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ABSTRACT 

In this study, lattice Boltzmann method is applied to investigate the natural 

convection flows utilizing nanofluids in a square enclosure. Al2O3 and CuO water 

based nanofluids with 5, 6, 7, 8 and 9% nanoparticle volume fraction is used as the 

fluid. This study has been carried out for the pertinent parameters in the following 

ranges: the Rayleigh number of nanofluid, Ra=103, 104,105and 106, the volumetric 

fraction of nanoparticles 5, 6, 7, 8 and 9% and the aspect ratio (Ar) of the enclosure 

is 1.0. The effects of solid volume fraction of nanofluids on hydrodynamic and 

thermal characteristics are investigated and discussed. The average and local Nusselt 

numbers, streamlines, temperature contours and vertical component of velocity for 

different values of solid volume fraction and Rayleigh number are illustrated. Results 

show that by increasing Rayleigh number and nanoparticle volume fraction, average 

Nusselt number increases in whole range of Rayleigh numbers that lead to 

decreasing thermal boundary layer and enhancement of heat transfer of fluid in the 

cavity. As expected, Al2O3 with higher heat conductivity has higher Nusselt number 

with respect to CuO with lower heat conductivity. 
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ABSTRAK 

Dalam kajian ini, kaedah kekisi Boltzmann telah digunakan untuk menyiasat 

aliran olakan semulajadi dengan menggunakan cecair nano dalam sebuah rongga 

segiempat. Cecair nano yang berasaskan Al2O3 dan CuO dengan 5, 6, 7 dan 9% 

pecahan isipadu zarah nano telah digunakan. Kajian ini telah dijalankan untuk 

parameter yang berkenaan: number Rayleigh untuk cecair nano, Ra, adalah 103, 104, 

105 dan 106; pecahan isipadu untuk zarah-zarah nano adalah 5, dan 9%; dan nisbah 

aspek (Ar) untuk kekandang adalah 1.0. Kesan-kesan pecahan isipadu pepejal cecair 

nano ini terhadap ciri-ciri hydro-dinamik dan terma telah disiasat dan akan 

dibincangkan. Nombor-nombor Nusselt purata dan tempatan, garisan-garisan arus, 

suhu kontur, dan komponen menegak halaju untuk nilai-nilai pecahan isipadu pepejal 

serta number Rayleigh yang berbeza juga akan ditunjukkan. Keputusan kajian 

menunjukkan bahawa peningkatan dalam nombor Rayleigh dan pecahan isipadu 

zarah nano turut akan meningkatkan nilai nombor purata Nusselt untuk keseluruhan 

lingkungan nombor Rayleigh. Keadaan sedemikian akan menyebabkan penyusutan 

sempadan lapisan terma dan peningkatan kadar pemindahan haba untuk cecair yang 

berada dalam rongga tersebut. Seperti yang diramalkan, Al2O3 dengan kekonduksian 

haba yang lebih tinggi turut memiliki nombor Nusselt yang lebih tinggi daripada 

CuO yang mempunya kekonduksian haba yang lebih rendah. 
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CHAPTER 1 

INTRODUCTION 

1.1  Background of the Study  

In the last century, Computational Fluid Dynamic (CFD) had been widely used 

due to advancement in computation technology. Basically, CFD has been used and 

compared the solution between the experiment results and analytical results [1]. In 

addition, CFD also helps to interpret as well as to study the behavior of fluids. 

Although CFD is a powerful tool to demonstrate the fluid flow behavior, however the 

error gain in the simulations is still an issue that needs great attention from researcher. 

Besides that, Latt.J [2] discovered that the conventional CFD is difficult in solving 

multi-phase flow due to complexity of the partial differential equation. In most of the 

cases, Navier-Stokes (NS) equation becomes the fundamental basic for CFD in 

simulating fluid flow. Rather than NS equation, CFD also has been used to solve the 

continuity equation, the energy equation and other equation which are derived from 

equation mention before. There are many type of numerical approaches can be choose 

to solve all kind of these equation in order to solve the fluid problems. 

In 1990's, a new CFD method introduced to solve complex system tools which 

historically it's originated from lattice gas automata (LGA). This method is based on 

mesoscopic numerical approach which is something between macroscopic (FDM, 

FVM, FEM…) and microscopic method and is suitable for solving each fluid dynamic 

and either system related to partial differential equations [3].
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In this method, fluids can be simulated by modeling its individual molecules 

that is consisted. So it will behave as a fluid if all the interactions between molecules 

be calculated correctly. But simulating such a fluid with this much numbers of 

molecules need a huge amount of data that should be calculated by computers. It’s the 

biggest disadvantage of such a method that computer resources are not in hand. In fact, 

LB method is a bridge between molecular description that defines as kinetic of fluid 

motion and the real macroscopic world [4]. The kinetic theory tries to understand the 

macroscopic properties of fluids from the properties of their molecules: molecular 

mass, electrical properties shape parameters, the mean free path and so on [5].  

Recently, the lattice Boltzmann equation (LBE) method has gained much 

attention for its ability to simulate fluid flows, and for its potential advantages over 

conventional numerical solution of the Navier–Stokes (NS) equations. A few standard, 

benchmark problems have been simulated by LBE and the results are shown to agree 

quite well with the corresponding NS solutions. Currently, a number of other complex 

flow problems are being simulated using the LBE approach. 

LBM has several advantages compare to traditional CFD method especially 

when solving the complex boundaries problems. Most of the CFD methods are time 

consuming, but LBM can save a lot of time due to its flexibility on boundary treatment. 

This is because LBM only calculates due to its number of mesh points and the lattice 

model rather than calculate random motion of every particle. After LBM has been 

introduced for many years, it already shows its high capability in simulating the 

behavior of flow in macroscopic channel. Most of the results obtained from LBM are 

in good agreement with analytical results and other numerical results. The flow pattern 

and its behavior can be studied through analyzing the outcome of results [6]. 

The LBM uses ensemble averaged distribution function to describe the kinetic 

system and consider that the collective behavior of the imagined particles which 

characterize the system, is in agreement by the principle of macroscopic physics. 

Nowadays the lattice Boltzmann method (LBM) has established itself as a powerful 

tool for the simulation of a wide range of physical phenomena. One of its main 

applications is the field of computational fluid dynamics where it has proven 
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successful to solve the weakly compressible Navier–Stokes equations and models 

associated with more complex flows involving several phases or components. It has 

also been successfully applied to the simulation of flows of pseudo plastic and 

viscoelastic fluids. This method does not solve directly the macroscopic conservation 

equations, but somewhat models the statistics of collision of particles and may offer 

more modeling freedom than the classical methods based on finite difference, finite 

volume or finite element to which it is a competitive alternative. 

Considering the rapid pace with which the subject is developing, in the 

foreseeable future the LBE method is likely to play a significant role in the numerical 

prediction of flows. A particularly simple linearized version of the collision operator 

makes use of a relaxation time towards an equilibrium value using a single relaxation 

time parameter. The relaxation term is known as the Bhatnagar–Gross–Krook (BGK) 

collision operator [3]. This model is called the lattice Boltzmann BGK model. Use of 

this collision operator makes the computations much faster. Due to the extreme 

simplicity, the lattice BGK (LBGK) equation [4] has become the most popular lattice 

Boltzmann model. 

To solve Lattice Boltzmann equation partial differential must be considered. In 

this regard partial differential equation presents fluid flow through the space and time. 

As a matter of fact, certain solutions only exist for a few specific cases with simple 

geometries and suitable boundary conditions. It is certainly true that to obtain 

simplified equation; the complex phenomena must be ignored. However, nowadays 

digital computers have rapidly developed and many researchers prefer to use high 

performance computers in their field of study. 

1.2 Statement of Problem 

The properties of water based nanofluids have been presented in the form of 

tables or equations and heat transfer effects is investigated because the demand on 

usage of nanofluids is rapidly increasing but research on the nanofluids is at the early 

stage and still big gap between numerical and experimental results exist. Also behavior 



4 

 

of nanofluids is not well understood so in this study tried to investigate different factors 

which effect on heat transfer conditions of different nanofluids to find the best aspect-

ratio and volume fraction of each nanofluid to have the best heat transfer in a square 

cavity. 

1.3 Objectives of the study  

The specific objectives of this study are as follows:  

 Investigation of effect of nanoparticle volume fraction on heat transfer 

enhancement in a square cavity.  

 Investigation of effect of increasing Rayleigh number on heat transfer 

enhancement of nanofluids and compare the Nusselt number in each case. 

1.4 Scope of the Study  

In this study, two dimensional Lattice Boltzmann scheme is used to simulate 

heat transfer in a square cavity. D2Q9 lattice model is chosen for the simulation. 

Nanoparticles that are used in this study are Al2O3 and CuO in water base fluid and the 

range of Rayleigh number is 103-104 and 105. For the cavity aspect ratio of 1.0 is 

chosen. The effect of particle interactions is neglected. 
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