Index Analysis	91
4.5	The D	evelopment of Design Phase	95
	Const	ructability Improvement Concepts	
4.6	Discus	ssion	99

5 CONCLUSION AND RECOMMENDATIONS

5.1	Conclusion	100
	5.1.1 Objective 1	100
	5.1.2 Objective 2	104
	5.1.3 Objective 3	105

5.2 Recommendations 105

REFERENCES	1	07

APPENDIX 110

LIST OF TABLES

TABLE NO.

TITLE

PAGE

4.1	Type of Organization	59
4.2	Level of Education	61
4.3	Field Of Specialization	62
4.4	Position in Organization	63
4.5	Number of Years Practiced in Designing in	64
	Highway Projects	
4.6	Number of Years Practiced in Working in	65
	Highway Projects	
4.7	Carry out Thorough Investigation of the Site	66
4.8	Provide Detail and Clear Design Information	67
4.9	Analyze Accessibility of the Jobsite	67
4.10	Investigate the Impacts of Design on Safety	68
	during Construction	
4.11	Consider Suitability of Designed Materials	69
4.12	Investigate the Practical Sequence of Construction	69
4.13	Consider Adverse Weather Effect in Selecting Materials	70
	or Construction Methods	
4.14	Plan to Avoid Damage to Work by Subsequent	71
	Operations	
4.15	Investigate Any Unsuspected Unrealistic or	71

Incompatible Tolerances

	-	
4.16	Designs for the Skills and Resources Available	72
4.17	Consider Storage Requirement at the Jobsite	72
4.18	Design for Minimum Time below Ground	73
4.19	Design for Early Enclosure	73
4.20	Encourage Standardization/Repetition	74
4.21	Employ Any Visualization Tools to Avoid	74
	Physical Interference	
4.22	Design for Simply Assembly	75
4.23	Design to Avoid Return Visit by Trade	76
4.24	Design for Preassembly and/or Modularization	76
4.25	Average Index Value for Degree of Importance of	79
	Constructability Concepts during the Design Phase	
4.26	Carry Out Thorough Investigation of the Site	81
4.27	Employ Any Visualization Tools to Avoid	82
	Physical Interference	
4.28	Encourage Standardization/Repetition	82
4.29	Consider Storage Requirement at the Jobsite	83
4.30	Design for Minimum Time below Ground	83
4.31	Investigate the Practical Sequence of Construction	84
4.32	Design for Simply Assembly	84
4.33	Design for the Skills and Resources Available	85
4.34	Investigate the Impacts of Design on Safety during	86
	Construction	
4.35	Analyze Accessibility of the Jobsite	86
4.36	Design For Preassembly and/or Modularization	87
4.37	Investigate Any Unsuspected Unrealistic or	87
	Incompatible Tolerances	
4.38	Design to Avoid Return Visit by Trade	88
4.39	Design for Early Enclosure	88
4.40	Provide Detail and Clear Design Information	89

4.41	Plan to Avoid Damage to Work by Subsequent	89
	Operations	
4.42	Consider Suitability of Designed Materials	90
4.43	Consider Adverse Weather Effect in Selecting Materials	90
	or Construction Methods	
4.44	Average Index Value for Degree of Application of	93
	Constructability Concepts during the Design Phase	

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

1.1	Research Methodology Chart	5
2.1	The Highway Construction Project Process	16
2.2	Project Life Cycle and Designers Level of Influence	20
2.3	Ability to Influence Final Cost Over Project Life	21
2.4	Process of launching girder for elevated structure	35
2.5	Problems faced during launching of some girders	35
2.6	Details of elevated highway	37
2.7	Problem of compaction and result after	38
	project start-up	
3.1	Steps in Methodology	52
3.2	Questionnaire Flow Chart	55
4.1	Percentage of type of organization	60
4.2	Percentage of level of education	61
4.3	Percentage of field of specialization	62
4.4	Percentage of Position in Organization	63
4.5	Percentage of Number of Years Practiced in	64
	Designing In Highway Projects	
4.6	Number of Years Practiced in Working in	65
	Highway Projects	
4.7	Degree of Importance of Constructability Concepts	80

4.8	Degree of Application of Constructability Concepts	94
4.9	Design Phase Constructability Improvement Concepts	96
	For Malaysian Highway Projects	

LIST OF APPENDIX

APPENDIX

TITLE

PAGE

А

Questionnaire Form

110

CHAPTER 1

INTRODUCTION

1.1 Introduction

Government and private agencies that carried out highway construction project are facing the reality that the public will no longer tolerate construction projects that are insensitive to road users and adjacent communities. According to Russell *et al.* (1993), highway construction projects are characterized by traffic problems, changes of design, poor planning, disputes, cost overruns, poor safety practices and time delays. Constructability is seen as one of the best solutions to these problems where it has demonstrated the potential to minimize the number and magnitude of changes, disputes, cost overruns, and delays during construction.

Constructability has been defined in a number of ways. Constructability is described as the optimum use of construction knowledge and experience in planning, design, procurement, and field operations to achieve overall project objectives (*Constructability*, 1986). Constructability is also defined as a measure of the ease or expediency with which a facility can be constructed (Hugo *et al.*, 1990). Lastly, constructability is often portrayed as integrating construction knowledge, resources,

technology and experience into the engineering and design of a project (Anderson *et al.*, 1995).

Highway project constructability can be particularly demanding for a range of reasons. For example, some of the highway construction technologies are varying hastily, and, as with most construction, the personnel is transient and site conditions can vary to the highest degree. Nearly all projects are subjected to severe public scrutiny involving open competitive bidding, thereby separating the planning and execution phases and largely precluding a fast-tracked approach to construction. Designs standards, authored by a multitude of organizations abound and often limit, if not discourage selective innovation. The prerequisite for nonproprietary specifications often leads to vagueness. In general, the perception is that project durations are longer than necessary and that construction costs can possibly be lowered. As a result, specifications supportive of constructability become an important element for improving project performance (Hugo *et al.*, 1990).

Beside the project performance, constructability also has been successfully used to reduce project durations. Eldin (1996) provides several examples of projects that have successfully used constructability to reduce project durations without increasing project cost. In a CII (1995) study five projects were analyzed, reporting 11 to 30% reductions in project duration directly attributed to constructability reviews (i.e., without cost increases). Although the majority of the projects were associated with industrial facilities, one of them was an interstate highway realignment that included the reconfiguration of eight bridges and the construction of two new bridges to facilitate the addition of a high occupancy vehicle lane in each direction (Eldin, 1996).

Constructability review is the phase of construction project management where an independent and detailed analysis of all the contract drawings and construction documents is conducted before their release for construction. An effective constructability review process has the potential to incorporate into design documents the best practices, guidelines, checklist, and lessons learned from previous projects, thereby improving the ease of construction and reducing life cycle costs. This critical process evaluates the "ability to construct" your construction project (Milstead, 1997). Constructability reviews of highway projects during design have the potential to minimize the number and magnitude of changes and delays during construction and thereby reduce durations (Anderson and Fisher 1997). A constructability analysis of six highway projects suggests that benefits may be as large as 25 times greater as costs (Anderson and Fisher 1997). Improved processes and management for effectively using constructability reviews to reduce total project durations can potentially improve construction project management. The way how to provide the best constructability review is by improving the understanding of application and importance of constructability concepts in highway projects.

1.2 Problem Statement

Nowadays, highway construction suffers from lack of constructability, which causes traffic problems, changes of design, poor planning, disputes, cost overruns, poor safety practices and time delays. Researchers in developed countries have realized the seriousness of this shortfall and suggested solutions to resolve it. In Malaysia, research in constructability in highway projects has not been popular researched yet. One of the reasons is due to lack of understanding of constructability concepts among the engineers. Design Phase Constructability Improvement Concepts for Malaysian Highway Projects should be developed, that are aimed at encouraging the project team to apply them, where appropriate, to their projects. The basic message is that applying these constructability concepts will enhance project's constructability, consequently optimizing the schedule, cost and quality of the project for the benefit of all parties involved.

1.3 Aim and Objectives of The Study

The aim of this study is to establish Design Phase Constructability Guidelines For Highway Projects in Malaysian Construction Industry. In order to achieve it, the following objectives have been identified:

- a) To identify the constructability concepts in highway projects.
- b) To identify the level of importance and application of constructability concepts in highway projects.
- c) To establish Design Phase Constructability Improvement Guidelines for highway projects.

1.4 Scope of Research

This research was carried out by questionnaires and interviews. The research focused on Malaysian Highway Projects with contract values of more than RM 5 million. The questionnaires were distributed to the senior construction management team like engineers, architect or project manager and etc, who involved in highway projects.

1.5 Research Methodology

The methodology of research were help to realize the essential stages of methodology performed or steps of process carried in order to achieve the objectives of this research. Figure 1.1 shows the research methodology chart that has been used in this research.

Figure 1.1 Research Methodology Chart

REFERENCES

- Adam, S. (1989). *Practical Buildability*. The Construction Industry Research and Information Association, London.
- Al-Hammad, A-mohsen and Assaf, S. (1996). Assessment of Work Performance of Maintenance Contractors In Saudi Arabia. *Journal of Management in Engineering*.ASCE. 16(1): 44-49.

Anon (1986). Can Your Design Be Built? Civil Engineering. ASCE: 49-53.

- Boyce, W.J. (1991). Design for Constructability. Hydrocarbon Processing. 73(12): 81
- CII (1986). *Constructability A Primer*. Publication 3-1. Austin, Texas: Construction Industry Institute.
- CIRIA (1983). Buildability: An Assessment. Special Publication 26: CIRIA
- David N.Ford, Stuart, and Andrew. (2004). Managing Constructability Reviews to Reduce Highway Project Durations. *Journal of Construction Engineering and Management*, ASCE, Vol. 130, No.1, 33-42
- Eldin, N.N. (1996). Constructability Improvements of Project Designs. *Journal of Construction Engineering and Management*. ASCE. 114(4): 631-639.

- Felix, Geogina. (1997). Assessment of Constructability Practices Among General Contractors. *Journal of Construction Engineering and Management*, ASCE, Vol. 4, No.3, 114-123
- Fischer, Tatum. (1997). Characteristics of Design Relevent Constructability Knowledge. Journal of Construction Engineering and Management, ASCE, Vol. 123, No.3, 253-255
- Fisher, D.J. and Rajan, N.(1996). Automated Constructability Analysis of Work-zone Traffic-Control Planning. *Journal of Construction Engineering and Management*, ASCE, Vol. 122, No.1,36-43
- Ferguson, I. (1989). Buildability in Practice. London: Mitchell's Professional Library.
- Ganah, A., Anumba, C. and Bouchlaghem, N. (2000). The Use of Visualisation to
 Communicate Information to Construction Sites. *ARCOM 16th. Annual Conference*.
 6-8 September. Glasgow Caledonian University, UK: 833-842.
- Gambatese, J.A. and McManus, J.F. (1999). Discussion of the Constructibility Review Process: A Constructor's Perspective, by Roy Mandelsohn. *Journal of Management in Engineering*. ASCE. 15(1): 93-94.
- Griffith, A and Sidwell, T. (1995). *Constructability in Building and Engineering Projects*. London: Mac Millan Press Ltd.
- Hassan, Z. (1997). CONPLAN: Construction Planning and Buildability Evaluation in an Integrated Intelligence Environment. Department of Surveying, University of Salford, UK: PhD. Thesis.
- Hugo, F., O'Connor, J.T. and Ward, W.V. (1990). *Highway Constructability Guide*.Research Project 3-6-88-1149. Centre for Transport Research. Uviversity of Texas.

- James E. Rowing, Steven L. Kaspar. (1991). Constructability of Cable-Stayed Bridges. Journal of Construction Engineering and Management, ASCE, Vol. 117, No.2, 259-275
- Jergeas, P.E., John Van Der Put. (2001). Benefits Of Constructability On Construction Projects. *Journal of Construction Engineering and Management*, ASCE, Vol. 127, No.4, 281-290
- Kirby, G.J, Douglas, A.F. and Donald, K.H. (1987). Improvement in Design Review Management. *Journal of Construction Engineering and Management*, ASCE, Vol. 114, No.1, 549-563
- Madelsohn, M. (1997). The Constructability Review Process: A Constructor's Perspective. *Journal of Management in Engineering*. ASCE. 13(3): 17-19.
- Nabil A Kartam. (1996). Making Effective Use of Construction Lessons Learned in Project Life Cycle. *Journal of Construction Engineering and Management*, ASCE, Vol. 122, No.1, 14-21
- Nima, A.N. (2001). Constructability in the Malaysian Construction Industry., Faculty of Engineering, UPM, PhD. Thesis.
- Nima, Mohd R. Kadir, S. Jaafar. (2002). Constructability Concepts in West Port Highway In Malaysia. *Journal of Construction Engineering and Management*, ASCE, Vol. 128, No.4, 348-356.
- Nima, Mohd R. Kadir, S. Jaafar. (2004). Constructability Concepts in Kuala Selangor Cable-Stayed Bridge In Malaysia. *Journal of Construction Engineering and Management*, ASCE, Vol. 130, No.3, 315-321.

- O'Connor J.T. and Davis, V.S. (1988). Constructability Improvement During Field Operations. *Journal of Construction Engineering and Management*. ASCE. 114(4):548-563.
- O'Connor, Tamer El-Diraby. (2000). Urban Freeway Reconstruction Planning: Case of Mockingbird Bridge. *Journal of Construction Engineering and Management*, ASCE, Vol. 126, No.1, 61-67.
- Philip, Gambatese, James. (2005). Assessing State Transportation Agency Constructability Implementation. *Journal of Construction Engineering and Management*, ASCE, Vol. 131, No.5, 569-578
- Rosli Mohamad Zin (2004). *Constructability Improvement of Project Design*. Dept of Civil Engineering, UTM, Johor, Ph.D. Thesis.
- Russell, J.S. and Gugel, J.G. (1993). Comparison of Two Corporate Constructability Program. *Journal of Construction Engineering and Management*. ASCE. 119(4): 771-785.
- S.L. Hon, D.A. Gairns, O.D. Wilson. (1988). Buildability: A Research and Practice. *Australian Institute of Building Papers*.
- Stuart, Fisher, Suhel. (1998). Integrating Constructability Into Project Development: A Process Approach. *Journal of Construction Engineering and Management*, ASCE, Vol. 126, No.2, 81-88.
- Stuart, Fisher, Suhel. (1999). Constructability Issues In Highway Projects. *Journal of Construction Engineering and Management*, ASCE, Vol. 15, No.3, 60-68.
- Thomas E. Glavinich. (1995). Improving Constructability During Design Phase. *Journal* of Construction Engineering and Management, ASCE, Vol. 1, No.2.73-76.