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ABSTRACT 

 

 

 

 

Flexible structures are very much in demand in the aerospace, marine, civil 

engineering and robotics industries. Controlling unwanted vibrations on these 

flexible plate structures is very important to maintain the performance of the 

structures. To design and develop a good controller, the dynamics of the plate must 

be modelled adequately. This thesis presents the development of a dynamic 

characterization of a flexible plate structure using system identification techniques 

via evolutionary methods and a proportional-integral-derivative (PID) controller for 

vibration suppression of a flexible plate. Initially, a flexible plate experimental rig 

was designed and fabricated with a clamped-clamped-free-free (CCFF) boundary 

condition. Then, data acquisition and instrumentation system were designed and 

integrated with the rig. Several experimental procedures were conducted to acquire 

the input and output data of the flexible plate. The input-output data collected from 

experiments were utilized to develop the model of the system. Several parametric 

modeling approaches were devised using linear auto regressive with exogenous 

(ARX) model structure which included the least square (LS), recursive least square 

(RLS), genetic algorithm (GA) and particle swarm optimization (PSO) techniques. 

The developed models were validated using one step-ahead (OSA) prediction, mean 

squared error (MSE) and correlation tests. Amongst all, it was found that the LS 

algorithm performed better in terms of achieving the lowest MSE as compared to the 

RLS, GA and PSO performance. Besides, all developed models performed well in 

estimating the first mode of vibration which is the dominant mode of the structure. It 

was also found that GA based active vibration control (AVC) using auto tuning 

method is the best proposed controller for vibration suppression of flexible plate with 

CCFF edge boundary condition with the highest attenuation value obtained for the 

first mode of vibration is 112.93 dB.  
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ABSTRAK 

 

 

 

 

Struktur boleh lentur sangat diperlukan dalam industri angkasa lepas, marin, 

awam dan robotik. Mengawal getaran yang tidak diperlukan pada struktur boleh 

lentur adalah sangat penting untuk mengekalkan prestasi struktur. Sistem dinamik 

untuk plat hendaklah dimodelkan terlebih dahulu sebelum membangunkan sebuah 

pengawal yang baik. Tesis ini membentangkan pembangunan ciri dinamik bagi 

struktur plat boleh lentur menggunakan teknik sistem identifikasi menerusi kaedah 

evolusi dan sebuah pengawal kadar-kamir-pembeza (PID) untuk menghapuskan 

getaran terhadap plat boleh lentur. Pada mulanya, sebuah rig eksperimen plat boleh 

lentur direka bentuk dan dibina dengan keadaan sempadan apit-apit-bebas-bebas 

(CCFF). Kemudian, sistem pemerolehan data dan  instumentasi  dipasang pada rig. 

Beberapa kaedah eksperimen dijalankan untuk memperolehi data masukan dan 

keluaran plat boleh lentur. Data masukan-keluaran yang diperolehi digunakan untuk 

membangunkan sistem model. Beberapa model parametrik direka menggunakan 

struktur model linear autoregresif dengan input eksogenus (ARX) termasuklah 

kaedah kuasa dua terkecil (LS), kuasa dua terkecil jadi semula (RLS), algoritma 

genetik (GA) dan pengoptimuman kerumunan zarah (PSO). Kesemua model yang 

dibangunkan disahkan dengan menggunakan kaedah ramalan satu langkah ke 

hadapan (OSA), min kuasa dua ralat (MSE) dan ujian korelasi. Dari kalangan 

kesemua model yang dibangunkan, algoritma LS telah menunjukkan keputusan yang 

terbaik dengan memperolehi nilai MSE yang paling rendah jika dibandingkan 

dengan algoritma RLS, GA dan PSO. Selain itu, kesemua model yang dibangunkan 

telah menunjukkan keputusan yang baik untuk anggaran mod getaran yang pertama 

iaitu mod dominan pada struktur. Didapati juga kawalan getaran aktif (AVC) 

berasaskan GA dengan menggunakan kaedah penalaan auto merupakan pengawal 

yang terbaik dalam menghapuskan getaran pada plat boleh lentur dengan keadaan 

sempadan CCFF dengan nilai pengecilan yang tertinggi pada mod pertama getaran 

iaitu sebanyak 112.93 dB.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.0  Background of Study 

 

 

Recently, the use of flexible structure system for engineering structural 

applications is rapidly expanding. Basic elements of these flexible structures such as 

beams, plates, shells and frames are extensively used in the manufacturing industry. 

Mechanical, civil, aeronautical, marine and aerospace industries reflect the 

importance and practical significance of the use of these flexible structures. The 

flexible structure system is known when the flexible structure is subjected to 

disturbance forces, it will demonstrate an intrinsic property of vibration that will 

weaken the system and causes structural damages (Tokhi and Hossain, 1994). 

 

 

The flexible structures are used in diverse engineering applications 

nowadays, and this has lead for a demand of flexible structures which are reliable, 

light and efficient. Presently, the flexible plate materials are lighter, thinner and 

larger. Although, the characteristics of a flexible structure has made it become more 

functional in the engineering application but, it is also has its downside in the 

engineering applications. The characteristics of flexible structures which are light, 

larger and thin actually lead to high vibration. High vibration on these flexible 

structures will reduce the effectiveness of the flexible structure system. Besides that, 

if the vibration of the flexible plate is higher, it will 
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cause human discomfort. The potential applications and the problems posed by the 

flexible plates have received the considerable attention among researchers who are 

keen to solve the problem of vibration on the flexible structure system with complex 

boundary condition (Ismail, 2006). 

 

 

Normally, a researcher will alter the geometry or boundary condition of the 

flexible plate to prevent failure in the flexible plate. Altering the geometry of flexible 

plate is a general mechanical method where it is dependent on knowledge about the 

frequency of vibration sources. The problem of this method is that anticipation of the 

frequency of disturbance is based on the time dependent characteristics of the 

destructive vibration which, at times may be impossible to be achieved. Passive and 

active control methods are two control strategies used to reduce the amplitude of the 

destructive vibration in a flexible plate structure. The passive control method consists 

of mounting passive material. For example, dynamic absorbers and vibration 

dampers use mass spring damper decoupling on a structure. On the other hand, the 

active control method known as active vibration control (AVC) basically introduces 

a secondary source of vibration to the dynamical system for reducing the amplitude 

of vibration (Tavakolpour, 2010). 

 

 

The key of effectiveness for control the vibration of the flexible plate by 

obtain an accurate or approximate dynamic model of the flexible plate structure. 

Developing an accurate dynamic model of a plate structure will help to give the best 

result in control the vibration and the way to design the good controller for vibration 

suppression of the flexible plate (Tavakolpour, 2010). Analysis of the vibration on 

the plate has been studied extensively in the few last few decades especially focusing 

on the various shapes and configurations of a flexible plate structure. Initially, the 

analysis has been about the simple cases, such as limited boundary condition and the 

geometries. This could be due to the lack of computational facilities at that time and 

it must have been difficult to obtain accurate results from the analysis. Nowadays, 

the situation is already changed because of the advancement and upgrades in the 

computational system and also various efficient numerical methods. There are more 
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researchers in this area and the results of their research are also more accurate (Al-

Khafaji, 2010). 

 

 

Active vibration control (AVC) has been getting attention of researchers in 

this field recently. The main purpose of AVC is to reduce the amplitude of a 

dynamical system by generating a secondary source to the dynamical system.  AVC 

uses the superposition waves by introducing a secondary vibration to destruct an 

unwanted vibration source which will reduce the vibration level to the desired 

location (Mat Darus and Tokhi, 2005). Alternatively, AVC can be explained when a 

disturbing vibratory signal that is sensed by an appropriate transducer with suitable 

transfer function which will be processed by the designed controller. Then, the 

control signal will be fed to the actuator to build a secondary force signal. In fact, the 

AVC is more efficient as compared to the passive control method. Other than that, 

AVC is able to control any unnecessary vibration in the broad band frequency and 

this is one of the reasons that this type of control is getting more attention from 

researchers and engineers nowadays (Tavakolpour, 2010). 

 

 

 

 

1.1  Statement of Problem 

 

 

 Disturbance vibration on a flexible plate will affect the performance of the 

flexible structure. Thus, removing unwanted vibration on the flexible plate structure 

is necessary. Active vibration control (AVC) is a method that can solve low vibration 

control problems and it has many advantages compared with the traditional vibration 

control. Mat Darus, et al., (2007) has reported the development of the active 

vibration control (AVC) for flexible plate structure that uses the genetic algorithm 

(GA) strategy. The development of the GA is used to obtain a dynamic model of a 

flexible plate structure. Another research by Julai, et al., (2010) presented the 

development of active vibration control of a flexible structure by using the particle 

swarm optimization (PSO). The optimization technique was utilized to obtain a 

dynamic model of a flexible plate structure that uses auto regressive with exogenous 

(ARX) input structure. In another study, Ismail, (2006) presented a system 
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identification of flexible structure that uses Neural Network. This research 

investigated the development of a system identification approach for the modeling of 

a two dimensional of flexible plate structure.  

 

 

Many of the research relied on simulation data to obtain the characterization 

of a flexible plate. However, in this research, vibration data set of flexible plate was 

collected by conducting experiments in laboratory and a flexible plate was clamped 

at the 2 side edges, while the top and bottom of the flexible plate was free clamped is 

used in experimental rig.  Thus, the two main purposes of this research are to 

characterize the clamped-clamped-free-free (CCFF) flexible plate structure using 

system identification techniques and to develop a PID controller using evolutionary 

methods for vibration control of the flexible plate.  

 

 

 The input output data of the flexible plate structure for the whole previous 

research mentioned above was acquired from simulation using finite difference 

method. Therefore, in this research the data input output of a flexible plate structure 

will be obtained from the experimental data. The performance of the system 

identification developed in this research using Least Square (LS), Recursive least 

square (RLS), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) 

were validated and compared with each other. Then, a PID controller was developed 

for vibration suppression of flexile plate based on active vibration control technique.  
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1.2  Objectives 

 

 

There are two main objectives of this research: 

 

i. To model the clamped-clamped-free-free (CCFF) flexible plate structure 

using system identification techniques approaches by conventional and 

intelligent parametric modeling. 

ii. To develop a PID controller for suppression of unwanted vibration of the 

CCFF flexible plate structure. 

 

 

 

 

1.3  Scope of Study 

 

 

i. Use of experimental test rig and National Instrumentation Data Acquisition 

System to acquire the vibration data of the flexible plate. 

ii. Use of parametric modeling for the CCFF flexible plate structure based on 

conventional parametric modeling approach such as Least Square (LS) and 

Recursive Least Square (RLS), and intelligent parametric modeling approach 

such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). 

iii. Validate the developed models using a one step-ahead prediction (OSA), 

mean squared error (MSE) and correlation tests.  

iv. Develop a PID controller using Matlab SIMULINK for vibration suppression 

of the CCFF flexible plate structure. 
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1.4 Research Methodology 

The flowchart in Figure 1.1 describes briefly the research methodology 

considered in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 : Flowchart of study 

Data acquisition system and 

instrumentation set up 

Data acquisition system and 

instrumentation system were designed 

and integrated with the rig in the 

experiment in purpose to collect the 

input-output data of flexible plate. 

Development of dynamic model of 

flexible plate structure 

Several parametric modeling 

approaches were devised using linear 

ARX model structure which included 

least square, recursive least square, 

genetic algorithm and particle swarm 

optimization techniques. 

Development of PID controller  

The controller developed will be used 

active vibration control (AVC) 

technique. The parameters of PID will 

be tuned using heuristic method and 

auto tuning function method in Matlab 

SIMULINK. 

Analysis of the results 

The result of system identification will be 

analyzed and validated in term of mean 

squared error, one step-ahead prediction and 

correlation while the active vibration control 

(AVC) controller will be analyzed and the 

performance will be determined in term of 

higher attenuation of spectral density in time 

domain and frequency domain. 

Publications 

Publication in IEEE journal paper and 

International conference  

Literature reviews 

Literature reviews on system 

identification and active vibration 

control. 

 

Designed and fabricated an 

experimental rig 

The design of the rig need to be followed 

the clamped-clamped-free-free (CCFF) 

edges boundary condition. The size of 

flexible plate used is 60 cm of length and 

30 cm of width. 

Collecting input-output vibration 

data of flexible plate by conducting 

an experiment in laboratory 

The external force applied on the rig 

during conducting the experiment in 

order to supply the vibration on the rig.  
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