THE INTEGRATION OF CLOSE RANGE PHOTOGRAMMETRY AND DATABASE MANAGEMENT FOR TRAFFIC ACCIDENT MAPPING

NURKHALIESA BALQIS BINTI HAMZAH

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Science (Geomatic Engineering)

Faculty of Geoinformation and Real Estate Universiti Teknologi Malaysia

MARCH 2014

To my dearest husband, Saiful Adilin Ab Aziz my lovely mama, Jamaliah Desa my late dad, Hamzah Md. Jidin my siblings, Faris Syahin, Muhammad Qayyum and Nur Batrisyia

iii

ACKNOWLEDGEMENT

First of all, I thank Almighty, my husband, my parents, brothers, sisters, family in laws and friends for their constant encouragement without which this thesis would not be possible.

I take this opportunity to express my profound gratitude and deep regards to my guide Prof. Dr. Halim Setan and Dr. Zulkepli Majid for their exemplary guidance, monitoring and constant encouragement throughout the course of this thesis. The blessing, help and guidance given by them time to time shall carry out me a long way in the journey of life on which I am about to embark.

I also take this opportunity to express a deep sense of gratitude to PLSRG members, Sahidatul Fariza, Saidatul Shamila, Rizka Akmalia, Suzanna, Nurul Shahida, Suraya, Faizah, Sabrina, Erna, and Ajibah for the valuable information provided by them in their respective fields. I am grateful for their cooperation during the period of my thesis.

THE INTEGRATION OF CLOSE RANGE PHOTOGRAMMETRY AND DATABASE MANAGEMENT FOR TRAFFIC ACCIDENT MAPPING

NURKHALIESA BALQIS BINTI HAMZAH

UNIVERSITI TEKNOLOGI MALAYSIA

ABSTRACT

Various approaches in acquiring data of road accident are being implemented worldwide. For police and forensic in Malaysia, they face challenges in obtaining accurate measurements because they are still implementing the conventional method which is impractical to map the road accident scene, consequently explain the lack of a comprehensive accident recording and analysis system. This research presents the implementation of close range photogrammetry of accident scene for data collection by using three types of sensors to study the effectiveness of each sensor which are SONY DSCHX5V for compact camera, NIKON D300S for Single Lens Reflex (SLR) camera and MI DVJ350 for video recorder. Each accident simulation conducted at Universiti Teknologi Malaysia (UTM) was recorded and imported into two different processing softwares which are Photomodeler and iWitness that is employed together with CrashZone, to perform noncontact measurement on physical evidences and subsequently generate 3D model of the crash scene. The outcomes of this research are the measurement of evidences and 3D model of road accident from three types of sensors. Data is stored, organized and retrieved in accident data management system by using Microsoft Visual Studio together with SQL Server Management Studio. The result shows that among these three sensors, NIKON D300S is the best sensor that fit the requirement of law enforcement in acquiring accident data because it has achieved the highest accuracy for physical evidences measurement. From iWitness software the RMS obtained was 0.0344m while Photomodeler was 0.0348m. In conclusion, this research gives benefits and contribution to the Malaysia's traffic management system due to the application of close range photogrammetry (CRP). The final result can be as evidence in court litigation because in most jurisdictions, accidents involving fatalities must be surveyed and mapped.

ABSTRAK

Pelbagai pendekatan di dalam pengumpulan data kemalangan jalan raya sedang diimplimentasikan di seluruh dunia. Bagi pihak polis dan forensik di Malaysia, mereka menghadapi cabaran dalam mendapatkan pengukuran yang tepat kerana mereka masih mengimplimentasi kaedah konvensional yang mana tidak praktikal untuk memetakan kemalangan jalan raya, seterusnya menunjukkan kelemahan sistem merekod dan analisis yang komprehensif. Kajian ini mempersembahkan pengimplimentasian fotogrametri jarak dekat terhadap situasi kemalangan untuk pengumpulan data dengan menggunakan tiga jenis sensor untuk mengkaji keberkesanan setiap sensor iaitu; SONY DSCHX5V mewakili kamera kompak, NIKON D300S mewakili kamera lensa reflex tunggal dan MI DVJ350 mewakili perakam video. Setiap simulasi kemalangan dijalankan di Universiti Teknologi Malaysia (UTM) telah direkod dan diimport ke dalam dua perisian pemprosesan berbeza iaitu Photomodeler dan iWitness yang digunakan bersama dengan CrashZone, untuk melakukan pengukuran tanpa sentuh terhadap bukti-bukti fizikal dan seterusnya menghasilkan model 3D suasana kemalangan tersebut. Hasil kajian ini adalah pengukuran bukti-bukti dan model 3D kemalangan jalan raya daripada tiga jenis sensor. Data telah disimpan, diselenggara dan dicapai di dalam sistem pengurusan data kemalangan dengan menggunakan Microsoft Visual Studio bersama dengan SQL Server Management Studio. Keputusan menunjukkan di antara ketiga-tiga sensor ini, NIKON D300S adalah sensor terbaik yang sesuai dengan keperluan pihak penguasa dalam mendapatkan data-data kemalangan kerana ia telah mencapai ketepatan paling tinggi bagi pengukuran bukti-bukti fizikal. Dari perisian iWitness, RMS yang diperolehi adalah 0.0344m manakala Photomodeler adalah 0.0348m. Secara kesimpulannya, kajian ini memberi kelebihan dan sumbangan kepada sistem pengurusan trafik Malaysia disebabkan aplikasi fotogrametri jarak dekat (CRP). Keputusan akhir boleh dijadikan sebagai bukti di perbicaraan mahkamah kerana dalam kebanyakan bidang kuasa, kemalangan yang melibatkan kematian mesti diukur dan dipetakan.

TABLE OF CONTENTS

1

2

TITLE

PAGE

DEC	LARATION	ii
DED	DICATION	iii
ACK	NOWLEDGEMENT	iv
ABS	TRACT	v
ABS	TRAK	vi
TAB	LE OF CONTENTS	vii
LIST	Γ OF TABLES	Х
LIST	Γ OF FIGURES	xi
LIST	Γ OF ABBREVIATIONS	XV
LIST	Γ OF APPENDICES	xvi
INTR	CODUCTION	1
1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Objectives of Study	4
1.4	Scope of Study	5
1.5	Significance of Study	7
1.6	Thesis Chapters Layout	8
LITE	RATURE REVIEW	10
2.1	Information on Traffic Accidents	10
2.2	Methods Used in Traffic Accident Data Collection	13
	2.2.1 Conventional Method	14
	2.2.2 Close-Range Photogrammetry	16

	2.2.3 Other Methods	21
2.3	Traffic Accident Management System	24
2.4	Critical Needs of Road Accident Database	29
2.5	General Requirement to Develop Road Accident	32
	System	
2.6	Type of Database Management System (DBMS)	36
	2.6.1 Relational DBMS (RDBMS)	37
	2.6.2 Hierarchical	38
	2.6.3 Object-oriented (O-O)	39
2.7	Chapter Summary	41

RE	RESEARCH METHODOLOGY		
3.1	Flowc	hart of Research Methodology	44
3.2	Traffic	c Accident Mapping	46
	3.2.1	Data Collection	46
	3.2.2	Data Processing	48
		3.2.2.1 Image Processing in iWitness and	48
		CrashZone	
		3.2.2.2 Image Processing in Photomodeler	56
3.3	Traffic	c Accident Data Management System	61
	3.3.1	Overall Workflow	62
	3.3.2	Database Design	63
	3.3.3	Database System Development	67
	3.3.4	System Evaluation	68
3.4	Chapt	er Summary	69

3

4	RESULT AND ANALYSIS		ND ANALYSIS	70
	4.1	Introd	luction	70
	4.2	Came	ra Calibration	70
		4.2.1	iWitness Camera Calibration	71
		4.2.2	Photomodeler Camera Calibration	72

4.3	Examp	ple of Road Accident Simulation	74
4.4	Accuracy of Referencing		
4.5	Measurement of Physical Evidences		
4.6	3D Mo	odel of Accident Reconstruction	83
	4.6.1	3D Model of Accident Reconstruction	84
		in iWitness and CrashZone	
	4.6.2	3D Model of Accident Reconstruction	86
		in Photomodeler	
4.7	Design	n and Development of Road Accident	89
	Database		
	4.7.1	Database Query	89
	4.7.2	User Interface	90
		4.7.2.1 Starting Window	91
		4.7.2.2 Complainant Report	91
		4.7.2.3 Investigation Result	93
		4.7.2.4 Staff Registration	94
	4.7.3	Road Accident Report Generator	95
4.8	Chapte	er Summary	99

5	CON	CLUSION AND RECOMMENDATION	104
	5.1	Conclusion	104
	5.2	Recommendation	106

REFERENCES

108

APPENDICES

Appendix A to W20	122

LIST OF TABLES

TABLE NO.

TITLE

PAGE

1.1	Thesis Chapters Layout	9
2.1	Existing Traffic Accident Mapping and Data Management	41
3.1	Sample of Physical Evidences	53
4.1	Camera Calibration Result in iWitness for Three Cameras	71
4.2	Camera Calibration Result in Photomodeler for Three Cameras	73
4.3	Root Mean Square for iWitness and Photomodeler Project (in Pixel)	78
4.4	Dimensions of Physical Evidences Using Measurement Tape and	81
	iWitness Based on 3 Cameras (Simulation 1)	
4.5	Dimensions of Physical Evidences Using Measurement Tape and	82
	Photomodeler Based on 3 Cameras (Simulation 1)	
4.6	Comparison between This Research and Current Implementation	99
	by PDRM and UTM Security Unit	
4.7	Comparison between Photomodeler and iWitness Software	101
4.8	Comparison between Three Types of Cameras	102

LIST OF FIGURES

TITLE

PAGE

1.1	Research Area	5
1.2	i) Compact Camera, SONY DSC HX5V	6
	ii) SLR Camera, NIKON D300S	
	iii) Video Recorder, MI DVJ350	
2.1	Results of Traffic Accidents	11
2.2	Total Road Accidents and Motor Vehicles Involved 2001 to 2010	12
2.3	Types of Manual Measurement	14
2.4	Sketch of a Traffic Accident in POL27 Form	16
2.5	Police Investigators Using Camera to Collect Data	17
2.6	Sketches from James Dean Accident Scene	19
2.7	Crashteam (2008) converted an image that shows skid marks to	20
	scale top down view of the scene. The right image was central	
	to the scene reconstruction and development of an accurate	
	accident scene for speed calculation and 3D animation.	
2.8	Concept of Close Range Photogrammetry	20
2.9	Data Collection using Total Station and Laser Scanning	22
2.10	A reconstructionist and forensic mapping trainer,	23
	uses a Sokkia robotic total station to map the scene of	
	a two-vehicle crash.	

2.11	Data visualization on seat belt usage in Vectormap.	25
2.12	Components of Abu Dhabi's Traffic Information Management	27
2.13	Road Traffic Information Centre	27
2.14	Intelligent Road Accident System (IRAS)	28
2.15	Statistic of Road Deaths per 100000 Populations	30
2.16	Road Safety Strategy	31
2.17	Vehicle and Operator Services Agency (VOSA) Accident Database	33
2.18	PDRM Requirement for Measuring Crash Data	36
2.19	Example of Relational Data Model	38
2.20	Formal Relational Term versus Informal Equivalents Term	38
2.21	Hierarchical Database Model	39
2.22	Object Oriented Database Model	40
3.1	Flowchart of Research Methodology	45
3.2	Process of Data Collection	47
3.3	Process of Data Processing in iWitness and CrashZone	49
3.4	The Arrangement of Colour Coded Target for iWitness Camera	49
3.5	Referencing a Corresponding Feature Point in an Initial Image Pair	50
3.6	Process of Editing	52
3.7	Placing a Car Symbol from Symbol Manager Toolbox onto the	55
	Drawing Window	
3.8	Marking Process in Photomodeler	58
3.9	Setting Up Project Unit and Scale	58
3.10	Wireframe of Digitized Points and Lines	60
3.11	Path Surfaces is Applied into the Project	60
3.12	Fast Textures is Applied into the Project	60
3.13	Quality Textures is Applied into the Project	61
3.14	Overall Workflow for Road Accident Data Management	63

3.15	(a): ER Diagram (Conceptual Model)	64
	(b): ER Diagram (Logical Model)	65
	(c): ER Diagram (Physical Model)	66
4.1	Camera Calibration Result (iWitness)	71
4.2	Camera Calibration Result (Photomodeler)	73
4.3	Location of a Simulation of Road Accident	
4.4	A Scene of Road Accident 7	
4.5	3D Point Table for iWitness 7	
4.6	3D Point Table for Photomodeler 7	
4.7	Sample of Measuring a Feature of Interest in iWitness 8	
4.8	Sample of Measuring a Feature of Interest in Photomodeler	
4.9	2D Diagram of Accident Scene	84
4.10	(a) Images from Camera	85
	(b) 3D Reconstructed Model	85
4.11	Wireframe of Digitized Points	87
4.12	Model has been Added Surfaces	87
4.13	Model in Fast Textures	87
4.14	Model in Quality Textures	88
4.15	Model in Quality Textures without Points and Lines	88
4.16	User Form to Make Query	90
4.17	Starting Window	91
4.18	Complainant Form	92
4.19	Investigation Result of an Accident Case	93
4.20	Details of Staff Registration	94
4.21:	Total Three Data in Database	95
4.22:	Search by Specific Accident Report Number	96
4.23:	Search by Specific Accident Location	96

4.24:	Search by All for Complainant Information Report	97
4.25:	Search by All for Vehicle Information Report	98

LIST OF ABBREVIATIONS

CAD	-	Computer Aided Design
CRP	-	Close Range Photogrammetry
DXF	-	Drawing Exchange Format
RMP	-	Royal Malaysia Police
RMS	-	Root Mean Square
SLR	-	Single Lens Reflex
TLS	-	Terrestrial Laser Scanning
2D	-	2 Dimension
3D	-	3 Dimension
DBMS		Database Management System

LIST OF APPENDICES

APPENDICES

TITLE

PAGE

А	Image of Camera Calibration in iWitness for SONY DSCHX5V	122
В	Image of Camera Calibration in iWitness for NIKON D300S	123
С	Image of Camera Calibration in iWitness for MI DVJ350	124
D	AutoCal Button to Run Camera Calibration Automatically	125
Е	Process of Assigning a Scale	125
F	XYZ Coordinate Axes in iWitness	126
G	Button to View Crash Area in 3D Model	126
Η	Camera Calibration in Photomodeler	127
Ι	Image activated as the Source in Referencing Mode	127
J	Icon of Camera Indicating Position of the Camera Has Been	128
	Oriented	
Κ	Positions of Camera	128
L	Setting Up for Rotation Axes in Photomodeler Project	129
М	Measurement of Point of Interest	129
Ν	URA: Interview Session with PDRM-Inspector Haidir	130
0	URA: Interview Session with UTM Security Unit-Mr. Norazam	133
Р	URA: Interview Session with MIROS-Mr. Hizal Hanis	135
Q	Road Accident Sketch-by Computer	138
R	Road Accident Sketch-by Hand	139

S	Road Accident Report by PDRM	140
Т	Road Accident Report in hardcopy form by UTM Security Unit	141
U	Road Accident Report in HRFin by UTM Security Unit (1)	142
V	Road Accident Report in HRFin by UTM Security Unit (2)	143
W1	Difference Value of Camera Parameters in iWitness	144
W2	Images for Processing (Simulation 1)	145
W3	Images for Processing (Simulation 2)	146
W4	Images for Processing (Simulation 3)	147
W5	Images for Processing (Simulation 4)	148
W6	Images for Processing (Simulation 5)	149
W7	Dimensions of Physical Evidences Using Measurement Tape and	150
	iWitness Based on 3 Cameras (Simulation 2)	
W8	Dimensions of Physical Evidences Using Measurement Tape and	151
	Photomodeler Based on 3 Cameras (Simulation 2)	
W9	Dimensions of Physical Evidences Using Measurement Tape and	152
	iWitness Based on 3 Cameras (Simulation 3)	
W10	Dimensions of Physical Evidences Using Measurement Tape and	153
	Photomodeler Based on 3 Cameras (Simulation 3)	
W11	Dimensions of Physical Evidences Using Measurement Tape and	154
	iWitness Based on 3 Cameras (Simulation 4)	
W12	Dimensions of Physical Evidences Using Measurement Tape and	155
	Photomodeler Based on 3 Cameras (Simulation 4)	
W13	Dimensions of Physical Evidences Using Measurement Tape and	156
	iWitness Based on 3 Cameras (Simulation 5)	
W14	Dimensions of Physical Evidences Using Measurement Tape and	157
	Photomodeler Based on 3 Cameras (Simulation 5)	

W15	3D Constructed Model of Accident Scene for Simulation 2	158
	(iWitness)	
W16	3D Constructed Model of Accident Scene for Simulation 3	159
	(iWitness)	
W17	3D Constructed Model of Accident Scene for Simulation 4	160
	(iWitness)	
W18	3D Constructed Model of Accident Scene for Simulation 5	161
	(iWitness)	
W19	3D Constructed Model of Accident Scene for Simulation 2	162
	(Photomodeler)	
W20	3D Constructed Model of Accident Scene for Simulation 4	163
	(Photomodeler)	

CHAPTER 1

INTRODUCTION

1.1 Background of Study

As time goes by, traffic accident has been a concern of the world community since the number of accidents occurs has increased drastically. According to Sahar and Jehan (2010), this phenomenon is increasingly being recognized as a growing public issue. There are many factors that cause road collision including the behaviour of driver, weather conditions, environment of the street, conditions of vehicles and so forth. Malaysia as a developing country is experiencing growing numbers of vehicles every year which is also contributing to the numbers of accidents (Road Safety Department Malaysia, 2010).

Various methods have been introduced to collect the measurement of road accident data ranged from conventional method to the sophisticated technology. The data collection techniques includes by using a tape measure, close range photogrammetry (CRP), laser scanner, and etc (Randles et al, 2010). Based on Haidir (2012), Malaysian police still make use of tape measure to obtain accident data measurement. Another method that can be implemented for this initiative is by using digital cameras.

These sensors comprises of cameras that can be utilized for capturing images and videos. Recorded images are the source of accident data collection to do measurement on evidences, reconstruct and map the crash scene afterwards. Crash data can be obtained by using close range photogrammetry (CRP) method. Coyle (2008) stated that CRP can be implemented in motor vehicle accident reconstruction while Richard and Stephen (2000) declared that videogrammetry can be used by forensic engineers to assist them in the same field.

There are numerous effects of a road accident to the individual involved, their family, and towards the country (Qirjako et al., 2008). Hence, many efforts have been made by different organizations in improving safety each year. The utilization of computers makes this effort more comprehensive and productive. One of the approaches is by using Geographic Information System (GIS) technology which has been a vital tool for visualization of accident data and analysis of hotspots on the road. Mino and Asada (2003) explained that they have demonstrated the spatial information technology such as GIS which can assist their case study.

The key of this study is to investigate five simulation cases of traffic accidents by using 3 types of camera which are SONY DSCHX5V for compact camera, NIKON D300S for Single Lens Reflex (SLR) camera and MI DVJ350 for video recorder. The accident scene is recorded and imported into two different processing softwares which are iWitness that is employed with CrashZone and Photomodeler to perform non-contact measurement on physical evidences. The generation of 3D model of crash scene is made afterwards. The outcomes from these three types of sensors are the measurement of evidences and 3D model of road accident that are analyzed in data analysis section.

Accident data that has been processed are the input for the database to be further analysed. These data are served as visualization purpose in the traffic accident database system. The data management system is developed using Visual Studio to determine accident location, to identify the details of particular accidents and also to determine how accident countermeasures can be implemented.

1.2 Problem Statement

One of the major concerns for police investigators and forensic scientists in Malaysia is the challenges in documenting traffic accident scenes to obtain accurate measurements. The approach for collecting the measurement of evidences is conventional method which is using a tape measure (Yew, 2009). It is almost impractical to map the scene due to many issues such as traffic jam, the environment of the road, unstable flooring, and line of sight issues consequently this is often inaccurate for 3D data.

In spite of this matter, other techniques that can be implemented for most cases are close range photogrammetry. Currently, law enforcement in Malaysia depends on images captured on site of the accident scene which is only for visualization purpose (Haidir, 2012). The utilization of camera for them is just for pointed out the evidence which is difficult when it comes to retrieve the data.

Nowadays, different types of camera are available in the market with different technology and specification. Thus, the need to find the suitability of camera must be discovered to be the best sensor that can fit the requirement of law enforcement in acquiring accident data. This camera is expected to give the best image resolution and achieve the highest accuracy for physical evidence measurement.

The representation of different type of cameras; SONY DSCHX5V for compact camera, NIKON D300S for SLR camera and MI DVJ350 for video recorder, producing a variety of data accuracies in terms of image processing. Hence, analysis is done to evaluate the effectiveness of using three types of camera based on different data accuracy.

In the aspect of data processing, the usage of two different softwares which are iWitness and PhotoModeler yield different quality of evidences measurement and the reconstruction of accident scene. To check the reliability of accident simulation, 5 different cases were carried out by using the same three types of camera together with the two kinds of CRP data processing softwares. In brief, various types of camera and processing softwares are used in this research to produce different type of data. The result is different according to accident cases, sensor's accuracy, measurement of evidences, and crash scene mapping.

In addition, accident recording and analysis system must be developed to support crash data that are obtained by using proposed sensors. Therefore, an appropriate database is necessary to help the police investigators and forensic scientists to assist and manage the road collision data.

1.3 Objectives of Study

The objectives are specified as follows:

- To reconstruct 3D model of simulation of five accident scenes by using PhotoModeler and iWitness software according to different types of camera.
- ii) To develop traffic accident database system.

1.4 Scope of Study

Four scopes of research are listed as below:

Area of study is conducted in Universiti Teknologi Malaysia (UTM) as shown in Figure 1.1. It is located at Johor Bahru, the southern city in Iskandar Malaysia with 1177 hectares of land. The simulations of road accidents are located at 5 different places (yellow pinpoint) which are identified as 'hotspots' in UTM area.

Figure 1.1: Research Area Scale 1:25000

5 data of road accidents is obtained from 5 accident simulations. Crash scenes are captured by using 3 types of sensors which are SONY DSCHX5V (10.2 Megapixels), NIKON D300S (12 Megapixels) and MI DVJ350 (20.1 Megapixels) as illustrated in Figure 1.2. SONY DSCHX5V is used to capture images of road accidents to represent compact camera. NIKON D300S is characterized as SLR camera also

is utilized to take picture of accident scene. As for video recorder, MI DVJ350 is employed to capture video of road accident simulation. These cameras are calibrated before collecting the data. Several cars are used along with other tools such as scale bar, broken glasses as for the impact of accident, 6 traffic cones to control the crash area, and black aerosol spray for creating the scratch tyre. Several images are taken in different angles to cover the whole area of the crash scene.

i)

iii)

Figure 1.2: i) Compact Camera, SONY DSC HX5V (10.4 x 5.8 x 2.8cm) ii) SLR Camera, NIKON D300S (14.7 x 11.4 x 7.4cm) iii) Video Recorder, MI DVJ350 (6.7 x 6.9 x 12.9cm)

- iii) The data are processed by using 2 softwares:
 - a) iWitness and CrashZone: iWitness is used to process the data in terms of measurement. In addition, iWitness also used to perform the camera calibration. CrashZone support iWitness in order to display the 3D view of the collision scene.
 - b) Photomodeler: A photogrammetric-based processing software that measures and model real world objects and scenes through the use of images. This software brings the powerful capabilities of photogrammetry in a simple, user friendly Windows environment (Eos, 2010).
- iv) The database of road accident data is stored in SQL Server Management Studio while the system is developed in Microsoft Visual Studio 2010.

1.5 Significance of Study

Various actions and treatments have been taken to reduce the rate of traffic accident in the whole world. According to U.S Department of Interior (2003), "an accident investigation is the methodical collection of evidence (facts), and the analysis and interpretation of the evidence. The fundamental purpose is to identify the cause, why the accident happened, and to recommend corrective actions to prevent or minimize the chance of a reoccurrence." Thus, accident data is significant for government and road agencies as it is served as evidence in jurisdictions and as countermeasure for road safety.

CRP is an alternative way to conventional method to obtain measurement of traffic accident data. This technique is more practical to be implemented because of

the reducing on scene time, which leads to shorter periods of traffic disruption. Furthermore, the procedure is easy to adopt for assisting police officers in managing the road accident case.

This research is expected to give benefits and contribution to the Malaysia's traffic management system due to the application of CRP. The final result can be as evidence in court litigation because in most jurisdictions, accidents involving fatalities must be surveyed and mapped. In brief, this research contributes to current practice of data collection with reducing the time and provides higher accuracy of positional crash data.

Variety of study and advice as well as mass media reports regarding the cause of the accident give useful messages to other road users. Despite, this tragedy on the roads continues to be a burden to the society. Thus, this study is essential for traffic accident management by utilization of database system. Since the rate of road deaths increases, a database system is extremely significant tool for traffic safety.

This tool has been employed more commonly by many traffic agencies for accident analysis due to the variety of function such as storing, sharing and managing a great quantity of data. Thus the need to attempt to avoid road accidents by whatever means that are effective will become increasingly important.

1.6 Thesis Chapters Layout

This thesis consists of five chapters, **Table 1.1** described the summary of each chapter.

Chapters	Summary
1	Describe the introduction of the research background, problem
	statement, objective of study, scope of study, significance of study
	and chapters layout.
2	Describes the methods used in traffic accident data collection.
	Also describes related works on road accident database that has
	been established worldwide.
3	Describes the method implemented in the data collection of traffic
	accident and the development of traffic accident database.
4	Describes the results and analysis.
5	Describes the conclusion and recommendation for further
	research.

REFERENCES

- Ahmad R.M.and Ehsan, Z. (2008). Intelligent GIS-Based Road Accident Analysis and Real-Time Monitoring Automated System using WiMAX/GPRS. Faculty of Engineering, University Putra Malaysia.
- Alfredo, C.F. (2011). *Mobile GIS in Police Vehicles for Henrico County, Virginia*. Geographic Information Systems Coordinator. County of Henrico, Virginia.
- Alley, A.A.(2010). SONY DSCHX5V. (<u>http://www.articlealley.com/article_1453082_10.html</u>). Retrieved on 15 December 2010.
- Ambros, J. (2008). Building the Czech Road Safety Observatory. 21st ICICT
 Workshop. Session VI: Road Safety Assessment. Transport Research Centre.
- Anna, K. (2010). User Interface Design. PowerPoint Presentation. NextLab Mobile Innovation for Global Challenges.
- Arnold, E.D. (2007). Use of Photogrammetry as a Tool for Accident Investigation and Reconstruction: A Review of the Literature and State of the Practice.
 Research Report. Virginia Transportation Research Council, 530 Edgemont Road, Charlottesville.
- Avnish, S. (2013). *Types of DBMS*. Retrieved on 19 December 2013. Slideshow. http://www.slideshare.net/avnishshaw/types-dbms

- A'sim, M.A.I. (2010, June 17). Sikap Ithar Bantu Atasi Kemalangan Jalan Raya. Berita Harian Online. Research Officer. Pusat Kajian Syariah, Undangundang dan Politik Institut Kefahaman Islam Malaysia (IKIM).
- Baguley, C. (2001). The Importance of a Road Accident Data System and its Utilisation. International Symposium on Traffic Safety Strengthening and Accident Prevention. 28-30 November. Nanjing, China

Berita Harian (2011). 27 Januari 2011. Page 1

- Berry, T. B. (2008). Pre-Incident Planning must go to the Head of Class for Nation's Schools.(<u>http://www.respondersafetyonline.com/Classes/Articles/ArticleDra</u> <u>w_P.asp</u>) Retrieved on 15 December 2010.
- Burroughs, G.(1986). Relational Database Management Systems, Database Design, and GIS. Presented by Tim Haithcoat. Slideshow. University of Missouri, Columbia.
- Burtenshaw, G. (2011). Vehicle and Operator Services Agency Database System. Retrieved on 30 June 2011. <u>https://www.trlsoftware.co.uk/Content.aspx?ID=27</u>
- Campbell, A.T. and Friedrich R.L. (1993). *Adapting Three-Dimensional Animation* Software for Photogrammetry Calculations. ALFA Engineering, Inc.
- Chant, L.D (2008). *Multi-image Convergent Triangulation and Single-image Planar-Rectification for Law Enforcement Mapping*. [Consultation]. DeChant Consulting Services – DCS Inc.
- Cherry, E., Floyd, R., Graves, T., Martin, S., and Ward, D. (2006). Crash Data Collection and Analysis System. [Report]. Arizona Department of Transportation.
- CIS (2013). Introduction to Database Management. http://webdesignersworld.info/cis244/?p=432

- CISCO System, Inc. (2007). *Mobile Government Transformation with Next-Generation Cisco Outdoor Wireless Solution*. [Brochure]. United States of America: Solution White Paper.
- Cohen, K. (2007). Digital Still Camera Forensics. Small Scale Digital Device Forensics Journal. Volume 1 (1).
- Coyle, F. (2008). *Digital Close Range Photogrammetry in Motor Vehicle Accident Reconstruction.* Ph.D Theses. Dublin Institute of Technology.
- Crashteam (2008). Accident Reconstruction. (<u>http://crashteams.com/index.htm</u>) Retrieved on 14 July 2011.
- Cusick, J. (2010). Sony DSC-HX5V Embedded GPS and Compass.[PowerPoint Presentation]. National Park Service.
- DeChant, L. (2006). *How a Photogrammetry Expert Can Help You Win Your Case*. [Brochure]. Bellevue: Dechant Consulting Services. DCS Inc.
- Demirel, A. and Akgungor, A.P. (2002). The Importance of Report in the Accident Analyses, Problems in Application and Recommendations for Solution. *International Traffic and Road Safety Congress*. Ankara, Turkey.
- Duesing, B. (2006). PhotoModeler Takes Accident Documentation Off Road. *Cygnus Interactive*. Volume: 33 Nbr. 6.

Eos System Inc. (2010). Photomodeler Software. Canada. Version 6.

- ESRI (2004). ArcPad: Mobile GIS. [Brochure]. United States of America: ESRI White Paper.
- Fikri, H. (2012). *Storing Organizational Database*. Retrieved on 19 December 2013. http://fikriharith.blogspot.com/2012_08_01_archive.html

- Fraser, C.S., Hanley, H.H. and Cronk, S.C. (2005). Close-Range Photogrammetry for Accident Reconstruction. University of Melbourne, Australia : Department of Geomatics.
- Fraser, C.S., Hanley, H.H. and Cronk, S.C. (2008). Close-Range Photogrammetry in Traffic Incident Management. University of Melbourne, Australia: Department of Geomatics.
- Galvin, B. (2004). Focus on photography. *Evidence Technology Magazine*. The Gulick Corporation. SW Watson, Beaverton. Volume 2, Number 5.
- Galvin, B. (2005). *Photogrammetry Mapping for Crime Scene Mapping*. [Brochure]. Oregon, Portland.
- Galvin, B. (2007). *Mapping Choices Abound as Traffic and Crashes Mount*. Law Enforcement Technology Magazine.

http://www.lasertech.com/content/pdfs/Law-Enforcement-Technology-Mapping-Article.pdf Retrieved on 19 December 2013.

- Galvin, B. (2010). For Las Vegas Fatal Crash Unit, A Gamble on GPS System to Speed Scene Mapping Pays Off. Article, ARC Network.
- Geospatial Expert (2010). GPS-Photo Pro 2709. (<u>http://www.geospatialexperts.com/gpsphoto-2709-p-115.html</u>). Retrieved on 14 July 2011.
- Ghaly, A. (2010). *Abu Dhabi's Traffic Information and Management System: Traffic Counting and Operational Analysis (COPAS).* Retrieved on 30 June 2011.
- Goldman, J. (2010). SONY Cybershot DSC HX5V. (<u>http://reviews.cnet.com/digital-cameras/sony-cyber-shot-dsc/4505-6501_7-33939643.html#reviewPage1</u>) Retrieved on 14 July 2011.

Goldstein, M. (2010). Sony Cyber-shot DSC-HX5 Review. (http://www.photographyblog.com/reviews/sony_cybershot_dsc_hx5_review) Retrieved on 14 July 2011.

- Google Earth (2011). *Google Earth*. (<u>http://www.google.com/earth/index.html</u>) Retrieved on 15 August 2011.
- Haidir, S. (2012). Personal Communication. Royal Malaysian Police, Traffic Unit, Taman Ungku Tun Aminah, Johor Bharu.
- Healey R.G. (1991). Database Management System in Geographic Information
 System. Volume I. Study Material.
 http://agris.faoswalim.org/resources/NEW%20Docs/Books%20and%20paper
 s/Geographic%20Information%20Systems,%20First%20Edition,%201991Longley%20et%20al/BB1v1_ch18.pdf
- Hill, J and Cuerden, R. (2005). Development and Implementation of the UK on The Spot Accident Data Collection Study – Phase I. [Report]. Department for Transport, London.
- Hirasawa, M. and Asano, M. (2003). Development of Traffic Accident Analysis System Using GIS. Proceedings of the Eastern Asia Society for Transportation Studies. Traffic Engineering Division Civil Engineering Research Institute of Hokkaido, Japan. Volume. 4, pp. 1193–1199.
- Hizal, H. and Sharifah Allyana S.M.R. (2009). The Construction of Road Accident Analysis and Database System in Malaysia. *International Traffic Safety Data* and Analysis Group IRTAD Conference. 16-17 September 2009. Seoul, Korea.
- Hoekwater, J. (2008). On Scene Traffic Accident Investigation Level I. [Report]. Georgia Police Academy.
- Hossein, M., Ali, A.A. and Ghorbani, M. (2003). Developing Wireless GIS: Using Java and XML Technologies. *Map Asia Conference*. GIS Department,

Faculty of Geodesy and Geomatics Eng. K.N. Toosi University of Technology Vali_Asr St., Mirdamad Cross, Tehran, Iran.

iWitness Manual (2008). Photometrix Pty Ltd Australia. Version 1.107

- Japan Digital Road Map Association (2003). Uses of Digital Road Map. (http://www.drm.jp/english/drm/database/use.html.) Retrieved on 5 October 2010.
- Java4all (2012). *Relational Database Model (RDBMS)*. .http://www.java4all.in/oracle/oracle-intro.php Retrieved on 19 December 2013
- Joeldgreat (2011). <u>Introduction to Accident Investigation Process in a</u> <u>Manufacturing Industry</u>. Retrieved on 1 July 2011. <u>http://expertscolumn.com/content/introduction-accident-investigation-</u> process-manufacturing-industry
- Jun, G. and Peter, T. (2004). Guidelines for Handheld Mobile Device Interface Design. *Proceedings of DSI 2004 Annual Meeting*. College of Computer and Information Science, Northeastern University, United States of America. Page: 3751-3756.
- Katims, L.N. (2011). Kansas City Police Use Forensic Mappping to Unvestigate Accidents. Retrieved on 5 November 2011. <u>http://www.govtech.com/public-safety/Kansas-City-Police-Use-Forensic-Mapping-to-Investigate-Accidents.html</u>
- Khan, M.A., Kathairi, A.S.A., and Garib, A.M. (2009). A GIS Based Traffic Accident Data Collection, Referencing and Analysis Framework for Abu Dhabi. <u>CODATU XI : World Congress : Towards More Attractive Urban</u> <u>Transportation</u>. 22-24 April. Bucarest, Romania, Page 292-302.

- Lee, S.M. (2012). *The ER Database Model*.. Powerpoint of Study Material. http:///www.cs.sjsu.edu Retrieved on 21 October 2012.
- Leonardo, C.G. (2011). *The Requirement of Camera in Accident Data Collection*. Personal Communication. SKYMAX DG, Italy.
- Liang, L.Y., Mo'some, D.M. and Hua, L.T. (2005). Traffic Accident Application Using Geographic Information System. *Journal of the Eastern Asia Society* for Transportation Studies. Department of Civil Engineering Faculty of Engineering University Putra Malaysia. <u>Volume 6</u>.
- Lim, S. (2011). Advanced Road Management System using IT Technology. International Journal of Engineering and Industries Korea Institute of Construction Technology.
- Lin, H. (2011). Combining VGI with Viewshed for Geotagging Suggestion. Master of Science in Geoinformation Science and eath Observation. Thesis. University of Twente, Netherlands.
- Longstreet, B. (2009). Laser Scanning for Accident Investigation. *Sparview*. Spar Point Research LLC. September 2. Volume 7, No. 16.
- Luhmann, T.L. (2010). Close Range Photogrammetry For Industrial Application. Institute for Applied Photogrammetry and Geoinformatics, Jade University of Applied Sciences Oldenberg, Oldenburg, Germany. *ISPRS Journal of Photogrammetry and Remote Sensing*. Volume 65 Page 6.
- Lyons, R. A., Ward, H., Brunt, H., Macey, S., Thoreau, R. and Bodger, O. G. (2008). Using Multiple Datasets to Understand Trends in Serious Road Traffic Casualties. Accident Analysis and Prevention 2008. Volume 40, Page:1406-1410.

- Malaysian Institute of Road Safety Research (MIROS) (2009). Road Facts for Malaysian Trends. (<u>http://www.miros.gov.my/web/guest/road</u>). Retrieved on 5 October 2010.
- Manase, D., Heesom, D., Oloke, D., Proverbs, D., Young, C., and Luckhurst, D. (2011). A GIS Analytical Approach for Exploiting Construction Health and Safety Information.
- Marc, G. (2009). *Photographs versus Reality*. (<u>http://www.visualexpert.com/Resources/photoevidence.html</u>). <u>Retrieved</u> on 14 July 2011.
- Meisnerr, A., Wang, Z., Putz, W. and Grimmer, J.(2006). MIKoBOS A Mobile Information and Communication System for Emergency Response. *Proceedings of the 3rd International ISCRAM Conference* (B. Van de Walle and M. Turoff, eds.), Newark, NJ. May 2006. United States of America.
- Mercury (2013). Police Vehicle Involved in Three-Car Crash. http://www.themercury.com.au/news/tasmania/police-vehicle-involved-inthree-car-crash/story-fnj4f7k1-1226727126512 Retrieved on 19 December 2013.
- Mikulik, J. (2007). *Road Accident Investigation Guidelines for Road Engineers*. Transport Research Centre, Czech Republic.
- Ministry of Transport Malaysia (2010). *Transport Statistics Malaysia 2010*. Statistic. Ministry of Transport Malaysia.
- Mino, N. and Asada, M. (2003). Spatial Analysis of Barrier-Free Environment Using Geographical Information System (GIS). University of Hyogo Japan. *Journal* of Japanese Institute of Landscape Architecture. Volume 66, No. 5, Page: 877-882.

- Mino, N. (2007). Combined Use of GPS Camera and GIS for Mapping Accessibility on Parks and Outdoor Recreation Sites: Application to Hyogo, Japan. University of Hyogo, Japan.<u>11th International Conference on Mobility and</u> <u>Transport for Elderly and Disabled Persons</u>. 18-22 June. Montreal, Canada.
- Murat, H.Y., Yakar, M. and Yildiz, F. (2008). Digital Photogrammetry in Obtaining of 3D Model Data of Irregular Small Objects. Department of Geodesy and Photogrammetry, Konya, Turkey. *ISPRS Symposium*. 3-11 July. Beijing, China.
- NHTSA (2010). Crash Outcome Data Evaluation System (CODES) and Applications to Improve Traffic Safety Decision-Making. United States Department of Transportation.
- Noronha, V. and Church, R.L. (2002). Linear Referencing and Alternate Expressions of Location for Transportation. Santa Barbara, California: [Report]. Vehicle Intelligence and Transportation Analysis Laboratory, National Center for Geographic Information and Analysis.
- Nurkhaliesa, B.H. (2010). Reconstruction of Traffic Accident Using iWitness and Crash Zone Software. Bachelor of Geomatic Engineering. Thesis. Universiti Teknologi Malaysia, Skudai.
- Nur Fazzillah, M.N. (2010). Centralized System for Road Accident, Safety and Hazard Studies (CRASH). Malaysian Institute of Road Safety Research (MIROS), Malaysia.
- Ong, T.K. (2009). Ceremony of Dealers and Sellers in Motorcycle as Ambassador Road Safety. Speech. Malaysia International Exhibition & Convention Centre, Mines Resort City, Malaysia.
- Ops Sikap: 13 daripada 15 kematian babitkan pengguna motosikal. (2011, January 28). Berita Harian Online.

- O'Shields, L.L., Kress, T.A., Hungerford, J.C., and Alken, C.H. (2004). Determination and Verification of Equivalent Barrier Speeds (EBS) Using PhotoModeler as a Measurement Tool. <u>SAE 2004 World Congress &</u> <u>Exhibition Session: Accident Reconstruction (Part 1 of 4). March 2004</u>: Detroit, Michigan, USA.
- O'Shields, L.L. (2007). *Photogrammetry in Traffic Accident Reconstruction*. Doctor of Philosophy Degree. University of Tennessee, Knoxville.
- Pagounis, V., Tsakiri, M., Palaskas, S., Biza, B. and Zaloumi, E. (2006). 3D Laser Scanning for Road Safety and Accident Reconstruction. TS 38 – Engineering Surveys for Construction Works I. Shaping the Change. *Proceedings of the XXIII International FIG.* 8–13 October, Munich, Germany.
- PCauthority, (2010). SONY DSCHX5V. (http://www.pcauthority.com.au/News/166170,get-lost-with-the-sonys-cybershot-dschx5v-thanks-to-built-in-compass-and-gps.aspx). Retrieved on 15 December 2010.
- PDRM (2010). Statistic of Road Deaths per 100000 Populations. (<u>http://www.rmp.gov.my</u>). [Statistic]. Retrieved on 5 October 2010. PDRM (2010). POL27 Form. [Form]. Polis DiRaja Malaysia.
- Pigman, J.G. and Agent, K.R. (2007). State DOT Crash Reconstruction Practices: A Synthesis of Highway Practice. NCHRP Synthesis 369. Transportation Research Board.
- Qirjako, G., Burazeri, G., Hysa, B., and Roshi, E. (2008). Factors Associated with Fatal Traffic Accidents in Tirana, Albania: Cross-Sectional Study. <u>Croatian</u> <u>Medical Journal</u>. Volume 49 (6), Page: 734-740.
- Rainer, M. (2008). An Introduction to Relational Database. Slideshow. <u>http://www.iai.unibonn.de/III/lehre/vorlesungen/IntelligentIS/WS13/Relation</u> <u>al%20Databases.pdf</u> Retrieved on 19 December 2013.

- Randles, B., Jones, B., Welcher, J., Szabo, T., Elliot, D., and MacAdam, C. (2010). The Accuracy of Photogrammetry Versus Hands-on Measurement Techniques Used in Accident Reconstruction. SAE Paper 2010-01-0065, SAE International. Warrendale, Pennsylvania.
- Reddy G.C. (2011). Overview on Databases. Retrieved on 19 December 2013.
 Hyderabad, India. http://www.gcreddy.com/2013/03/overview-ondatabases.html
- Richard, M.Z. and Stephen, J.F. (2000). Two & Three Dimensional Photogrammetric Accident Analysis. Journal of the National Academy of Forensic Engineers. 17 No. 1.
- Road Safety Department Malaysia (JKJR) (2010). Road Accident Statistics for the Year 2000-2009. (<u>http://www.jkjr.gov.my/statistik.html</u>). [Statistic].
 Retrieved on 5 October 2010.

Robert, G. (2011). Burden of Proof. http://www.pobonline.com/articles/95129-burden-of-proof. Retrieved on 19 December 2013.

- Sahar, M.S. and Jehan, M.I. (2010). Driving Behavior, Driver Style and Road Traffic Accidents Among Young Medical Groups. <u>10th World Safety Conference</u>.
 21-24 September. London, United Kingdom, Volume 16 (1).
- Saffet, E., Ibrahim, Y., Tamer, B. and Mevlut, G. (2008). Geographical Information System Aided Traffic Accident Analysis System Case Study: City of Afyonkarahisar. Afyon Kocatepe University, Faculty of Engineering, Department of Geodesy and Photogrammetry, Afyonkarahisar, Turkey. Accident Analysis Prevention. Volume 40 (1), Page: 174-181.
- Saidatul, R.A. (2009). Pemetaan Kemalangan Jalan Raya Menggunakan Kaedah Fotogrammetri Jarak Dekat. Bachelor of Geoinformatic. Thesis. Universiti Teknologi Malaysia, Skudai.

SKYMAX (2010). Skymax Vision System. [Brochure]. Milano, Italy: Skymax DG.

- Taneja, A. (2000). *Other Data Models*. Retrieved on 19 December 2013.http://www.ddegjust.ac.in/studymaterial/mca-3/ms-11.pdf
- Tao, Z.M. and Pei, Y.L. (2009). Analysis of Deformation Characteristics of Collision Vehicles Using Close-Range Photogrammetry ICCTP 2009. Critical Issues in Transportation System Planning, Development, and Management Proceedings of the Ninth International Conference of Chinese Transportation Professionals. 5-9 August. Volume 358. China, Pages:177-184.
- Templeton, D.A (2008). Close-Range Photogrammetry as a Routine Crash Reconstruction Tool within the Florida Highway Patrol. Florida Department of Transportation, Florida. Collision Publishing LLC. *Collision. The International Compendium for Crash Research*. Volume 3 (20). Page:16-20.
- Tim, H. (1999). Relational Database Management Systems, Database Design, and GIS. Slideshow. University of Missouri, Columbia
- Traffic Accident Study Guide (2010). *Tools of an Accident Investigator*. [Report]. International Association of Chief of Police.
- U.S Department of Interior (2003). Serious Accident Investigation Chief Investigator's Manual. Draft BLM Manual 1112-3. Bureau of Land Management.
- Walton, J.R., Barrett, M.L., and Agent, K.R. (2005). Evaluation of Methods to Limit the Time Taken to Investigate Crash Sites. [Report]. Kentucky Transportation Centre.
- Wikimedia (2001). Object Oriented Model. U.S. Department of Transportation. <u>http://commons.wikimedia.org/wiki/File:ObjectOriented_Model.svg</u> Retrieved on 19 December 2013.

- Wong, Y.J. (2010). *Laser Scanning in Accident Mapping*. Bachelor of Geomatic Engineering. Thesis. Universiti Teknologi Malaysia, Skudai.
- Xin, G.D. (2008). Geometry features measurement of traffic accident for reconstruction based on close-range photogrammetry. School of Mechanical Engineering, Shanghai Jiaotong University, Computer Aided Design Institute, Department of Mechanical Engineering. *Proceedings of Advances in Engineering Software*. Volume 40 (7), Page: 497-505.
- Yannis, G., Evgenikos, P., and Chaziris, A. (2009). CADaS A common road accident data framework in Europe. 4th IRTAD Conference. 16-17 September, 2009, Seoul, Korea National Technical University of Athens, Athens, Greece.
- Yew, C.H. (2009). *Procedure for Road Accident Management*. Personal Communication. Royal Malaysian Police Forensic Laboratory, Cheras, Kuala Lumpur.