EFFECTIVENESS OF HOMOGENIZATION EQUIPMENT ON VERY LARGE CRUDE CARRIER VESSEL

HARIS FADILLA BIN NORDIN

UNIVERSITI TEKNOLOGI MALAYSIA

EFFECTIVENESS OF HOMOGENIZATION EQUIPMENT ON VERY LARGE CRUDE CARRIER VESSEL

HARIS FADILLA BIN NORDIN

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Marine Technology)

Faculty of Mechanical Engineering Universiti Teknologi Malaysia

JANUARY 2014

Beloved parents; Nordin Lot & Alawiah Arshad

То

Beloved wife & children Noordiana, Danish, Dania, Darwish & Dhani

For all of their patience and understanding In the past, presence and future

ACKNOWLEDGEMENT

All praises be to Allah S.W.T, The Al Mighty, The Most Gracious and The Most Merciful

First and foremost, my utmost gratitude to Ir. Nordin Mat Yusoff, Vice President of Group Technical Services, MISC Berhad for offering and encouraging me to take up this challenge.

I would like to express my sincere thanks and deepest appreciation to my project supervisor, Ir. Dr. Faizul Amri Adnan for their generous advice, guidance, comments, patience and encouragement given to me in preparing and completing this Master project research. Special thanks to the distinguished Panel Supervisors of the program: Prof. Dr. Roslan Abdul Rahman and all panel supervisors for their support, patience, encouragement, and useful suggestions.

My thanks go to AET Ship Management Sdn. Bhd., Master and Chief Engineer Bunga Kasturi Lima which provided assistance, co-operation and provision to carry out the measurement onboard Bunga Kasturi Lima.

I would like also to extend my gratitude to all my classmates for encouraging each other to complete this study and providing wonderful thoughts and suggestions during ups and downs as I pursued my Master degree.

And last but not least, special thanks to my wife, Noordiana Yaacob, my children and family for their good-natured forbearance with the process and for their pride in this accomplishment.

May all the good deeds that were done will be blessed by Allah. Wassalam ...

ABSTRACT

The use of homogenizer in fuel treatment of heavy fuel oilonboard merchant vessel is arguable; it will reduce separation efficiency of fuel contaminants and fuel properties. Therefore this research analyses the effectiveness of homogenizer operated in Very Large Crude Carrier (VLCC) vessel, MT Bunga Kasturi Lima. The aim of this research is to compare operational effects on the application of homogenizer against those without the use of homogenizer. The common method for fuel treatment onboard the vessel is by using purifier. The separation of impurities and water from heavy fuel oil is essential for good combustion. Actual measurement was captured onboard for sludge production, fuel oil sampling for purifier efficiency and fuel properties analyses and main engine exhaust gas sampling while the vessel was sailing from Singapore to Port of Sikka, India and then to Cape Town, South Africa. The range of sludge production reduction is between 17% to 23% compared to without homogenizer in operation. Purifier efficiency gives a result between 63% to 70% reduction of Aluminum and Silicon for untreated fuel (without homogenizer) and 42% to 50% for homogenized fuel (with homogenizer). The saving calculated from the operational data such as valuable fuel oil and less handling fees for sludge disposal were used for Net Present Value (NPV) analysis. The negative NPV was obtained and showed that the installation of homogenizer did not provide economic advantages. Furthermore it could be concluded that the effect from bunker fuel type, homogenizer positioning onboard fuel treatment, vessel fuel consumption and sea state condition gave various impact on the effectiveness of homogenizer.

ABSTRAK

Penggunaan homogenizer dipersoalkan di dalam rawatan dan penggunaan bahan api bagi sesebuah enjin kapal dagang, dimana akan menyebabkan penurunan kecekapan dalam pemisahan bahan-bahan yang tercemar dan air yang terdapat di dalam minyak. Oleh sebab itu kajian ini bertujuan untuk menganalisis keberkesanan homogenizer yang beroperasi di atas kapal MT Bunga Kasturi Lima. Tujuan kajian ini adalah untuk membandingkan kesan yang terhasil dari pengunaan homogenizer keatas rawatan minyak dan kesannya terhadap pembakaran di dalam enjin kapal. Proses rawatan minyak di atas kapal biasanya mengunakan purifier. Perbandingan seperti kadar pengeluar enapcemar minyak, sampel minyak dan pengukuran kandungan ekzos gas dilakukan terhadap kesan yang sama tanpa mengunakan homogenizer. Pengumpulan data dan ujian itu dilakukan di atas kapal semasa dalam pelayaran dari Singapura ke Pelabuhan Sikka, India dan kemudianya ke Cape Town, Afrika Selatan. Kecekapan purifier memberi keputusan antara 63% hingga 70% pengurangan Aluminium dan Silicon apabila homogenizer tidak digunakan. Walaubagaimanapun bagi penggunaan homogenizer ia memberikan keputusan antara 42% hingga 50%. Seterusnya penjimatan yang diperolehi dari penggunaan homogenizer berdasarkan data pengoperasian seperti nilai lebih minyak yang berharga dan penjimatan dari kos pengendalian enapcemar minyak telah dikira dan seterusnya dianalisis mengunakan kaedah NPV. Nilai negatif NPV telah diperolehi dan menunjukkan bahawa pemasangan homogenizer tidak memberikan kelebihan dari segi keberkesanan ekonomi. Kesimpulan yang boleh dibuat ialah keberkesanan penggunaan homogenizer bergantung kepada jenis bahanapi, kedudukan homogenizer di dalam system rawatan minyak kapal, kuantiti penggunaan bahan api kapal dan juga keadaan laut.

TABLE OF CONTENTS

CHAPTER		TITLES	P.	AGE
	DECLARATION			ii
	DED	ICATION		iii
	ACK	NOWLEDEGEMENTS		iv
	ABS	ГКАСТ		V
	ABS	ГКАК		vi
	TAB	LE OF CONTENTS		vii
	LIST	COF TABLES		xii
	LIST	COF FIGURES		xiv
	LIST		xvi	
	LIST	COF SYMBOLS		xvii
	LIST	COF APPENDICES		X
1	INTE	RODUCTION		1
	1.1	Background		1
	1.2	Problem statement		2
	1.3	Objective of research		2
	1.4	Scope of research		3

LITERATURE		
2.1	Introduction	4
2.2	Crude oil	5

2

2.3	Refine	ery Process	5
	2.3.1	Heavy crude oil / Residual oil	6
	2.3.2	The Quality of Heavy Fuel Oil	8
2.4	The F	uel Oil Treatment	9
	2.4.1	Existing Fuel Treatment Onboard Fuel	
		Purifier and Filter	10
2.5	Nature	e of Heavy Fuel/Residual Fuel Combustibility	11
2.6	What	is Sludge?	11
	2.6.1	MARPOL Guidelines for Handling	
		Oily Wastes on Ships	13
	2.6.2	Remarks to MARPOL Annex I	
		Regulation 17 Amount of Sludge	13
	2.6.3	Sludge On Board Ships	14
2.7	Fuel H	Iomogenizer	15
	2.7.1	Background	15
	2.7.2	Application of Fuel Homogenizer	16
	2.7.3	Type of Homogenizer	16
	2.7.4	Functional Principle of a Rotor Stator	
		Homogenizer	17
2.8	Effect	for Fuel Homogenization	18
	2.8.1	Sludge Reduction	19
	2.8.2	Combustion Improvement	19
2.9	Fuel Q	Quality Characteristic and Their Importance	20
	2.9.1	Viscosity	20
	2.9.2	Specific Gravity	21
	2.9.3	Carbon Residue/Asphalts	21
	2.9.4	Sulfur	22
	2.9.5	Ash/Sediment	22
2.10	Factor	s of Marine Fuel Oil Contaminants	23
	2.10.1	Water	24
	2.10.2	Sediment	24
	2.10.3	Alumina/Silica	25
	2.10.4	Sludge	26
2.11	Exhau	st Gas Emission	26

2.12	Econor	nic Analysis	28
	2.12.1	Alternative	29
	2.12.2	Cash Flow	29
2.12.3	Alterna	tive selection	29
2.12.4	Evalua	tion Criteria	30
2.12.5	Time V	Value of Money	30
2.12.6	Cash F	low Estimation	30
2.12.7	Capital	Budgeting Decision Rules	31
2.13	Researc	ch Area	33
	2.13.1	General	33
	2.13.2	Ship's Particulars	34
	2.13.3	Equipment specification	34
	2.13.4	Arrangement of Homogenizer Onboard	35
		Vessel	
2.14	Summa	ary of Literature Review	36
RESE	ARCH	METHODOLOGY	37
RESE 3.1	ARCH	METHODOLOGY ch Methodology Flowchart	37 37
RESE 3.1 3.2	ARCH Researd Identifi	METHODOLOGY ch Methodology Flowchart ication of Research variable	37 37 38
RESE3.13.23.3	ARCH Researd Identifi Algorit	METHODOLOGY ch Methodology Flowchart ication of Research variable hm / Data Processing	37 37 38 39
RESE.3.13.23.3	ARCH Researd Identifi Algorit 3.3.1	METHODOLOGY ch Methodology Flowchart ication of Research variable hm / Data Processing Operational Data	37 37 38 39 39
RESE.3.13.23.3	ARCH Researd Identifi Algorit 3.3.1 3.3.2	METHODOLOGY ch Methodology Flowchart ication of Research variable hm / Data Processing Operational Data Economic Data	37 37 38 39 39 42
 RESE. 3.1 3.2 3.3 3.4 	ARCH Researd Identifi Algorit 3.3.1 3.3.2 Collect	METHODOLOGY ch Methodology Flowchart ication of Research variable hm / Data Processing Operational Data Economic Data ion of Data	37 37 38 39 39 42 44
 RESE. 3.1 3.2 3.3 3.4 	ARCH Researd Identifi Algorit 3.3.1 3.3.2 Collect 3.4.1	METHODOLOGY ch Methodology Flowchart ication of Research variable hm / Data Processing Operational Data Economic Data ion of Data Vessel Condition	37 37 38 39 39 42 44 44
 RESE. 3.1 3.2 3.3 3.4 	ARCH Researd Identifi Algorit 3.3.1 3.3.2 Collect 3.4.1 3.4.2	METHODOLOGY ch Methodology Flowchart ication of Research variable hm / Data Processing Operational Data Economic Data ion of Data Vessel Condition Collection of Purifier Efficiency Data	37 37 38 39 39 42 44 46 46
 RESE. 3.1 3.2 3.3 3.4 	ARCH Researd Identifi Algorit 3.3.1 3.3.2 Collect 3.4.1 3.4.2 3.4.3	METHODOLOGY ch Methodology Flowchart ication of Research variable hm / Data Processing Operational Data Economic Data ion of Data Vessel Condition Collection of Purifier Efficiency Data Collection of Fuel Sample for Analyzing	 37 38 39 39 42 44 46 46
 RESE. 3.1 3.2 3.3 3.4 	ARCH Researd Identifi Algorit 3.3.1 3.3.2 Collect 3.4.1 3.4.2 3.4.3	METHODOLOGY ch Methodology Flowchart ication of Research variable hm / Data Processing Operational Data Economic Data ion of Data Vessel Condition Collection of Purifier Efficiency Data Collection of Fuel Sample for Analyzing Fuel Oil Properties	37 37 38 39 39 42 44 46 46 46
 RESE. 3.1 3.2 3.3 3.4 	ARCH Researd Identifi Algorit 3.3.1 3.3.2 Collect 3.4.1 3.4.2 3.4.3 3.4.4	METHODOLOGY ch Methodology Flowchart ication of Research variable hm / Data Processing Operational Data Economic Data ion of Data Vessel Condition Collection of Purifier Efficiency Data Collection of Fuel Sample for Analyzing Fuel Oil Properties Collection of Sludge Production Data	37 37 38 39 39 42 44 46 46 46 49 50
 RESE. 3.1 3.2 3.3 3.4 	ARCH Researd Identifi Algorit 3.3.1 3.3.2 Collect 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5	METHODOLOGY ch Methodology Flowchart ication of Research variable hm / Data Processing Operational Data Economic Data ion of Data Vessel Condition Collection of Purifier Efficiency Data Collection of Fuel Sample for Analyzing Fuel Oil Properties Collection of Sludge Production Data Specific Fuel Consumption Measurement	37 37 38 39 39 42 44 46 46 46 46 50 52
 RESE. 3.1 3.2 3.3 3.4 	ARCH Researd Identifi Algorit 3.3.1 3.3.2 Collect 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.4.6	METHODOLOGY ch Methodology Flowchart ication of Research variable hm / Data Processing Operational Data Economic Data ion of Data Vessel Condition Collection of Purifier Efficiency Data Collection of Fuel Sample for Analyzing Fuel Oil Properties Collection of Sludge Production Data Specific Fuel Consumption Measurement Collection of Exhaust Gas Emission Data	37 37 38 39 39 42 44 46 46 46 46 50 52 52
RESE. 3.1 3.2 3.3 3.4	ARCH Researd Identifi Algorit 3.3.1 3.3.2 Collect 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.4.6 3.4.7	METHODOLOGY ch Methodology Flowchart ication of Research variable hm / Data Processing Operational Data Economic Data ion of Data Vessel Condition Collection of Purifier Efficiency Data Collection of Fuel Sample for Analyzing Fuel Oil Properties Collection of Sludge Production Data Specific Fuel Consumption Measurement Collection of Exhaust Gas Emission Data Collection of Main Engine Data	37 37 38 39 39 42 44 46 46 46 40 50 52 52 52 52 53

3

3.5	Analyzing of Data	54
	3.5.1 Calculation of Purifier Efficiency	
	(Removal Particle Expectation)	54
	3.5.2 Calculation of Sludge Production	55
	3.5.3 Calculating Specific Fuel Consumption	57
	3.5.4 Calculating Cost Estimation for	
	Economic Analysis	58
	3.5.5 Inferential Statistic	64
3.6	Concluding Remarks	65
RES	ULT AND DISCUSSION	66
4.1	Introduction	66
4.2	Purifier Particle Removal Expectation	
	(Purifier Efficiency)	67
4.3	Sludge Production	71
4.4	Fuel Oil Properties	78
	4.4.1 Density	79
	4.4.2 Water	79
	4.4.3 Micro Carbon Residue	80
	4.4.4 Vanadium	81
	4.4.5 Aluminum and Silicon	82
	4.4.6 Nickel and Iron	83
	4.4.7 Fuel oil Properties – ISO 8217 Standard	86
4.5	Specific Fuel Oil Consumption	87
4.6	Exhaust Emission Result	93
	4.6.1 NOx Emission	93
	4.6.2 CO Emission	95
	4.6.3 Exhaust Emission Effect	96
4.7	Overall Operational Effect	97
4.8	Economic Analysis – NPV	98
4.9	Discussion on Fuel Quality in the Current Marke	t 100
4.10	Discussion on 1% Clause of Sludge in Marine	
	Industries Standard	102

5	CONC	CLUSIC	ONS AND RECOMMENDATIONS	104
	5.1	Conclu	sion	104
		5.1.1	Purifier Efficiency – Particle Removal	
			Expectation	104
		5.1.2	Sludge Production	105
		5.1.3	Fuel Oil properties	106
		5.1.4	Specific Fuel oil consumption	107
		5.1.5	Exhaust gas emission	107
		5.1.6	Economic Analysis – NPV	108
		5.1.7	Fuel quality in current market	109
		5.1.8	1% clause of sludge in Marine standards	109
	5.2	Overal	l conclusion	109
	5.3	Recom	mendation	110
REFERENCE	S			111

APPENDICES A-I

113 - 194

LIST OF TABLES

TABLE NO.	TITLES		
2.1	Typical characteristic of a poor quality fuel and the		
	resulting problems	9	
2.2	Characteristic Properties and Contaminants Effects	23	
2.3	Bunga Kasturi Lima's Principal Dimension	34	
2.4	Fuel Oil Homogenizer's Specification	34	
2.5	Fuel Oil Purifier's Specification	35	
3.1	VLCC Bunga Kasturi Lima Vessel Condition	46	
3.2	Fuel oil Properties Data Sampling	49	
3.3	Sludge Volume Measurement Record	51	
3.4	Others Data Collection	54	
3.5	Fuel Oil Treatment with Homogenizer	55	
3.6	Fuel Oil Treatment without Homogenizer	55	
3.7	Sludge Production Record	56	
3.8	Calculation of Specific Fuel Oil Consumption for		
	Los Angeles Heavy Fuel Oil	57	
3.9	Calculation of Specific Fuel Oil Consumption for		
	Singapore Heavy Fuel Oil	58	
3.10	NPV Analysis with Homogenizer	61	
3.11	NPV Analysis without Homogenizer	63	
4.1	Separation efficiency analysis	67	
4.2	Result Volume of Actual Sludge Production per day		
	Compare with Theoretical sludge Volume and Equipment		
	Maker's expectation	71	
4.3	Fuel quality record – result from bunker analysis	76	
4.4	Sludge properties result	76	
4.5	Sludge production (T-test analysis)	78	

4.6	Density of fuel	79
4.7	Water content in fuel oil	80
4.8	Carbon residue content in fuel oil	81
4.9	Vanadium contents of fuel oil	81
4.10	Aluminum and silicon content in fuel oil	82
4.11	Nickel content in fuel oil	84
4.12	Iron content in fuel oil	84
4.13	Results from analysis of fuel sample with homogenized	
	Fuel and untreated fuel	85
4.14	ISO 8217 fuel standard with & without homogenizer	86
4.15	Result of Main Engine Fuel Oil Consumption Measuremen	t88
4.16	Main Engine SFOC (T-test analysis)	89
4.17	NOx Emission (T-test analysis)	94
4.18	Average quality characteristic of 380cSt heavy fuel in the	
	years 1996 and 2001 in the major bunkering port	101
4.19	Bunker report for Bunga Kasturi Lima in year 2009	101

LIST OF FIGURES

FIGURE NO.	TITLES	PAGE
2.1	Refinery Process	6
2.2	Sludge (Asphalt) Composition	12
2.3	Principle of Fuel Homogenizer	18
2.4	Typical exhaust emission from a modern low speed	
	engine	27
2.5	Arrangement of Homogenizer Onboard Vessel	35
3.1	Research Methodology	37
3.2	Fuel oil Sampling Position	47
3.3	Sample bottle and labeling	48
3.4	P&ID for Fuel Oil Sludge Tank	50
3.5	Exhaust Sampling Point area	52
3.6	Flue Gas Analyzer	53
4.1	Purifier removal expectation result with Homogenizer in	
	operation and without operation, a) Water, b) Vanadium	68
4.2	Purifier removal expectation result with Homogenizer in	
	operation and without operation, Aluminum and Silicon	68
4.3	Purifier removal expectation result for fuel properties	
	a) by purifier only, R b) by Homogenizer, $H1+H2$	69
4.4	Volume of Sludge production per day	72
4.5	Sludge Production vs. Operation Mode	72
4.6	Sludge production basis on 1% clause of MARPOL	
	Regulation, a) With Homogenizer, b) Without	
	Homogenizer	73
4.7	Sludge production basis Maker expectation a) With	
	Homogenizer, b) Without Homogenizer	73

4.8	Sludge production basis on Actual measurement onboard	
	Bunga Kasturi Lima, a) With Homogenizer, b) Without	
	Homogenizer	74
4.9	Sludge production versus operating condition onboard	
	Bunga Kasturi Lima	74
4.10	Fuel oil consumption per day while homogenizer with	
	and without operation	88
4.11	Specific fuel oil consumption comparing with main engine	
	load while homogenizer with and without operation	90
4.12	Average specific fuel oil consumption from MT Bunga	
	Kasturi Lima, operation mode on homogenized (H1+H2),	
	untreated fuel (R) for vessel in laden and ballast voyage	91
4.13	Main engine mean effective pressure for each cylinder unit	92
4.14	Main engine average exhaust temperature comparing to	
	operation mode	92
4.15	NOx emissions from operation on various forms on fuel	
	pre-treatment	95
4.16	CO emission from operation on various forms on fuel	
	pre-treatment	96
4.17	Comparison of Exhaust Emission	97
4.18	Comparison of Operational Effect	98
4.19	NPV Analysis	99

LIST OF ABBREVIATIONS

VLCC	-	Very Large Crude Carrier
MGO	-	Marine Gas Oil
MDO	-	Marine Diesel Oil
HFO	-	Heavy Fuel Oil
MARPOL	-	Marine Pollution
PSC	-	Port State Control
NOx	-	Nitrogen Oxide
SOx	-	Sulfur Oxide
НС	-	Hydrocarbon
СО	-	Carbon monoxide
DN	-	Do nothing
NPV	-	Net Present Value
IRR	-	Internal Rate of Return
DMCO	-	De-ratted Maximum Continuous Output
DSCO	-	De-ratted Service Continuous Output
DNVPS	-	Det Norske Veritas Petroleum Services
SFOC	-	Specific Fuel Oil Consumption
MT	-	Motor Tanker
CCAI	-	Calculated Carbon Aromaticity Index
РРМ	-	Part per million
NCF	-	Net cash flow
NPV	-	Net present value
PSC	-	Port State Control
DNVPS	-	DET NORSKE VERITAS Petroleum Services

LIST OF SYMBOLS

V1	-	sludge tank capacity
K1	-	1% clause of sludge
С	-	Daily fuel oil consumption
D	-	Period of voyage
np	-	payback period
Р	-	Initial investment
Р	-	Principal of investment
Ι	-	Cash flow
r	-	discount rate/inflation rate
t	-	Number of year
kW	-	Kilowatt
v (%)	-	Purifier efficiency
vo	-	Amount contaminant outlet flow
vi	-	Amount contaminant incoming flow
V_1	-	Theoretical value
V_2	-	Maker's expectation
V_a	-	Actual sludge production
<i>Gr</i> _o	-	Specific gravity (15/4°C),
Pe	-	Engine power obtain by Main Engine operating data
Co	-	Fuel consumption for one (1) hour by Flow Meter
t_1	-	Inlet temperature at Flow meter
SI	-	saving generates from valuable burnable fuel oil in t year
OS	-	Operator reduction cost (Less sludge handling) in t year
SV	-	Resale value in t year
OC	-	Operating cost in t year
МС	-	Maintenance cost in t year
FO	-	Fuel oil

m^3	-	cubic meter
mt	-	metric ton
E_P	-	Electric motor and feed pump power consumption
G_P	-	Total power consumption at normal sea going,
G_{fo}	-	Fuel oil consumption for Generator engine,
Dt	-	depreciation charge for year t
В	-	First cost
S	-	Estimated salvage value
Ν	-	Recovery period
D	-	Depreciation rate 1/n
R	-	Without Homogenizer / Untreated fuel
H1+H2	-	With homogenizer / Homogenized fuel
<i>M/E</i>	-	Main engine
Kt	-	knots
Kg/m3	-	kilogram per cubic meter
mm/s2	-	millimeter per second
cSt	-	centistokes
% v/v	-	percentage of volume
% m/m	-	percentage of content
Mg/kg	-	Milligram per kilogram
° C	-	Degree Celsius
MJ/kg	-	Mega joule per kilogram

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	MT Bunga Kasturi Engine Log Book	114
В	Data records on Daily Basis	131
С	MT Bunga Kasturi Main Engine Performance Sheet	162
D	Sludge Production Record	168
E	Fuel Oil Properties Record	170
F	Fuel Oil & Sludge Oil Samples Record	175
G	Exhaust Emission Record	178
Н	Main Engine – Mean Effective Pressure	180
Ι	Fuel Oil Samples Delivery Form	183

CHAPTER 1

INTRODUCTION

1.1 Background

Today the world's fleet includes approximately 55% slow speed diesel, 40% medium speed diesel and 5% other engine types (Rischmann, 2005). Prior to 1970 marine fuel quality was fairly predictable and did not seem to be a major cause for concern. Residual fuels were purchased for boiler and slow speed diesel engine consumption both for marine and shore installations, where they were a viable alternative to solid fuels or gas. At that time residual fuels may found under the titles or short names as 'Burner Fuel', 'Heavy Oil', 'Boiler Oil', and 'Bunker C' which still exist.

Today the efficiency of the oil refinery processes is good and now the residual fuel is produced using different refinery processes. The heavy fuel oil use for Marine fuel oil is expensive due to high light crude oil prices (Rischmann, 2005). Marine fuel oil quality is influenced by the worldwide refinery mix, the variation in crude oil quality available, and the demand patterns for middle distillate and residual fuels (American Bureau Shipping, 1984). Implementation of good fuel oil treatment is essential in order to operate vessel without problems.

If new homogenizer system is positioned in the right place of fuel treatment system, the homogenizer can help to solve operational problems, which may occur during the use of heavy fuel oil onboard of the vessels.

The research will be based on the installation of Homogenizer onboard VLCC Bunga Kasturi Lima and to investigate the effectiveness of the homogenizer equipment onboard fuel oil system.

1.2 Problem Statement

The use of homogenizers in pre-treatment of heavy fuels is controversial, the major manufacturers of fuel purifier advocate against installation of homogenizer upstream separators, arguing that it will strongly reduce separation efficiency (Lien and Kolle, 2002). Previous researcher found that there no significant changes in separation efficiency between untreated and homogenized fuel could be detected (Lien and Kolle, 2002).

It is important to investigate to what extent the fuel oil homogenizer system affects the purifier efficiency, fuel oil consumption, sludge performance and equipments maintenance.

In MISC Berhad context, the installation of fuel oil homogenizer will be significant in order to reduce and recover Fuel oil sludge as valuable operative fuel oil. This research compares the advantages and disadvantages of using homogenizer and the cost involved. The results are certainly useful to major shipping companies in term of significant effect, environmental effect and cost to the overall vessel operation.

1.3 Objective of the Research

- i. To compare the operational effects on the application of Homogenizer equipment onboard vessel against without the use of homogenizer
- ii. To determine the effectiveness of homogenizer equipment installed on Very Large Crude Carrier (VLCC) vessel.

1.4 Scope of Research

The scope of the research covers the application of Homogenizer equipment onboard M.T Bunga Kasturi Lima. The target route of vessel sailing is from Singapore to Fujairah. Fuel bunkering will be expected in Singapore. Operating condition such as vessel's speed, Main Engine output and fuel consumption, will be monitored.

This study will concentrate on the comparative study with and without the use of homogenizer on the operational effect for following;

- i. Purifier Efficiency η_p
- ii. Sludge Reduction v_r
- iii. Fuel oil properties F_p
- iv. Specific fuel oil consumption
- v. Exhaust Gas Analysis

The above operational data will be used for economic analysis by using Net Present Value.

REFERENCES

- Lien, S.I., and Kolle, L.(2002). Project Green Efforts for Existing Ship.Norwegian Marine Technology Research Institute.
- Rischmann, J., (2005).*Lloyd's Register Technical Association*, Paper No. VII. Session 2005-2006.
- American Bureau Shipping (1984). Notes on Heavy Fuel Oil. American Bureau Shipping.
- 4. Fisher, C., and Lux, J. (2004). *Bunkers-An Analysis of the Practical Technical and Legal Issue*. England: Petro Spot Limited.
- 5. S.I.T (2007). The Technology of Conditioning Device.[Brochure]
- Lin, C.Y. and Chen, L.W. (2007). Comparison of Fuel Properties and Emission Characteristic of Two and Three Phase Emulsion. National Taiwan University.
- 7. Burak, S.R.*Improving Fuel Oil Usage by Homogenization*. Ashland Specialty Chemical Company: Drew Marine Division
- Environmental Protection Agency (2009). *In use Marine Diesel Fuel*.
 Environmental Protection Agency. United States of America.
- Marine Environment Protection Committee (2003).MEPC 103 (49), Guidelines for onboard NOx Verification Procedure – Direct Measurement and Monitoring Method. Marine Environment Protection Committee
- Zainuddin, N.S. (2007). Effectiveness of Sediment Basin and Silt Traps at Oil Palm Plantations. Master Thesis. University Technology Malaysia.
- DetNorske Veritas (2009). Engine Damage Working Group Meeting, Singapore
- 12. Blanchard, B.S. and Fabrycky, W.J. (2006). *System Engineering and Analysis*. Prentice Hall.
- Blank, L. and Tarquin, A. (2008). *Basics of Engineering Economy*, McGraw-Hill Higher Education.
- 14. Chapter 4, Economic Measures, Page 39

- 15. DetNorske VeritasPetroleum Services (2009). Fuel System Check,
- 16. Universal Shipbuilding Corporation (2005). Bunga Kasturi Lima Piping Diagram of All Systems in Engine Room. Universal Shipbuilding Corporation Kumamoto Japan.