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ABSTRACT 

 

 

 

 An investigation of the structural properties of hydrogenated amorphous 
silicon (a-Si:H) thin films prepared by plasma enhanced chemical vapour deposition 
of silane (SiH4) was done using a combination of atomic force microscopy (AFM), 
photoluminescence, infrared and UV spectroscopy. Films were prepared with rf 
power ranging from 100-250 W. For every rf power employed, substrate temperature 
were varied from room temperature to 300˚C. The deposition rate was found to be 
slightly increasing with an increase of rf power while decreasing as the substrate 
temperature increases. The AFM images can be classified into three groups: most 
smooth (rms: 1.2nm), intermediate rms (2.4-3.6 nm) and highest roughness (rms: 4.9 
nm). The transition to rougher films at higher substrate temperature is attributed to a 
change in the deposition process. The IR vibrational spectra obtained from FTIR 
spectroscopy display modes which can be characterized as predominantly hydrogen 
motions. On the basis of these identifications, it is found that samples produced on 
high-temperature have SiH, SiH2 and (SiH2)n groups with very little SiH3. In 
contrast, the ir spectra of samples produced on room-temperature are dominated by 
vibrational modes of SiH3 and (SiH2)n. At low rf power, the spectrum is dominated 
by a strong absorption bands at 2000 cm-1 associated with SiH stretching bond and 
also 630 cm-1 associated with SiH bending. At high rf power, an additional 
absorption band at around 2090 cm-1 which corresponds to (SiH2)n stretching mode 
and SiH2 stretching mode becomes more pronounced. The optical energy gap 
obtained from UV spectroscopy decreases with increasing of rf power and substrate 
temperature. This decrement is due to the drop of hydrogen content. At low substrate 
temperature, photoluminescence spectrum of a-Si consists of a relatively broad band 
with its main peak around 1.4 eV. The spectrum shifts to lower energies (around 1.37 
eV) and its intensity decreases with increasing temperature. It is suggested that this is 
due to an activated non-radiative recombination (relaxation) process where exciton 
are captured by deep traps and this become more probable as temperature increases.  
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ABSTRAK 

 

 

 

 Satu kajian tentang struktur bahan saput tipis amorfus silikon terhidrogenasi 
(a-Si:H) yang disediakan melalui kaedah pemendapan wap kimia diperkuat plasma 
dengan gas silane (SiH4) telah dijalankan melalui kombinasi kaedah Mikroskopi 
Daya Atom (MDA), fotoluminesen serta spektroskopi inframerah (IM) dan 
ultralembayung. Saput telah disediakan dengan kuasa frekusi radio (fr) dari 100-250 
W. Bagi setiap kuasa fr yang dikenakan, suhu substrate diubah dari suhu bilik ke 
300˚C. Kadar pemendapan didapati meningkat dengan setiap penambahan kuasa fr 
manakala ianya menurun apabila suhu substrat meningkat. Imej MDA yang dicerap 
boleh diklasifikasikan kepada tiga kumpulan: paling halus (rms 1.2 nm), rms 
pertengahan (2.4-3.6 nm) dan paling kasar (rms 4.9 nm). Transisi ke saput yang lebih 
kasar adalah disebabkan prubahan yang berlaku dalam proses pemendapan. 
Spektrum yang diperolehi daripada spektroskopi inframerah memaparkan mod yang 
boleh dicirikan sebagai gerakan hidrogen. Melalui identifikasi ini, didapati sampel 
yang disediakan dalam suhu tinggi mempunyai kumpulan SiH, SiH2 dan (SiH2)n 
dengan sedikit SiH3. Sebaliknya, dalam suhu bilik didapati spektrum didominasi oleh 
mod getaran SiH3 dan (SiH2)n. Pada kuasa fr rendah, spektrum didominasi oleh jalur 
serapan yang kuat pada 2000 cm-1 dikaitkan dengan ikatan regangan SiH dan 630 
cm-1 dikaitkan dengan bengkokan SiH. Manakala pada kuasa fr yang tinggi, satu 
jalur serapan sekitar 2090 cm-1 dikaitkan dengan mod regangan (SiH2)n dan SiH2 
didapati semakin ketara. Jurang tenaga optik yang diperolehi melalui spektroskopi 
ultralembayung menurun dengan peningkatan kuasa fr dan suhu substrat. Ini 
disebabkan oleh menurunnya jumlah hidrogen yang terkandung dalam sampel. Pada 
suhu substrat yang rendah, spektrum fotoluminesen a-Si memaparkan jalur lebar 
dengan puncak utama sekitar 1.4 eV. Puncak spectrum menurun ke tenaga yang lebih 
rendah (sekitar 1.37 eV) manakala keamatannya berkurang dengan peningkatan suhu 
substrat. Ini adalah disebabkan oleh teraktifnya proses penggabungan semula tanpa 
pemancaran (santaian) di mana exciton diperangkap oleh perangkap dalam pada 
jurang tenaga dan proses ini menjadi lebih mudah terjadi dengan peningkatan suhu 
substrat.  
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Amorphous Semiconductor 
 

Amorphous semiconductors are noncrystalline and have significantly different 

characteristics than those of crystalline (Street, 1991). They lack long-range periodic 

ordering of their constituent atoms. That is not to say that amorphous semiconductors 

are completely disordered on the atomic scale. 

 

Local chemistry provides almost rigorous bond-length and a lesser extent, 

bond-angle constraint on the nearest-neighbor environment. Unlike amorphous 

metals, amorphous semiconductor do not consist of close-packed atoms, but rather 

they contain covalently bonded atoms arranged in an open network with correlations 

in ordering up to the third or fourth nearest neighbors. The short-range order is 

directly responsible for observable semiconductor properties such as optical 

absorption edges and activated electrical conductivities. 

 

Amorphous semiconductors are usually fabricated in the form of thin films by 

an atomic deposition procedure such as evaporation, sputtering, chemical vapor 

deposition, and plasma decomposition on gases or electroplating. Sometimes ion 

bombardment of crystals is used to have an amorphous layer in the collision trail of 

the ions. 
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1.2 Potential Applications 

 

The commercial potential of amorphous semiconductors has encouraged many 

to study their properties and preparation. In particular, hydrogenated amorphous 

silicon (a-Si:H) is very versatile, low cost material that has made it desirable for the 

use in many device applications. Other special attribute of a-Si:H is the ability to 

deposit the material inexpensively over large areas. 

 

In recent years, the development of thin film a-Si:H photovoltaic solar cells has 

been extensively pursued because such devices offer the potential of low-cost 

electricity, making them attractive as a source of utility and residential electric 

power. Single-junction a-Si:H p-i-n solar cells with solar energy conversion 

efficiency of 10% have been achieved by several laboratories (Shen et al. 1991). The 

basic structure of a single-junction a-Si:H p-i-n cell consists of a very thin (less than 

10 nm thick, p-type layer), low-defect, 200 to 600 nm thick intrinsic layer, and a thin 

(about 30 nm thick) n-type layer. The construction of a basic single junction thin film 

a-Si:H solar cell is illustrated in Figure 1.1. To improve efficiency and stability of a-

Si:H solar cells, multiple-junction solar cell structures using a-Si:H alloys are being 

extensively studied (Yang et al. 1997).  

 

 The need for large-area charged particle and X-ray detectors for applications 

like medical imaging and calorimetry in high-energy physics experiments have 

stimulated significant investigations into using a-Si:H (50 to 70 µm thick) for such 

applications (Xi et al. 1991). Other photodiode applications for a-Si:H alloys include 

ultraviolet light detectors (Krause et al. 2001), edge detector for application to neural 

network image sensors (Sah et al. 1990), and position sensors for telephone terminals 

(Brida et al. 2002). 
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Figure 1.1: Schematic representation of a typical thin film a-Si:H solar cell on glass. 

The incoming photons with an energy larger than the band gap are 

absorbed in the intrinsic a-Si:H film creating holes-electron pairs. 

 

 

 The most attractive applications of a-Si:H technology are active matrix 

displays and active matrix flat-panel imagers (AMFPIs) (Zhao et al. 1995) which are 

collectively termed as active matrix arrays (Figure 1.2). Active matrix arrays contain 

many individual elements commonly known as pixels, which are generally addressed 

or read out by a grid structure of interconnecting lines termed gate and data lines. In 

these applications, an a-Si:H thin film transistor (TFT) is used as a switching element 

or pass transistor. The active matrix arrays require external chips to multiplex and 

drive the large number of gate and data lines. Considering the growing applications 

of the active matrix displays and imaging arrays, a low cost on-chip solution is 

needed for the multiplexer and driver circuitry. Designing of the multiplexer and 

driver circuits in a-Si:H technology requires the specific details of the displays and 

imaging arrays.  
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 Figure 1.2: Schematic of a general active matrix array 

 

 

 The unique properties of a-Si:H depend primarily on the complex structure 

involving different bonding configurations and on the incorporation of hydrogen in 

the films. Hydrogen, being a terminator in the carbon network, plays a crucial role in 

determining the properties of the films. The structure of, and the incorporation of 

hydrogen in a-Si:H films are critically determined by the energy of the ionic species 

and the consumption of the gas mixture in the deposition process. The ion energy can 

be changed by varying the deposition parameters. Therefore, it is feasible to obtain a-

Si:H films with a wide range of properties by adjusting the deposition parameters in 

the growth process. 

 

 

 

 

 

 

Data line 

Gate line 
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TFT 
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1.3 Research Objectives 

 

The main purpose of this work is to deposit hydrogenated amorphous silicon 

(a-Si:H) thin films using silane (SiH4) gas as film precursor via plasma enhanced 

chemical vapor deposition (PECVD) technique. Secondly, to study the structural 

characteristics of hydrogenated amorphous silicon (a-Si:H) thin films and to acquire 

better understanding of this material by characterisation techniques using surface 

profiler, atomic force microscopy (AFM), UV spectrophotometer, Fourier Transform 

Infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and photoluminescence 

spectrometer. In order to do so, the effect of deposition conditions on the grown film 

properties is investigated. 

 

 

1.4 Research Scope 

 

Hydrogenated amorphous silicon thin films are deposited using rf-PECVD 

with silane (SiH4) gas as film precursor under different substrate temperature and rf 

power while other parameters kept constant. The films are then structurally 

characterized using pre-determined characterization techniques which consist of; 

• Surface profiler 

• Atomic force microscopy (AFM) 

• UV spectrophotometer 

• Fourier Transform Infrared (FTIR) spectroscopy 

• X-ray diffraction (XRD) 

• Photoluminescence spectrometer 

 

 

1.5 Layout of Thesis 

 

This thesis is organized as follows. In Chapter 1, some of the previous related 

works on hydrogenated amorphous silicon (a-Si:H) and its application are reviewed. 

This chapter also ruled out the objectives of conducting the research. 



 6

 

Following the introduction chapter, the literature survey is presented in 

Chapter 2. This will cover the growth of a-Si:H thin film process, the fundamental of 

deposition technique which is the plasma enhanced chemical vapor deposition 

(PECVD) and the reaction process in this technique. 

 

Details of experimental methods, including fabrication of the films, PECVD 

setups are given in the initial part of Chapter 3. This is followed by the 

characterization techniques used, namely UV spectroscopy, FTIR spectroscopy and 

photoluminescence. 

 

Chapter 4 presents the results obtained in this work. Among the 

characterization results that would be presented are the surface morphology and 

deposition rate, IR transmission spectrum, optical energy gap and 

photoluminescence. Effect of varying deposition parameters on the film 

characteristics will also be discussed in this chapter. 

 

Finally, the conclusions of the project are made in Chapter 5. These include the 

summarization of the whole project and some recommendations for future work are 

also suggested. 
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the exciton makes its capture by deep traps more probable; hence, radiative channel 

becomes insignificant. In addition, as temperature increases, relaxation (non-

radiative recombination) is more probable than radiative recombination, giving the 

centre mass of luminescence spectrum moved to lower energy. 

 

 

5.2 Recommendation 

 

In this study, the hydrogenated amorphous silicon thin films were prepared 

under different rf powers and substrate temperatures. For future works, it is 

suggested that imposing other parameters such as chamber pressure and precursor 

gas flow rate would also be considered as these parameters are also believed to give a 

significant change in the structure of the amorphous film grown.  

 

In addition, instead of only focusing on the intrinsic amorphous silicon thin 

film, study can also be done on doped amorphous silicon thin film since doped 

materials are pretty much important mainly in developing thin film devices such as 

solar cells. This can be made possible by mixing doping gas precursor namely 

diborane (B2H6) and phosphane (P2H4) with silane (SiH4) during deposition process.  

 

There are many ways to study the structural characteristic of amorphous thin 

film. Other than the techniques mentioned in this thesis, the amorphous silicon thin 

films can also be characterised by using Scanning Electron Microscopy (SEM) or 

Tunneling Electron Microscopy (TEM) since these characterisation equipments are 

able to give detail on the surface morphology of the films. This would in turn 

compliment the AFM results that have been obtained. 
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