INTEGRATION OF CUBIC MOTION AND VEHICLE DYNAMIC FOR YAW TRAJECTORY

MOHD FIRDAUS BIN MAT GHANI

A thesis submitted in fulfilment of the requirements for the award of the degree of Master ofEngineering (Mechanical)

Faculty of Mechanical Engineering UniversitiTeknologi Malaysia

SEPTEMBER 2014

To my beloved parents To my lovely wife, Noorasyeekeen binti Adinan To my son, Muhamad Arman Farhan To my lectures, for the guidance and encouragement To my friends for their support

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to all those who provided me the possibility to complete this thesis. A special gratitude I give to my beloved supervisors Dr. Jamaludin Bin Hj Taib and Mr. Afandi Dzakaria, because supporting me in ideas and fundamental of this research. Special thanks go to my parents, who are supporting me as well. Besides that, I would like to thanks to Allah for giving me strength for finisihing my research

ABSTRACT

Researches in vehicle dynamic simulation have been a subject of interest for researchers nowadays. By replacing costly experiment, simulation of the vehicle dynamics can be the ultimate tools to investigate the vehicle response and producessimilar results to that of real experiment. Many of the vehicle simulation inputsdo not consider position of the car as a function of time. Cubic Motion curve will be used as the input to the vehicle simulation and driver model system. Cubic Motion is a curve generated by the integration of Cubic Spline and the dynamics of a vehicle. Cubic spline will generate the curve, while the dynamic of motion will position the vertices based on a given time set. Hence, a new approach has been made to investigate the road input with time function to produce similar response compared to the experimental method. This research focuses on a two- degree-offreedom vehicle lateral dynamic model. The tests were carried out for a two case studies which are Double Lane Change and Slalom test. Results have shown that, cubic motion can be used as the input for the vehicle simulation because it can produce good trajectory as well as other vehicle response such as vehicle trajectory, lateral acceleration and yaw rate. The significance of this research has a great potential for road safety study related to defining the speed limit of the vehicle according to the curviness of the road.

ABSTRAK

Penyelidikan dalam simulasi dinamik kenderaan telah menjadi suatu bidang penting untuk penyelidik pada masa kini. Dengan menggantikan eksperimen yang menelan kos yang mahal, simulasi dinamik kenderaan boleh menjadi satu kaedah untukmengkaji tindak balas kenderaan dan mampu menghasilkan keputusan yang serupa seperti eksperimen sebenar. Kebanyakan input untuk simulasi kenderaan tidak mengambil kira kedudukan sebenar kereta di dalam fungsi masa. Likungan Cubic Motion akan digunakan sebagai input kepada simulasi kenderaan dan sistem model pemandu. Likungan Cubic Motion yang dihasilkan adalah gabungan Cubic Spline dan dinamik gerakan. *Cubic Motion* akan menghasilkan lengkung, manakala dinamik gerakan akan meletakkan posisi berdasarkan set masa yang telah ditetapkan. Oleh itu, pendekatan baru telah dibuat untuk menyiasat input jalan dengan fungsi masa untuk menghasilkan maklumbalas yang serupa berbanding dengan kaedah eksperimen. Kajian ini memberi tumpuan kepada dua darjah kebebasan dinamik kenderaan. Ujian dijalankan dalam dua kajian kes iaitu Double Lane Change dan ujian Slalom. Keputusan telah menunjukkan bahawa, input cubic motion boleh menjadi input untuk simulasi kenderaan kerana ia boleh menghasilkan trajektori yang baik serta tindakbalas yang lain seperti, pecutan sisian dan kada rulangan. Kepentingan kajian ini mempunyai potensi yang besar dalam membawa kajian keselamatan jalan seperti menentukan had kelajuan kenderaan mengikut darjah lengkuk jalan.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	п
	DEDICATION	III
	ACKNOWLEDGEMENT	IV
	ABSTRACT	V
	ABSTRAK	VI
	TABLE OF CONTENTS	VII
	LIST OF TABLES	XI
	LIST OF FIGURES	XII
	LIST OF SYMBOLS	XVI
	LIST OF ABBREVIATIONS	XVIII
	LIST OF APPENDIXES	XIX
1	INTRODUCTION	
	1.1 Introduction	1

1.2

1.3

1.4

1.5

1.6

1.7

Research Background

Problem Statement

Significant of Study

Thesis Summary

Objective

Scopes

1

3

4

4

5

5

2 LITERATURE REVIEW

2.1	Introduction	7
2.2	Vehicle Dynamic Modeling	7
2.3	Driver Model	10
2.4	Path Planning Model	14
2.5	Implementation of curve in road safety study	15
2.6	Chapter Summary	17

3 METHODOLOGY OF PRESENT WORK

3.1	Introduction		18
3.2	Work Plan		18
3.3	Phas	se 1: Development of Cubic Motion	21
	3.3.1	Development the cubic spline curve	22
	3.3.2	Development of cubic motion	28
	3.3.3	Error Analysis	30
3.4	Phas	se 2: Development of VDM and Driver	36
	Mod	lel	
	3.4.1	Two Degree of Freedom Vehicle Dynamic	36
		Model	
	3.4.2	Development of the Driver model	38
	3.4.3	Integration VDM and Driver model	40
3.5	5 Validity of VDM and Driver Model		42
3.6	5 Effect of Driver Model Parameter		46
3.7	7 Phase 4: Integration Cubic Motion with VDM		48
	and	driver model	
	3.7.1	Construction of cubic motion for VDM-DM	48
3.8	Chapter Conclusion		51

4 CUBIC MOTION PROPERTIES

4.1	Introduction	52
4.2	Generic properties of the curve	52
4.3	Properties of the curve	55

	4.3.1	Relationship between number of iteration and	57
leng	th of the cu	irve	
4.4	App	lication of cubic motion	58
4.5	Imp	lementation of Cubic motion properties in Case	61
	Stud	У	
	4.5.1	Increasing control point at cornering area	62
	4.5.2	Adjusting tangent at control point	64
4.6	Cha	pter Conclusion	65
SIM		N RESULT AND DISCUSSION	
5.1	Intro	oduction	66
5.2	Dou	ble Lane Change Simulation	67
	5.2.1	Vehicle Responses without Cubic Motion as	67
		the input	
	5.2.2	Cubic Motion in VDM	72
		5.2.2.1 Natural cubic motion as input	72
		for VDM-DM module	
	5	5.2.2.2 Adjusted tangent cubic motion	77
		as input for VDM-DM module	
	5	.2.2.3 Increase number of control	82
		point at cornering input for	
		VDM-DM module	
5.3	Con	nparison between cubic motion curves as the inputs	87
	for I	DLC test	
5.4	Slal	om test simulation	91
	5.4.1 N	atural cubic motion as input for VDM-	
	D	M module	92
	5.4.2 A	djusted tangent cubic motion as input	
	fo	or VDM-DM module	93
	5.4.3 A	dditional control points cubic motion	
	as	input for VDM-DM module	95
	5.4.4	Comparison between the inputs for	96
		Slalom Test	

5.6	Chapter Summary	97
CONCLU	JSION AND RECOMMENDATION FOR FUTURE	
WORK		
6.1	Introduction	98
6.2	Conclusion	98
6.3	Recommendation for future work	101
REFERE	NCES	103
APPEND	ICES	107
	CONCLU WORK 6.1 6.2 6.3 REFERE	CONCLUSION AND RECOMMENDATION FOR FUTUREWORK6.1Introduction6.2Conclusion

х

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
2.1	Vehicle Dynamic Interaction	8
2.2	Full Body Vehicle Dynamic Model	9
2.3	Three Degree of Freedom Vehicle Model	9
2.4	Bicycle Model	10
2.5	Compensation Driver Model	11
2.6	Basic Structure of Preview driver Model	12
2.7	Driver View for Lateral Preview Model	13
3.1	Flow Chart of Present Work	21
3.2	Single Segment Hermite Curve	23
3.3	a) Open cubic spline curve b) Natural cubic spline curve	25
3.4	Eclipse based on (a) Open cubic Spline (b) Natural	26
	cubic (c) Adjusted cubic spline	
3.5	Result of variation tangent value for Hermite Curve	28
3.6	Small line assumptions	30
3.7	Distance between knots for free parameter	31
3.8	Distance between knots for cubic motion	32
3.9	Error between spacing with 0.5 spacing	33
3.10	Various Spacing between knots	33
3.11	Various Iteration for circle profile	34
3.12	Known-Cubic Spline Arc Length	35
3.13	A2 OF VDM SIMULINK block without driver model	37

Aim point distance	38
SIMULINK block diagram for Renski Driver Model	40
Vehicle dynamic model with driver input	41
Step Input for Vehicle Dynamic Verification	43
VDM response for body slip (Reza)	43
VDM response by proposed algorithm (SIMULINK)	44
Desired Trajectory	45
Vehicle trajectory without driver controller	45
Vehicle trajectory without using driver model	46
Vehicle trajectory with various set of sight distance,La(m)	47
Vehicle trajectory with various set of speed	47
DLC-Cubic Motion	49
Slalom Test-Cubic Motion	50
Result of variation tangent value for Hermite Curve	53
Quarter Circle using a single segment of Cubic Motion	54
Number of iteration vs. Length Curve at dt 0.01	57
Straight Line Cubic Motion	58
Sepang F1 geometry	58
Two Point curve geometry	59
three point curve geometry	59
Right Angle Cornering	60
Eclipse profile with various tangent value at control point	61
Cubic motion before adjusting tangent	62
Increased control point cubic motion	63
Final Geometry of cubic motion	64
Trajectory for Double Lane Change Maneuver For No Cubic	69
Motion Application at 36km/h	
Vehicle Responses for Double Lane Change Maneuver for no	70
Cubic Motion Application- Steer Input at 36km/h	
Vehicle Responses for Double Lane Change Maneuver for no	70
Cubic Motion Application- Yaw Rate at 36km/h	
Vehicle Responses for Double Lane Change Maneuver for no	71
Cubic Motion Application- Lateral acceleration at 36km/h	
	 SIMULINK block diagram for Renski Driver Model Vehicle dynamic model with driver input Step Input for Vehicle Dynamic Verification VDM response for body slip (Reza) VDM response by proposed algorithm (SIMULINK) Desired Trajectory Vehicle trajectory without driver controller Vehicle trajectory without using driver model Vehicle trajectory with various set of sight distance,La(m) Stalom Test-Cubic Motion Result of variation tangent value for Hermite Curve Quarter Circle using a single segment of Cubic Motion Straight Line Cubic Motion Straight Line Cubic Motion Straight Angle Cornering Eclipse profile with various tangent value at control point Cubic motion before adjusting tangent Increased control point cubic motion Final Geometry of cubic motion Tajectory for Double Lane Change Maneuver For No Cubic Vehicle Responses for Double Lane Change Maneuver for no Cubic Motion Application- Steer Input at 36km/h Vehicle Responses for Double Lane Change Maneuver for no

5.5	Natural Cubic Motion Curve	73
5.6	Trajectory for Double Lane Change Maneuver for Natural	74
	Cubic Motion Application	
5.7	Vehicle Responses for Double Lane Change Maneuver for	75
	Natural Cubic Motion Application- Steer Input at 36km/h	
5.8	Vehicle Responses for Double Lane Change Maneuver for	76
	Natural Cubic Motion Application- Yaw Rate at 36km/h	
5.9	Vehicle Responses for Double Lane Change Maneuver for	77
	Natural Cubic Motion Application- Lateral Acceleration at	
	36km/h	
5.10	Adjusted Tangent Cubic Motion Curve	78
5.11	Trajectory for Double Lane Change Maneuver for Adjusted	79
	Tangent Cubic Motion Curve Application at 36km/h	
5.12	Vehicle Responses for Double Lane Change Maneuver for	80
	Adjusted Tangent Cubic Motion Application- Steer Input at	
	36km/h	
5.13	Vehicle Responses for Double Lane Change Maneuver for	81
	Adjusted Tangent Cubic Motion Application- Yaw Rate at	
	36km/h	
5.14	Vehicle Responses for Double Lane Change Maneuver for	82
	Adjusted Tangent Cubic Motion Application- Lateral	
	Acceleration at 36km/h	
5.15	10 points DLC cubic motion	83
5.16	Trajectory for Double Lane Change Maneuver for Increase	84
	Control Point Cubic Motion Curve Application at 36km/h	
5.17	Vehicle Steer Input Responses for Double Lane Change	85
	Maneuver for Increased Control Point Cubic Motion	
	Application at 36km/h	
5.18	Vehicle Yaw Rate Responses for Double Lane Change	86
	Maneuver for Increased Control Point Cubic Motion	
	Application at 36km/h	
5.19	Vehicle Lateral Acceleration Responses for Double Lane	87
	Change Maneuver for Increased Control Point Cubic Motion	

. ·

	Application- Lateral Acceleration	
5.20	Comparison of Trajectory for All type of input	89
5.21	Comparison of Steer Input for All type of input	89
5.22	Comparison of Yaw Rate for All type of input	89
5.23	Comparison of Lateral Acceleration for All type of input	90
5.24	Geometry of Slalom Test	92
5.25	Natural Cubic Motion Slalom Test Geometry	92
5.26	Vehicle responses for natural cubic motion at 36km/h	93
5.27	Adjusted Tangent Cubic Motion Geometry	94
5.28	Vehicle responses for adjusted tangent cubic motion at	94
	36km/h	
5.29	Additional control point Cubic Motion Geometry	95
5.30	Vehicle responses for Additional control point cubic motion at	96
	36km/h	

LIST OF TABLES

TABLE NO	TITLE	PAGE
3.1	Saga BLM characteristic	19
3.2	Arc Length Error	39
3.3	Cubic Motion Properties	49
3.4	Slalom Test Control Point	51
4.1	Cubic motion coordinate	53
4.2	Coordinate for Quarter Arc	56
4.3	Tangent value for DLC	64
5.1	Control Point of Double Lane Change Test	68
5.2	Parameter of the Natural Cubic Motion curve	73
5.3	Parameter of the Adjusted Tangent Cubic Motion curve	78
5.4	Parameter of the Additional Control Point Motion curve	83
5.5	Comparison between three inputs in DLC test	90
5.6	Comparison between three cubic motion inputs in	96
	Slalom Test	

LIST OF SYMBOLS

t_{max}	-	Maximum time
S	-	Displacement
v	-	Final Velocity
u	-	Initial Velocity
t	-	Time
W	-	Free parameter
ΔDs	-	Delta Displacement
DM	-	Driver Model
W	-	Steering gain
La/L	-	Sight Distance
Tk	-	Time Delay
a_f	-	Slip angle at front tires
L_f	-	Longitudinal distance from c.g.
		to front tires
V	-	Lateral Velocity
U	-	Longitudinal Velocity
$\dot{v_y}$	-	Lateral Acceleration
δ_{f}	-	Front wheel angle
ŕ	-	Yaw rate
a _r	-	Slip angle at front tires
L _r	-	Longitudinal distance from c.g.
		to rear tires

-	Rear wheel angle
-	Mass of vehicle
-	Cornering stiffness of front tire
-	Cornering stiffness of rear tire
-	Aim point angle
-	Desired path deviation from <i>x</i> 0 axis;
-	Longitudinal position, the way covered
	by the car down the road;
-	Lateral position of the car;
-	Heading angle
-	Proportional
-	Integral
-	Derivative
-	Steering Angle

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Α	2 DOF of Vehicle Model	107
В	Case Studies Geometry	108

LIST OF ABBREVIATIONS

ABBREVIATION

DOF VDM DM

DEFINITION

Degree of Freedom Vehicle Dynamic Model Driver Module

CHAPTER 1

INTRODUCTION

1.1 Introduction

The objective of this chapter is to give the overall overview of the research. It starts with the review on related research in Section 1.2. This review will establish the need of the research which defines the research problem statement in Section 1.3. The objectives and the scope of research will be discussed in Section 1.4 and 1.5 respectively. Finally, Section 1.6 will overview the structure of the thesis.

1.2 Research Background

In Malaysia, the number of traffic accident has increased dramatically (Nizam 2005). According to him, the traffic accident is rising at the average of 9.7% per annum over the last three decade. At the same time, the number of fatalities also increased, but at slower rate compared to total number of road accident from 2,303 in 1974 to 6,200 in 2005.

The upward trend of fatalities dropped in 1997 after Malaysian government established a 5-year national road safety target to reduce road accident deaths by 30% by the year 2020.

Malaysia government proposed a module which is JKR *Arahan Teknik* (*Jalan*) 8/86 (*JKR*, 1986) are codes that govern the design of the road. However, these codes have not yet taken the dynamic effect of the vehicle into consideration despite the importance of vehicle dynamic to predict the vehicle response during maneuverings.

Furthermore there are many factors that contribute to road accidents. The factors can be grouped into these three basic categories, which are road user errors, road environment faults, and vehicle defects. About 80% of road accident is due to road environment and human error (Peden, 2004). Many researches have been conducted to investigate the road environment in accident factor including roadway design. Human error is the errors caused by the driver him/herself. This includes the driving behavior.

To simulate the vehicle factors for road safety purposes, the researchers have developed the vehicle dynamic model or VDM which firstly introduced by Segel (1956). Segel is become the pioneer in developing a theoretical prediction of the vehicle simulation. Since then, a lot of researchers work on this field to improve the vehicle dynamic model and use it as a reference. The bicycle model that has been proposed by Chul (2001) is the basic model for VDM that can be used to predict vehicle response for road safety purposes.

Then, driver model becomes the research issue as vehicle factor alone is not sufficient in road safety studies. A number of driver models has been developed to replace human factor in vehicle simulation. The main objective of integration of driver model and VDM is to investigate the vehicle handling in the plane of road and its response to steering. Many of researchers come out with solution to relate the realistic driver maneuver with the road information. Namekawa (2007) proposed road data information using the digital map that can be used in traffic simulation. However, the road data information is not considering time function, which provides useful information such as position of the vehicle at the current time. Hence, new approach has been made to investigate the road input with time function for the purpose of vehicle responses using vehicle dynamic model and driver model.

1.1 Problem Statement

When curve is used as the input for VDM and driver model, the time function is not embedded in the curve. Since the current input to VDM and driver model is lack of time function, this research will address the issue of time function by the introduction of Cubic motion curve. Cubic Motion curve will be used as the input to vehicle simulation and driver model system. However, the accuracy to predict the defined trajectory is depend on the curve fitting algorithm and methods used in integrating it with vehicle model and driver model. This integrating system will provide data set which contain the position of the vehicle based on time set that can be interpret by the driver to produce a defined trajectory. Since this research is just an initial work, this research focuses on the applicability of Cubic Motion as road path in the study of vehicle dynamic and driver model.

1.2 Objective

There are several objectives in this research. There are:

- 1. To develop VDM and driver model (DM) with time function,
- 2. To integrate Cubic Spline and dynamic of motion to produce Cubic Motion curve,
- 3. To conduct the two of case studies (Slalom test and Double Lane Change to study its applicability of the cubic motion as the input for VDM)

1.3 Scopes

The scopes of the research are as in the following:

- Two Degree of Freedom VDM (bicycle model) is used for VDM system with only consider X and Y direction for both road path, constant velocity for both VDM and cubic motion, perfect road condition (dry only) and linear tire condition
- Cubic Spline has been used as the spline method to perform mathematical model to be used as Cubic Motion Data
- 3. Andrej Ren'ski Driver model is used as the controller for the system (Renski ,1998)
- 4. Double Lane Change test and Slalom test are used as the case studies for this research.
- 5. Saga BLM vehicle properties are used in the VDM system

1.4 Significant of Study

The main objective of the research is to study the applicability of the Cubic Motion Curve as the input for the VDM and DM system. With implementation of the Cubic Motion Curve, curve and dynamic of motion can be integrated and the vehicle response when the Cubic Motion is used as the input for the present work. Vehicle Dynamic Model can be one of the ways to obtain vehicle response. For automotive industries, this is opportunity to bring the research field to another level. By combining with suitable driver model and proper road input, the integration of cubic motion and vehicle simulation will become a great combination for driving simulator. This research can also be implemented in designing road especially curve road and road safety. In the long run, the research is the initial work to bring the road safety analysis for path planning into desktop. Furthermore, this proposed system can be the one of the methods to determine vehicle maneuver behavior.

1.5 Thesis Summary

Starting with chapter 1 describes the objectives of this research. Besides that, research scope is explained to reduce any complexity to carry out this research. Then follows with the discussion on the significance of this research.

The remainders of this thesis is comprised five further chapters as summarized below

Chapter 2: Reviews related research available in the literature. The literature is related to the application of the cubic spline and the road safety.

Chapter 3: Briefly describes the methodology adopted by the research. The methodology starts with development of cubic motion and ends with the application of cubic motion in Double Lane Change and Slalom vehicle path construction integration with vehicle simulation.

Chapter 4: Explains the cubic motion properties. This chapter also describes the cubic motion as the input for vehicle simulation.

Chapter 5: Discusses the result for these case studies as well as the implementation of cubic motion curve as the input for vehicle simulation.

Chapter 6: Concludes the research and gives recommendation for future work

REFERENCES

Abe, M., (2000) Vehicle Handling Dynamics Theory and Application, Butterworth Heinemann, Oxford.

Abu Bakar, S.A., Jamaluddin, H., Rahman, R. Abd., Samin, P. M., and Hudha, K., (2008). Vehicle Ride Performance with Semi-active Suspension System using Modified Skyhook Algorithm and Current Generator Model. *International Journal of Vehicle Autonomous System*, Vol. 6 No 3, 197-221.

Allen, R. W., Rosenthal, T. J., & Hogue, J. R. (1996). Modeling and simulation of driver-vehicle interaction. (No.960177) :SAE International.

Arahan Teknik (Jalan) 8/86, A Guide on Geometric Design of Roads, Roads BranchPublic Works Department Malaysia.

Barak.P.,Tianbing.S,.(2003). On body roll angle during transient response maneuver of a 3-D model. *SAE Technical Paper* 2003-01-0963.

Blundell, M., & Harty, D. (2004). *The multibody systems approach to vehicle dynamics*. Access Online via Elsevier.

C. Canudas. (1991).Path Following of a 2-DOF Wheeled Mobile Robot under Path and Input Torque Constraints". *Proceedings of the 1991 IEEE International Conference on Robotics and Automation*, Sacramento, California

Chul,K. and Ro, P., (2001) "An Accurate Simple Model for Vehicle Handling using Reduced-order Model Techniques," *SAE Technical Paper* 2001-01-2520, 2001, Chi, J., Zhang, C., & Xu, L. (2005, December). constructing geometric Hermite curve with minimum curvature variation. '*Computer Aided Design and Computer Graphics, 2005. Ninth International Conference*'(pp. 6-pp). IEEE.

Crolla, D. A. (1996). Vehicle dynamics—theory into practice. *Proceedings of* the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 210(2), 83-94.

Erma., M., Faizal, & Mansor, H. M. A. H. (2009). Virtual Mid-Line Detection on Curve Road for User Guidance Using Simulation Model. In *Computer Technology and Development, 2009. ICCTD'09. International Conference on* (Vol. 1, pp. 24-27). IEEE.

Farin, G., (2008). Geometric Hermite interpolation with circular precision. *Computer Aided Design* Vol 40, (4), pp. 476–479.

Foulidinejad, N.(2010) Intelligent Traffic Flow Simulation System On A Small Scale Environment, Master Thesis, Universiti Teknologi Malaysia

Ghike, C. and Shim, T.(2006) 14 Degree-of-Freedom Vehicle Model for Roll Dynamics Study. *SAE Technical Paper* 2006-01-1277.

Huang, J., Tan, H. S., Bu, F., & Chen, S. K. (2011, October). An investigation on driver trajectory planning behaviors based on double lane change vehicle test data, '*Intelligent Transportation Systems (ITSC)*, 2011 14th International *IEEE Conference on*,(pp. 1231-1236). IEEE.

Lanchester, F.W., (1936).Motor car suspension and independent springing Proceeding International Automobile Engineer Vol (30). Pp 668-762

Namekawa, M., Ueda, F., Hioki, Y., Ueda, Y., & Satoh, A. (2007). The Vehicle Junction Model and its Verification in Traffic Simulation. In *Proceedings of 2nd International Conference on Asian Simulation and Modeling*.

Nizam, Mohamad (2006), Overview Of Current Road Safety Situation In Malaysia, *Highway Planning Unit, Road Safety Section*, Ministry of Works. Nuthong, C., & Charoenpong, T. (2010, October). Lane detection using smoothing spline. *In Image and Signal Processing (CISP)*, 2010 3rd International Congress on (Vol. 2, pp. 989-993). IEEE.

MacAdam, C. C. (2003). Understanding and modeling the human driver.'*Vehicle System Dynamics*,' 40(1-3), 101-134.

MacAdam, C. (1981). Applications Of An Optimal Preview Control For Simulation Of Closed-Loop Automobile Driving.'*IEEE Transactions on Systems, Man and Cybernetics*,'11(N6).

O. Dahl and L. Nielsen (1989) 'Torque Limited Path Following by On-line Trajectory Time Scaling', *IEEE Conf. Robotics and Automation*,

Peden M, et al. (2004). *World report on road traffic injury prevention*. Geneva, World Health Organization, 2004.

Renski.A. (1998). Identification Of Driver Model Parameter.*International Journal of Occuputional Safety and Ergonomics.*, Vol 7, No 1, pp 79-90.

Reza N. Jazar, (2008). Vehicle Dynamics: Theory and Applications. Springer.

Samin.,M.P.(2011).Hybrid Stability Augmentation on system force control of semi-active suspension with magnetorheological damper. PhD Thesis Universiti Teknologi Malaysia

Suhaimi, M.A. (2012) *Generic mathematical representation for a machining tool path*, Master Thesis, Universiti Teknologi Malaysia

Segel, L. (1956) 'Theoretical prediction and experimental substantiation of the response of the automobile to steering control' *Proc. Institution of Mechanical Engineers (IMechE)*, London, UK, Vol. 1956, pp.310–330

Torsten,B.,and Ehmann, M. (2004). A realistic road model for real-time vehicle dynamics simulation.

Thoresson, M. J. (2007). *Efficient gradient-based optimisation of suspension characteristics for an off-road vehicle* 'PhD, University of Pretoria).

Ungoren and Huei Peng. (2005) An Adaptive Lateral Preview Driver Model (2005), *Vehicle System Dynamics*, Vol 43, Issue 4, pp 245-259

Viktor Michna et. Al (2010). Constrained Optimization of Robot Trajectory and Obstacle Avoidance, 15th IEEE International Conference on ETFASept 13-16, 2010, Bilboa Spain

Voda, A. A., & Landau, I. D. (1995). A method for the auto-calibration of PID controllers. *Automatica*, *31*(1), 41-53.

Xu, G., Liu, L., Song, Z., & Ou, Y. (2011, June). Generating lane-change trajectories using the dynamic model of driving behavior. In *Information and Automation (ICIA), 2011 IEEE International Conference on* (pp. 464-469). IEEE.