PRODUCT DESIGN IMPROVEMENT THROUGH DESIGN FOR ASSEMBLY (DFA) AND THEORY OF INVENTIVE PROBLEM SOLVING (TRIZ) OF HAIR CLIPPER

MOHD AIDIL JOHARI BIN ABDUL HAMID

UNIVERSITI TEKNOLOGI MALAYSIA

ABSTRACT

The project aims to improve the design of products using the Boothroyd-Dewhurst Design for Assembly (DFA) and the Theory of Inventive Problem Solving (TRIZ). Design for Assembly (DFA) was used initially to improve the efficiency of product designing and also simplify the structure of the product. Application of TRIZ approach was used to improve the design qualitatively. There are various methods that can be used in TRIZ method such as Trimming, Contradiction and 40 Inventive Principles. As a result, both methods have produced a product that has been successful in reducing the cost of installation and produce a new product design.

ABSTRAK

Projek ini bertujuan untuk meningkatkan reka bentuk produk dengan menggunakan kaedah *Boothroyd-Dewhurst Design for Assembly* (DFA) dan *Theory of Inventive Problem Solving* (TRIZ). *Design for Assembly* (DFA) digunakan pada awalnya untuk menambah baik produk dengan meningkatkan kecekapan rekabentuk produk kepada yang lebih baik. Konsep TRIZ digunakan untuk penambah baikkan dari segi kualiti. Terdapat pelbagai kaedah yang boleh digunakan didalam kaedah TRIZ antaranya ialah *Trimming, Contradiction* dan *40 Inventive Principles* juga telah digunakan untuk penambah baikan reka bentuk. Hasil dari penggunaan kedua-dua kaedah berjaya menghasilkan satu produk yang telah berjaya mengurangkan kos pemasangan dan menghasilkan satu reka bentuk produk yang baru.

TABLE OF CONTENTS

TITLE

CHAPTER

	DEC	CLARATION	ii
	DED	DICATION	iv
	ACK	NOWLEDGEMENTS	v
	ABS	TRACT	vi
	ABS	TRAK	vii
	TAB	BLE OF CONTENTS	viii
	LIST	Γ OF TABLES	xiii
	LIST	r of figures	XV
	LIST	F OF ABBREVIATIONS	xvii
	LIST	F OF SYMBOLS	xviii
	LIST	F OF APPENDICES	xix
1	INT	RODUCTION	
	1.1	Introduction to the Problem Statement	1
	1.2	Objectives of Project	2
	1.3	Scope of Project	2
	1.4	Methodology of project	3
	1.5	Significant of Study	7
	1.6	Structure of Thesis	7
	1.7	Summary	8

2	LITERATURE REVIEW ON DESIGN FOR ASSEMBLY ((DFA)
	2.1	Introduction	9

PAGE

2.2	Design	n for Assembly (DFA)	9
	2.2.1	Introduction to DFA	10
	2.2.2	Basic Principle of DFA	11
2.3	Design	n for Assembly (DFA) Methodology	13
	2.3.1	Boothroyd - Dewhurst Methodology	13
		2.3.1.1 Symmetrical Principle	15
		2.3.1.2 Thickness and Size Principle	16
	2.3.2	Lucas – Hull Design for Assembly	18
	2.3.3	Hitachi Assemblability Evaluation Method (AEM)	18
2.4	Summ	ary	19

3 LITERATURE REVIEW ON THEORY OF PROBLEM SOLVING (TRIZ)

3.1	Introd	Introduction	
3.2	TRIZ	Problem Solving Map	21
	3.2.1	Model of Problem	22
	3.2.2	Tool	22
	3.2.3	Model of Solutions	23
3.3	Basic	Principle of TRIZ	23
	3.3.1	Ideality	23
	3.3.2	Functionality	25
	3.3.3	Resource	25
	3.3.4	Contradiction	27
	3.3.5	Evolution	31
3.4	Trimn	ning	32
3.5	Summary		34

PRODUCT CASE STUDY

4

4.1	Introd	Introduction	
4.2	Product as a Case Study		35
	4.2.1	Product Tree Structure	36
	4.2.2	Parts Identification	38
	4.2.3	Parts Assembly Sequence	39

4.3	Parts Functions and Critiques	39
4.4	Summary	47

Х

5 DESIGNS FOR ASSEMBLY (DFA) ANALYSIS FOR ORIGINAL DESIGN

5.1	Introd	Introduction	
5.2	Produ	Product Analysis	
	5.2.1	Classification of Manual Handling	49
	5.2.2	Classification of Insertion/Fastening	57
	5.2.3	Theoretical Minimum Number of Part	66
	5.2.4	DFA Worksheet	68
		5.2.4.1 Number of component	69
		5.2.4.2 Assembly time	70
		5.2.4.3 Assembly cost	72
		5.2.4.4 Design efficiency	74
5.3	Summ	nary	74

DESIGN FOR ASSEMBLY (DFA) ANALYSIS FOR IMPROVED DESIGN

6

6.1	Introduction		75
6.2	Improve	ement Using DFA Methodology	75
	6.2.1 I	DFA New Design for Differential Assembly	76
	6	5.2.1.1 DFA New Design For Part 1	76
	6	5.2.1.2 DFA New Design For Part 2	77
	6	5.2.1.3 DFA New Design For Part 3	78
	6	5.2.1.4 DFA New Design For Part 4	79
	6	5.2.1.5 DFA New Design For Part 5	80
	(5.2.1.6 DFA New Design For Part 6	81
6.3	New De	sign Assembly Drawing	82
	6.3.1 I	Product Tree Structure For New Design	83
6.4	Analysis	s Of New Design	85
	6.4.1 (Classification Of Manual Handling	

	For New Design	85
6.4.2	Classification Of Manual Insertion	
	For New Design	91
6.4.3	Theoretical Minimum Number Of Part	
	For New Design	97
6.4.4	DFA Worksheet for New Design	99
6.4.5	Number Of Parts for New design	100
6.4.6	Assembly Time for New Design	101
6.4.7	Assembly Cost for New Deign	102
6.4.8	Design Efficiency	104
6.5 Sumn	nary	104

7 TRIZ ANALYSIS FOR IMPROVE DESIGN

7.1	Introd	Introduction 1		
7.2	Functi	Function Analysis		
7.3	Design	n Improvements	107	
	7.3.1	Cause and Effect Chain	107	
		7.3.1.1 Cause and effect for Outside Switch		
		and On/Off Switch	107	
		7.3.1.2 Cause and effect for Spring between		
		Vibrator	108	
	7.3.2	Trimming	108	
	7.3.4	Engineering Contradiction	111	
7.4	DFA A	Analysis after TRIZ Application	116	
	7.4.1	Classification of Manual Handling		
		for Improve Design	116	
	7.4.2	Classification of Manual Insertion		
		for Improve Design	122	
	7.4.3	Theoretical Minimum Number of Part Assessment	130	
	7.4.4	DFA Worksheet for Improve Design	132	
	7.4.5	Number of Parts for Improve Design	133	
	7.4.6	Assembly Time for Improve Design	134	
	7.4.7	Assembly Cost for Improve Design	135	

	7.4.8 Design efficiency	136
7.5	Improve Design Assembly Drawing	137
7.6	Summary	138

8 **DISCUSSION**

8.1	Introduction	
8.2	Comparison of Product Case Study Result	139
	8.2.1 Comparisons of DFA Analysis Result	139
	8.2.2 Comparisons of TRIZ Analysis Result	141
	8.2.3 Comparisons between DFA and TRIZ	
	Improvement Result	143
8.3	Summary	143

9 CONCLUSION

9.1	Introduction	144
9.2	Recommendations for Future Work	144
9.3	Concluding Remarks	145

REFERENCES	146
APPENDICES	148

CHAPTER 1

INTRODUCTION

1.1 Introduction

Design is the first step in manufacturing, and it is where most of the important decisions are made that affect the final cost of a product. Since 1980, analysis techniques have been made available which can guide designers towards products which are easy to manufacture and assemble. The availability of these techniques has created a revolution in manufacturing industry, especially in the USA, leading to reduced product cost, better quality, and shorter time to market, lower inventory, few suppliers, and many other improvements. (Geoffrey Boothroyd at all 1994).

Nowdays, product design simplification is important due to the rapid changing of customer demands, more competition and so on. Yet, manufacture is being forced to produce product that meet the customer requirement with high expectation such as product functionality but in lower cost. So, designer needs to design product with maximize value in order to fulfill that requirement. In recent decades the search for significant cost-saving effects that characterize major process innovations has driven manufacturers towards simplifying their products. (G. Lucchetta at all 2002).

Design for Manufacturing and Assembly (DFMA) which became increasingly popular among designers. In order to ensure method of DFMA effectively produce high quality design other tool have been introduced such as Theory of Inventive Problem Solving (TRIZ). Generally, integration of TRIZ and DFMA enhance the design capability and quality. Both of these techniques promise very impressive results which finally contribute to the reduction of manufacturing costs.

1.2 Objective of Project

To integrate Design for Assembly (DFA) methodology and Theory of Inventive Problem Solving (TRIZ) approach, in order to improve and add value to the current design of hair clipper.

1.3 Scope of Project

This study will focus on the:

- a. Application of DfA methodology to identify detailed design problems and generate remedial design solutions.
- b. Application of TRIZ method to improve the value added product development.
- c. Consumer product as case study, Hair clipper.

1.4 Methodology of Project

The research is conducted in two consecutive semesters namely Master Project 1 in the first semester and Master Project 2 in the second semester. Project activities during the first and second semester were summarized in the flow chart as shown in Figure 1.1 while the research planning schedule is shown in Table 1.1 and Table 1.3

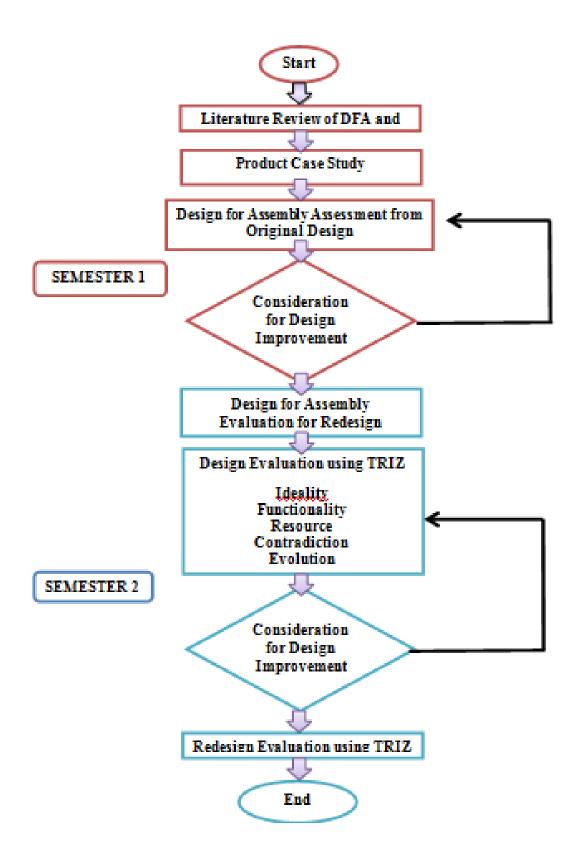


Figure 1.1 Flow chart of project activity

	Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	10
ACTIVITIES		20-26/2	-				-	2-8/4	-											
Subject Registration, Master Project	Plan																			
1 Briefing & Title Selection	Actual																			
Literature Review	Plan																			
	Actual																			
Selection of Product Case Study	Plan																			
Selection of Product case Study	Actual																			
Design for Assembly (DfA)	Plan																			
Evaluation for Original Design	Actual																			
Consideration for Design	Plan																			
Improvement	Actual																			
Design for Assembly (DfA)	Plan																			
Evaluation for Redesign Design	Actual																			
Draft / Report Writing	Plan																			
brancy Report Writing	Actual																			3 19 4/6 25-1/7 4/6 25-1/7
Seminar - Master Project I	Plan																			
Presentation	Actual																			

Table 1.1 Gantt Chart of Master Project I activity

Table 1.2 Gantt Chart of Master Project II activity

	Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
ACTIVITIES	Date																			
Desire Suchastics using TDIZ	Plan																			
Design Evaluation using TRIZ	Actual																			
 Design Improvement using TRIZ 	Plan																			
	Actual																			
Comparison of DFMA & TRIZ Results	Plan																			
	Actual																			
Report Writing	Plan																			
Report Writing	Actual																			
Seminar - Master Project II	Plan																			
Presentation & Report Submission	Actual																			
* Date will be filled based on schedule determined	l by Facult	ty of Mec	hanical l	Engineeri	ng, UTM															

1.5 Significant of Study

Result of study will prove the use of integration of TRIZ and Boothroyd-Dewhurst DFMA methodology can give a better result of design efficiency. This integration is believed able to ease assembly and reduce assembly time, reduce the number of part. This study will prove the DFA and TRIZ integrating were helpful in problem solving tools for better product development.

1.6 Structure of Thesis

This thesis consists of several titles. They are the introduction in Chapter 1, Literature review on Design for Assembly (DfA) will be discuss in Chapter 2. Literature review on TRIZ is discussed in Chapter 3. This report continues with the determination f product as case study in Chapter 4. In Chapter 5, the Design for Assembly (DfA) analysis for original design will be discussed . It will be continued by Design for Assembly (DfA) for new design in Chapter 6. In Chapter 7 consist the analysis for improvement design by using the TRIZ approach. Discussion for this report and the Chapter 8. The last chapter is conclusion and it will be covered in Chapter 9.

1.7 Summary

The aim for this study is to improve the design of consumer product using integration of DFA method and TRIZ approach by simplifying product structure and increasing the design efficiency. The integration of methodologies would provide a better coverage of knowledge in term of ease of manufacturing, ease of assembly and innovative solutions.

REFERENCE

- Geoffrey Boothroyd, Product Design For Manufacture And Assembly, Computer-Aided Design Volume 26 Number 7 July 1994.
- Robert B. Stone, Daniel A. McAdams, Varghese J. Kayyalethekkel, A Product Architecture-Based Conceptual DFA Technique, Design Studies 25 (2004) 301–325.
- Peter Dewhurst, Manufacturing Engineering Handbook, Design For Manufacture and Assembly, McGraw Hill, Available: http://www.digitalengineeringlibrary.com, [2004].
- 4. G. Lucchetta', P.F. Bariani' (I), W.A. Knight 2(1), Integrated Design Analysis for Product Simplification(2002).
- 5. Boothroyd. G, Dewhurst P, Knight W., *Product Design for Manufacture and Assembly*, Marcel Dekker, Inc., [1994].
- Altshuller, G. (1997). 40 Principles: TRIZ Keys to Technical Innovation. Translated by Lev Shulyak and Steve Rodman. Worchester, Massachusetts: Technical Innovation Center.
- Mann, Darrel L. (2001). An Introduction of TRIZ : The theory of Inventive Problem Solving Volume 10.

- 8. Mann, Darrel L. (2002). Integration and Application of TRIZ and DFMA. Clevedon: Systemic Innovation.
- Zhongsheng Hua, J. Y. (2006). Integration TRIZ with problem-solving tools: a literature review from 1995 to 2006. Business Innovation and Research, 111-128.