ASSOCIATION BETWEEN ERGONOMIC RISK FACTORS AND MUSCULOSKELETAL PAIN AMONG FIXIE BIKE CYCLISTS

MOHD SHAMSHEMUN BIN MOHAMED

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Mechanical)

Faculty of Mechanical Engineering Universiti Teknologi Malaysia

OCTOBER 2014

ACKNOWLEDGEMENT

Alhamdulillah, I am grateful to Allah S.W.T for His love and blessings that I have finally completed this piece of work that had cost me so much of my time and effort.

First of all, I wish to express my sincere gratitude to my research supervisor, Dr. Mohd Nasir Bin Hussain for his precious guidance, valuable advice, interminable dedication and inspiring encouragement throughout the progress of this project; without his support, this thesis would never have been completed. I am also grateful to him for confidence and trust which he placed on me in accomplishing the project.

Last but not least, I would like express my deepest gratitude to everybody especially to my family that has helped me in finishing this project, whether directly or indirectly. All your help is very much apprecieted and may we have continues relationship till the end of life. To my beloved family and friends

ABSTRACT

Ergonomics is a field that seeks to design tools, equipment, and tasks to optimize human capabilities and accommodate human limitations. This study applied the ergonomic approach for analysis of human body pains while using the Fixie bike in cycling activites. The main objective of this study is to obtain the correlation between the ergonomic risk factors and corresponding level of musculoskeletal disorder (MSD) within the Fixie bike cycling activity and to provide control measures for ergonomic related problems. This research study has been done in three main areas of Fixie bike activity around Johor Bharu, namely at Universiti Teknologi Malaysia (UTM) Skudai, Danga Bay and Hutan Bandar Johor Bharu. A survey was carried out to identify the *Fixie* bike cyclist's background and, ergonomic risk factors that lead to uncomfortable pain and the level of MSD among the Fixie bike cyclists. Statistical analysis was carried out on 130 respondents by focusing on the general opinion on ergonomic risk factors and MSD among Fixie bike cyclists. A detailed analysis was done on the correlation between ergonomic risk factors and the level of MSD of *Fixie* bike cyclists. As a result, most cylists reported that the *Fixie* bike pedals need high skill and energy. Also *Fixie* bike pedal design, Fixie bike saddle design/ uncomfortable saddle and the height of Fixie bike are significant by associated with hip, ankle/foot and knee pain among cyclists based on correlation analysis using SPSS software. The recommended personal protective knowledge and its implementation based on the cyclist riding technique help to reduce MSD problems when cycling.

ABSTRAK

Ergonomik ialah suatu bidang untuk mereka bentuk alat, peralatan, dan tugas untuk mengoptimumkan keupayaan manusia dan menampung batasan manusia. Kajian ini menggunakan pendekatan ergonomik untuk menganalisis sakit badan manusia semasa menggunakan basikal Fixie dalam aktiviti berbasikal. Objektif utama kajian ini adalah untuk mendapatkan korelasi antara faktor risiko ergonomik dan tahap gangguan muskuloskeletal (MSD) dalam aktiviti mengayuh basikal Fixie dan untuk menyediakan langkah kawalan bagi masalah berkaitan dengan ergonomik. Kajian ini telah dilakukan dalam tiga kawasan utama aktiviti berbasikal Fixie di Johor, iaitu di Universiti Teknologi Malaysia (UTM) Skudai, Danga Bay dan Hutan Bandar Johor Bharu. Satu kaji selidik telah dijalankan untuk mengenal pasti latar belakang pengayuh basikal *Fixie*, faktor risiko ergonomik yang membawa kepada kesakitan dan tahap MSD di kalangan pengayuh basikal *Fixie*. Analisis statistik telah dijalankan terhadap 130 responden bagi pengumpulan maklumat mengenai pendapat umum tentang faktor risiko ergonomik dan MSD di kalangan pengayuh basikal Fixie. Analisis terperinci telah diberikan bagi memperolehi korelasi antara faktor risiko ergonomik dan tahap MSD pengayuh basikal Fixie. Hasil daripada analisis statistik itu, kebanyakan penguna basikal Fixie menyatakan pedal basikal Fixie memerlukan kemahiran dan tenaga yang tinggi. Reka bentuk pedal basikal Fixie, reka bentuk pelana basikal Fixie serta pelana yang tidak selesa dan ketinggian basikal *Fixie* adalah berhubungkait dengan kesakitan pada pinggul, pergelangan kaki/ kaki dan lutut di kalangan penunggang basikal berdasarkan keputusan analisis korelasi menggunakan perisian SPSS. Syor pengetahuan perlindungan peribadi dan pelaksanaannya dengan berlandaskan teknik pengayuh untuk mengayuh basikal dapat membantu mengurangkan masalah MSD ketika berbasikal.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE	
	DECLARATION	ii	
	DEDICATION	iii	
	ACKNOWLEDGEMENTS		
	ABSTRAK	V	
	ABSTRACT	vi	
	vii		
	LIST OF TABLES		
LIST OF FIGURES		xiv	
	LIST OF APPENDIXES	xvi	
1	INTRODUCTION	1	
	1.1 Introduction	1	
	1.2 Background of Study	3	

1.3Problem Statement41.4Research Question6

- 1.5 Research Objectif 7
- 1.6Scope of Study71.7Significant of Study8
- 1.8 Research Outline 8
- 1.9 Conclusion 9

LITE	RATURE REVIEW	10
2.1	Introduction	10
2.2	Ergonomic Risk Factor	10
2.3	Musculoskeletal Disorders	11
2.4	Ergonomic Risk Factor in Cycling	12
	2.4.1 Gender	12
	2.4.2 Inappropriate Posture	13
	2.4.3 Repetitive Movement	13
2.5	Ergonomic Hazards	14
	2.5.1 Low Back Pain	14
	2.5.2 Hip Pain	15
	2.5.3 Knee Pain	16
	2.5.4 Foot Pain	17
2.6	Controlling Ergonomic Problems	18
	2.6.1 Engineering Control	18
	2.6.2 Equipment of Individual Protection	20
2.7	Previous Case study	21
2.8	Literature Framework	23
2.9	Conclusion	24

2

3	RESE	ARCH	METHODOLOGY	25
	3.1	Introdu	action	25
	3.2	Statisti	cs	25
		3.2.1	Types of Sampling	26
		3.2.2	Types of Variables	26
	3.3	Likert	Scale	27
		3.3.1	Questionnaire	28
		3.3.2	Reliability of Questionnaires.	29
		3.3.3	Spearman Rank Order Correlation	29
	3.4	Data A	nalysis	30
		3.4.1	Data Analysis for Section 1	30
		3.4.2	Data Analysis for Section 2	31

4

RESU	ILT AN	ND ANALYSIS	33
4.1	Introd	uction	33
4.2	Data c	collection	33
	4.2.1	Observation of Current Fixie Bike	34
		Cycling	
	4.2.2	Questionnaires	36
	4.2.3	Reliability Test of Questioners	37
	4.2.4	Pilot Test of Questioners	37
4.3	Data A	Analysis	37
	4.3.1	Analysis Part 1 : Background of Fixie	38
		Bike Cyclist	
	4.3.1.1	l Gender	38
	4.3.1.2	2 Age	40
	4.3.1.3	3 Body Mass Index	41
	4.3.1.4	4 Cycling experience	43
	4.3.1.5	5 Experience of Previous Pain and	45
		Injury	
	4.3.1.6	6 Types of Transportation to Attend	46
		Cycling Activity	
	4.3.1.7	7 Distance Travel from Home	48
	4.3.1.8	8 Stretching Exercise before	50
		Cycling.	
	4.3.1.9	O Conclusion of Cyclist's	51
		Background Analysis	
	4.3.2	Analysis Part 2: Cyclists	52
		Feedback.	
	4.3.3	Analysis Part 3: Correlation	77
4.4	Concl	usions	111

5	DISC	CUSSION	112
	5.0	Introduction	112
	5.1	Discussion	112
	5.2	Summary of Discussion	114
	5.3	Validation of Recommendation	115
	5.4	Conclusions	119
6	PRO	POSED SOLUTIONS AND ANALYSIS	120
	6.1	Introduction	120
	6.2	Proposed Solutions.	120
	6.3	Personal Protective Knowledge	121
		6.4.1 Warming up	121
		6.4.2 Stretching	121
		6.4.3 Strengthening	122
		6.4.4 Attire	123
		6.4.5 Riding technique	123
		6.4.6 Progressive Training	124
	6.4	Conclusions	125
7	CON	ICLUSIONS AND FUTURE WORKS	126
	7.1	Introduction	126
	7.2	Summary of Project	126
	7.3	Project Implication and Contributions.	127
	7.4	Limitations	128
	7.5	Future Works	129
	7.6	Conclusion	130
REFERENCES			131

Apendix A

139

LIST OF TABLES

TABLE NO.

TITLE

PAGE

1.1	Population fatality rates, distance travelled	4
	and relative fatality rates (Sources: DfT (2004)	
	and DoT (1996)	
2.1	Summary of research work in ergonomic and	21
	bicycle study	
3.1	Value of Cronbach Alpha	29
	(Source : Mohd Najib, 1999)	
4.1	Observation Result of Cyclists Condition in	36
	UTM area	
4.2	Analysis result of Fixie bike cyclist background	52
4.3	Frequency of pain (UTM)	53
4.4	Frequency of pain (Danga Bay)	55
4.5	Frequency of pain (Hutan Bandar)	57
4.6	Level of pain (UTM)	59
4.7	Level of pain (Danga Bay)	61
4.8	Level of pain (Hutan Bandar)	63
4.9	Level of inspection fixie bike design (UTM)	65
4.10	Level of inspection Fixie bike design (Danga	67
	Bay)	
4.11	Level of inspection fixie bike design (Hutan	68
	Bandar)	
4.12	Level of frequency body part of discomfort	70
	and pain (UTM)	

4.13	Level of frequency body part of discomfort and pain (Danga Bay)	71
4.14	Level of frequency body part of discomfort and pain (Hutan Bandar)	73
4.15	Part of the body and severity of pain (UTM)	75
4.16	Part of the body and severity of pain (Hutan	76
	Bandar)	
4.17	Guilford's Guidelines (Source: Mohd Najib,	77
	1999)	
4.18	Correlation between ergonomic risk factors and	78
	frequency of pain (UTM)	
4.19	Correlation between ergonomic risk factors and	80
	level of pain in UTM	
4.20	Correlation between ergonomic risk factors and	84
	frequency of pain in UTM	
4.21	Correlation between ergonomic risk factors and	86
	level body pain UTM	
4.22	Correlation between ergonomic risk factors and	88
	frequency of pain in Danga Bay	
4.23	Correlation between ergonomic risk factors and	91
	level of pain in Danga Bay	
4.24	Correlation between ergonomic risk factors and	94
	frequency of experiencing pain in Danga Bay	
4.25	Correlation between ergonomic risk factors and	97
	level body pain Danga Bay	
4.26	Correlation between ergonomic risk factors and	100
	frequency of pain in H.Bandar	
4.27	Correlation between ergonomic risk factors and	103
	level of pain in Hutan Bandar	
4.28	Correlation between ergonomic risk factors and	106
	frequency of experiencing pain in Hutan	
	Bandar	

LIST OF FIGURES

FIGURE NO.	
------------	--

TITLE

PAGE

2.1	Three important posture while cycling (Juliane ,2007).	13
2.2	The lumbar disc structures (Juker et al, 1998).	15
2.3	Anatomical predisposing factors that may contribute to	16
	iliac artery compression syndrome during cycling.	
	(Chevalier 1997).	
2.4	Anatomical predisposing factors that may contribute to	17
	anterior cruciate ligament syndrome during cycling. (Abt	
	et. al. (2007))	
2.5	Anatomical predisposing factors that may contribute to	17
	achilles tendon syndrome during cycling (Jones 1998)	
2.6	Literature Framework of Ergonomic in Fixie Bike	23
	Cycling	
4.1	Cyclist condition in UTM	35
4.2	Cyclist condition at Danga Bay Area	35
4.3	The gender of cyclists in percentage in UTM	38
4.4	The gender of cyclists in percentage in Danga Bay area	39
4.5	The sex of cyclists in percentage in Hutan Bandar area	39
4.6	Cyclist age involve Fixie cycling activity in UTM area	40
4.7	Cyclist age involve fixie cycling activity in Danga Bay	41
	area	
4.8	Cyclist age involve fixie cycling activity in Hutan Bandar	41
	area	
4.9	BMI of Cyclists in UTM area	42
4.10	BMI of Cyclists Body mass Index in Danga Bay area	42

4.11	BMI of Cyclists in Hutan Bandar area.	43
4.12	Experience of UTM's cyclist in cycling.	43
4.13	Experience of cyclists in cycling at Danga Bay area	44
4.14	Experience of cyclist in cycling at Hutan Bandar area	45
4.15	Experience pain before cycling in UTM area	45
4.16	Experience pain before cycling in Danga Bay area	46
4.17	Experience pain before cycling in Hutan Bandar area	46
4.18	Transportation to Attend Fixie Bike Cycling Activity in	47
	UTM	
4.19	Transportation to Attend Fixie Bike Cycling activity in	47
	Danga Bay area.	
4.20	Transportation to Attend Fixie Bike Cycling activity in	48
	Hutan Bandar area	
4.21	Distance travel from home to UTM area	48
4.22	Distance travel from home to Danga Bay area	49
4.23	Distance travel from home to Hutan Bandar area	49
4.24	Stretching Exercise before Cycling in UTM area	50
4.25	Stretching Exercise before Cycling in Danga Bay area	51
4.26	Stretching Exercise before Cycling in Hutan Bandar area	51

4.29	Correlation between ergonomic risk factors and	109
	level body pain Hutan Bandar	
5.1	Summary of cyclists background three survey	115
	study area	
5.2	Cyclist (A) condition in without protective	116
	knowledge guidance	
5.3	Cyclist (B) condition in without protective	116
	knowledge guidance	
5.4	Cyclist (C) condition in without protective	117
	knowledge guidance	
5.5	Cyclist(A) condition in with protective	118
	knowledge guidance	
5.6	Cyclist(B) condition in with protective	118
	knowledge guidance	
5.7	Cyclist(C) condition in with protective	119
	knowledge guidance	
7.1	Future works	129

LIST OF APPENDICES

APPENDIX		TITLE	PAGE
А	Questionnaire		139

CHAPTER 1

INTRODUCTION

1.1 Introduction

Ergonomics is a field that seeks to design tools, equipment, and task to optimize human capabilities, (Dan MacLeod 2009). It seeks to harmonize the functionality of tasks with the human requirements of those performing them. Ergonomic design focuses on the compatibility of objects and environments with the humans using them.

According to Dan MacLeod (2009), there are other terms of ergonomic that have been used for the field, for example man-machine system, human-system interface and human factor engineering. Ergonomic design is believed to be humancentered design that focusing on the usage where it seeks to connect human restrictions and capabilities plus it is supported by design options. Equipment and tasks will be associated in an ergonomic environment. This study is concerning on applying ergonomic approach obtain the correlation between ergonomic risk factors and the corresponding level of musculoskeletal disorder (MSD) in *Fixie* bike cycling activity. Bicycle riding is one of the less popular modes of transportation, recreation, fitness and sport in Malaysia. Physical activates as mode of transportation was low in Malaysia including only 2.9% of cycling and 17.7% walking for traveling to and from work according to socio-demographic groups compared to car 40.8%, motorcycle 33.6%, public transportation including bus, LRT or commuter 9.2% (Poh BK, Safiah MY, Tahir A et al., 2010).

Cycling is an accessible, economical and resourceful form of non-impact exercise aerobic with cardiovascular beneficial effects. In the other hand, bicycles are the common source of major injuries. The bicycle related injuries are the neck (48.8%), knee (41.7%), groin/buttock area (36.1%), hands (31.1%) and lower back (30.3%) based on one survey among 294 male and 224 female recreational cyclist (Schwellnus and Derman 2005). Weiss et al. (1985) also mentions that the neck aches and back aches are the usual complaints resulting from the cyclist's upper body position with hyperextension of the neck and flexion of the lower back.

In Malaysia, ergonomics among cyclist are not documented widely compared to other issues such as motorize accidents and other hazards in roadway. Ergonomics bicycle means that the design of the bicycle needs to be fit and suitable for cyclist. Ergonomics helps to improve the output and the comfort of bike riding. When improving the comfort, we can use our power more for bike riding and not for struggling against pain. When we improve our output, we will get extra comfort because our muscles become stronger and we do not sit on the bike like a sack of potatoes (Juliane 2007). There are several factors that may contribute to musculoskeletal pain among cyclist and need to identify detailed.

1.2 Background study

The health status among Malaysians is not satisfied because of the obese people are growing Malaysia. Most of the obese people would be a victim to health problems. In a survey of the Third National Health and Mobility in year 2006 showed that 29.1% of the adult population surveyed 33.055 of BMI that experiencing heavyweight. Being overweight is when your BMI is between 25.0 to 29.90. Prevalence of obesity (BMI> 30) was reported to 14.0%. One of the easiest ways to deal with health issues is to foster cycling habits among the people. As well as to strengthen the muscles and burn calories, cycling activities also contribute to the health rate in Malaysia effectively and collectively.

The case study was carried out on road cyclist activities in Johor Bharu, Johor. The popularity of cycling has increased by leaps and bound over recent years. Bicycle is the best example of the most popular vehicles for cycling. Bicycle has always been a favorite form of recreation for children, but recently, more adults especially teenagers have migrated to cycling for its benefits as aerobic exercise whether exercising on a stationary bike or taking in the sights during an outdoor bike ride. Recently, teenagers in Malaysia especially in Johor use a bicycle as their recreation medium for their activity. Cycling is an ideal way to support our aerobic fitness.

Article review from Sheldon Brown (2013) shown that the normal suffer pain or injure to cyclists when using existing product are lower back pain, knees pain, ankles pain, feet paint, wrist pain, thighs pain ,shoulders pain, hands pain, neck pain , finger pain, and Achilles tendons. In these cases, a cyclist needs vehicle that he or he can get and increase healthy exercise without get any suffer in cycling. Based on several researches to support this study, Wilber et al. (1995) found that 44.2 % of male and 54.9% of female recreational cyclists presented for medical treatment of neck pain, while approximately 30% presented with back pain. Weiss (1985) also reported that 66.4 % of recreational cyclists reported neck and shoulder symptoms following an 8-day of 500 mile bicycle tour. By using ergonomic method and approach on this research, the ergonomics risk factor and level of Musculoskeletal Disorders will be determined among cyclists. The correlation analysis will be conducted to obtain the correlation between each risk factor and the corresponding MSDs among them.

1.3 Problem statement

Relative

fatality rate 0.0

.003

.005

Recently, Malaysia's population especially teenager have choose a bicycle as transportation for recreation. Currently, we always see a number of teenagers especially in Johor cycling of colorful bike on the road. The type of the bike is a *Fixie* bike. The normal average age youth cyclists in Johor who are using *Fixie* bike are within 12-15 years old. It is supported by the DfT (2004) and Dot (1996), shown in Table 1.0 that youth cyclist aged 12 to 15 (those most at risk) have a relative fatality rate similar to adults aged between 20 to 29, 30 to 39 and 50 to 59 and a lower relative fatality rate than adults aged 40 to 49. Cyclist aged 12 to 15 shown the highest distance travelled than adults aged.

(Sources: DfT (2004) and DoT (1996)									
Age	5-7	8-11	12-15	16-19	20-29	30- 39	40-49	50- 59	60-69
Pop'n fatality rate	0.0	0.1	0.4	0.1	0.2	0.2	0.3	0.2	0.1
Miles per year	14.5	31	81	76	55	43.5	43.5	43.5	17.5

.004

.005

.007

.005

.006

.001

Table 1.1: Population fatality rates, distance travelled and relative fatality rates

 (Sources: DfT (2004) and DoT (1996)

Fixie bikes or fixed-gear bicycle is a kind of bicycle that has no freewheels, that means it cannot coast because of the pedals are always moving when the bicycle is in motion. This type of bicycle has attracted young people in Malaysia today because it has such a design and color according to the current youth trends. Could this bicycle affect the health of riders, especially the parts of bicycle that are always associated with injury and pain to cyclist? The injury or pain may occur towards cyclist's leg and knees cause lot of energy and skill needs to use to control bicycle speed. It is because leg and knee may use for controlling pedals for speed and stability of *Fixie* bike.

Loss of control can happen when the beginner rider cycle at a high speed as the pedals hit the road. The cyclists may fall down or suffer pain in knee or ankle. Riding a brakeless *Fixie* bike creates a cult status in some areas where there are many urban *Fixie* riders who think that brakes are not necessary (Wisenthal 2007). Many of them love the experiences of riding brakeless bike that creates an "oneness with the road" where it forces them to be more aware of their surroundings particularly in urban environments because of the inability to bring the bicycle to a quick stop. They believe that brakes and the cables will add extra bulk to the simple appearance of a fixed gear bicycle.

Churchill (2005) state that based on image rather than practicality, some riders dismiss cycling on road without brakes as their way. Doing so can be risky where it is prohibited by law and may affect the chances of a successful claim if any accidents happen (Colegrove et al, 2007). To slow down or stop a fixed-gear bike, a rider can resist the turning cranks, lock the rear wheel and skid. These steps can be started by unweighting the rear wheel while in motion where the riders have to shift their weight slightly forward and pulling up on the pedals using or toe clips and straps. The rider then stops turning the cranks, thus stopping the drive train and rear wheel, while applying body weight in opposition to the rotation of the cranks. This causes the rear wheel to skid and slowing the bike. The skid can be held until the bicycle stops or until the rider desire to continue pedaling again at a lower speed. These techniques require practices and it is dangerous to perform it while cornering (Brown (2007); Sheldon (2013)). A wet surface also will reduce the effectiveness of

this method. By using a pedal as a medium to stop and slow the riding may cause pain and injuries in knees and foot to cyclist if they are riding for long distance.

The maximum deceleration of bike equipped with a front brake is much higher than on a bike with only rear wheel braking (Stevenson (2007)). Weight is transferred towards the front wheel and away from the rear wheel causing the amount of grip the rear wheel to decrease as the vehicle brakes. The efficiency of a rear wheel braking will increase when transferring the rider's weight back, but a front wheel fitted with an ordinary brake might supply 70% or more of the braking power when braking hard.

A lot of researchers have found that bicycle is a major transport that leads to pain and injuries to the cyclist. J.Srinivasan and Balasubramaniam (2006) reported that the weak back muscles in the Low Back Pain group can happen due to cycling. The neck and back pain are the most common complaints as a survey has been conducted among the cyclists (Chad 2005).

1.4 Research Questions

There a few research questions of this research.

- i. How the correlation between ergonomic risk factors and corresponding level of musculoskeletal (MSD) lead to body pain in cycling?
- ii. What the most part of human body involve of pain in *Fixie* bike cycling?

1.5 Research objective

This master project will help and train teenagers in Malaysia to be more adventurous and healthy by cycling a *Fixie* bike. This is a brilliant way for a teenager to get benefits and healthy during their free time activity. The *Fixie* bike has to play its role in creating healthy lifestyles. The objectives of this research are as below:

- i. To establish the correlation between ergonomic risk factors and the corresponding level of musculoskeletal disorder (MSD) in cycling activity.
- ii. To establish the most body pain of the Fixie bike cyclists in cycling activity
- iii. To provide control measure for ergonomic problems on *Fixie* bike cycling activity.
- iv. To validate the control measure for ergonomic in *Fixie* bike cycling by protocol analysis.

1.6 Scope of Study.

The scopes of this master project are to identify the ergonomic risk factors in *Fixie* bike cycling and to evaluate the level of musculoskeletal disorder (MSD) among teenager *Fixie* bike cyclist. The focus of this research will be concentrate at knee, hip, foot and ankle of *Fixie* bike cyclist in analysis. The surveyed subject will be focusing on the teenager cyclists (12-21 years) who must use *Fixie* bike for long distance tour (10 km) with selected track in Johor area. Only the most significant correlation data will develop in personal protective knowledge stage as a recommendation.

1.7 Significant of Study

- i. This research can be applied in determining adequate ergonomic intervention to reduce the MSDs in cycling activity.
- ii. Identify ergonomic risk factors that lead to health hazards in using Fixie bike

1.8 Research Outline.

This chapter will contain six chapters namely introduction, literature review, methodology, data collection and analysis, proposed solutions and analysis and the final chapter is the conclusion and future works.

Chapter 1 contains the introduction to the project which consists of background of the study, problems statement, research objective, scope of study, research limitation and significant of this project.

Chapter 2 reviews the related concept of ergonomic including ergonomic risk factor. This chapter also describes the steps that can be taken to overcome problems related to ergonomics in cycling *Fixie* bike. Related theory on statistics is also discussed as well as Likert scale.

Chapter 3 provides description about the methodology used in collecting information and data. For this study, questionnaire is used to collect the data. To analyze the data, statistical method using Statistical Package for Social Sciences (SPSS) was used. Chapter 4 describes data analysis. In this study, the data is analyzed to determine correlation between ergonomic risk factor and level of pain experienced by the *Fixie* cyclists.

Chapter 5 will discuss detail about the data analysis and result from Chapter 4 The discussion will cover about analysis result from correlation and MSD in fixie bike cycling. In this chapter also will validate the counter measure of ergonomic risk factor by protocol analysis.

Chapter 6 present the proposed control measures to reduces ergonomic risk factor in cycling *Fixie* bike. The control measures will propose by using personal protective knowledge.

Chapter 7 explains the conclusion of the report, summary of the study and recommendations for future works including area that can be expanded.

1.9 Conclusion

This chapter provided the introduction that comprised all the background, problem, objective and scope of this study. For the next chapter, there will be overall explanation for the subject that we want to study including the ergonomic factor in cycling a *Fixie* bike as the main focus of this research.

REFERENCES

- Adaeze Florence Nwaigwe (2005). *Ergonomic Consideration in It-enabled Computer-aided Design for Discrete Manufactured Products*. Doctor of Philosophy, University of Pittsburgh.
- Angie Weddell, Meghan Winters, Kay Teschke (2012). Evidence from Safety Research
- to Update Cycling Training Materials in Canada
- Abt. J, Smoliga. J, Brick. M, Jolly. J, Lephart. S, Fu. F. (2007) . A core fatigue workout lower limb cycling kinematics were altered and over time this malalignment could produce injuries. Journal of strength and Conditioning Research. 2007, 21 (4), 1300-1304
- America National Standards Institute, "America National for Wheelchairs (including Scooters)", Vol.1(1998).
- Andreas Seidl (1997). RAMSIS-A New CAD-Tool for Ergonomic Analysis of vehicles Developed for German Automotive Industry., SAE. Technical Papers (9700)
- Brown, Sheldon. "*Fixed Gear for the Road: Skip Stops*". Harris Cyclery. Retrieved 2007-09-11.
- Bruce P. Hunn (1998). Anthropometric Evaluation for Ergonomic Design, SAE Technical Papers series (981862)

Bicycle Institute of America. *Bicycling Reference Book: Transportation issue*. Washington, DC: Author; 1993.

Cross, K. D., and Fisher, G. A study of bicycle/motor-vehicle accidents: Identification of problem types and countermeasure approaches (Technical Report DOT-HS-803 315).

- Craig Jr, A. B. (1960) '*Efects of position on expiratory reserve volume of the lungs*'Applied Physiology 15, 59-61
- Chevalier JM. *Pathologie vasculaire due cyclists*. EncyclopedieMedico Chirurgicale 1997;A10eA11:675.
- Chad Asplund, (Apr 14, 2005)."Neck and Back Pain in Bicycling" MD, Charles Webb, DO, and Thad Barkdull, MD Chidley, 'Buffalo' Bill (October 1993).
 "Track bikes at CMC 1993". Cycling Plus. Retrieved 2007-09-19.
- Churchill, Paul (2005-10-13). "Are Brakes For Flakes?". Moving Target. Retrieved 2007-09-16.
- Colegrove, Sara W.; Briggs, Todd E.. "*Do You Ride A Fixed Gear Bike*? You May Be Breaking The Law". League of Michigan Bicyclist. Archived from the original on 2007-09-27. Retrieved 2007-09-11.
- Conti-Wyneken AR: *Bicycling injuries*.Phys Med Rehabil Clin N Am1999;10(1):67-76
- CPSC report retrieved from https://www.cpsc.gov
- CPT Chad Asplund, MD; COL Patrick St Pierre, D(April004) 'Knee pain and Bicycling' the Physician And Sportsmedicine-VOL 32-NO.4- APRIL 2004.
- Cohen, L. and Manion, L., *Research Methods in Education*, London: Groom Helm Ltd., 1980.
- Creswell, J.W., *Research Design: Qualitative & Quantitative Approaches*, London: SAGE Publications, 199

Dan MacLeod (2009). The ergonomics Kit for General Industry

DfT (2004) Road Casualties Great Britain. London: DfT.

DoT (1996a) Cycling in Great Britain. London: DoT.

- Dannenberg AL, Needle S, Mullady D, et al: *Predictors of injury among 1638 riders in a recreational cyclist.* Int J Sports Med 1995;16(3):201-206
- David L. Geotsch. (2008). *Occupational Safety and Health for Technologist, Engineer*, *and Managers*. Pearson Education International, pp. 255.
- DeLong, F. (1974) De,ong's *Guide to Bicycles and Bicycling*: The Art and Science, Chilton Book, Radnor, PA
- Dorsch, Margaret M.; Woodward, Alistair J.; Somers, Ronald L. Do bicycle safety helmetsreduce severity of head injury in real crashes? Accident Analysis and Prevention 19(3): 183-190; 1987.
- DeVey Mestdagh, K. (1994) 'De optimale fetshouding, enkele elementaire aspecten van een meetsysteem' Geneeskunde and Sport 27, 194-202.
- Dickson Jr, T. B. (1985) '*Preventing overuse cycling injuries*' Physician Sportsmedicine 13 (10), 116-123
- European Standard, (August 2011). Ergonomics-General approach, principles and concepts (ISO26800:2011)
- Federal Highway Administration. National Bicycling and Walking Study. (Technical ReportFHWA-PD-94-023), Washington, DC: Author; 1994.
- Felipe (2007) Bicycle Saddle Pressure: Effects of Trunk Position and Saddle Design on Healthy Subjects

Faria, I., Dix, C. and Frazer, C. (1978) '*Efect of body position during cycling on heart rate, pulmonary ventilation, oxygen uptake and work output*' J Sports Med 18 (1), 49D56.

- Given, Lisa M. (2008). *The Sage encyclopedia of qualitative research methods*. Los Angeles, Calif.: Sage Publications. ISBN 1-4129-4163-6.
- Gloria, C. Cohen, Md, Ccfp (March 1993). 'Cycling injuries'. Canadian Family Physician Vol 39: March 1993.
- Green W., et al., Op.Cit., "Designing for Usability: Input of Ergonomic Information at an Appropriate Formin the Design Process by S. Porter s,"Chapter 2,p.15.
- Green W.et al ," *Ergonomics and Safety in Consumer Product Design: Development* of a Tool for Encourafging Ergonomics Evaluation in the Product Development Process by B.Norris, and J.Wilson," Chapter 8,p. 79.
- Holmes JC, Pruitt AL, Whalen NJ: *Lower extrmity overuse in bicycling*. ClinSports Med 1994;13(1):187-205.
- Gross, J. and Bennett, C. A. (1976) '*Bicycle crank length*' in Proceedings of the 6th Congress of the International Ergonomics Association, 'Old World, New World, One World', College Park, MD, 11-16 July 1976, pp 415-421

http://thornbers-podiatry.co.uk/cycling2.aspx

http://www.sparc.org.nz/Documents/Sector%20Capability/poweringparticipation.pdf

- Hamley, E. J. and Thomas, V. (1967) '*Physiological and postural factors in the calibration of the bicycle ergometer*' J Physiol 191 55-57.
- Huo Dong, Farnaz Nickpour, Chris McGinley, (2009). Designing Ergonomic Data Tools for Designers. Internasional Conference on Engineering Design, ICED, 2009

- J. Srinivasan, Venkatesh Balasubramanian, (2006). *Low back pain and muscle fatigue due to road Cycling-An sEMG study*, Journal Bodywork and Movement Therapies.
- Jacques Marsot and Laurent Claudon (2004)., *Design and Ergonomics.Methods for Integrating Ergonomics at Hand Tool Design stage.*, International Journal of Occupational Safety and Ergonomics (JOSE)2004, Vol. 10,No. 1, 13-23
- Jan Garrard, Natalie Hakman and Sharyn Crawford(2006).*Revolutions for Women:Increasing women's participation incycling for recreation and transport.*,
 School of Health and Social Development, Deakin University.

Juliane Neuss, 2007, Bike Ergonomics for All People, Europeon obility Week.

- Juker, D. McGill, S. Kropf, P. (1998) Quantitative Intramuscular Myoelectric activity of Lumbar Portions of Psoas and the Abdominal Wall During Cycling. Journal of Applied Biomechanics. (14) 428-438 Srinivasan,
- J. Balasubra, V. (2007) *Low Back Pain and Muscle Fatigue due to Road Cycling-* A sEMG study. Journal of Bodywork and Movement Therapies. 11. 260-266.

Jones DC. Achilles tendon problems in runners Instr Course Lect. 1998;47:419–27.

- Jastrzbska-Fraczek-Ing., Heiner Bubb rer.nat.,"Software Design and Evaluation by Ergonomics Knowledge and Intelligent Design (EKIDES)", Journal of Psychology, Vol. 1,No. 4(2003),pp. 378-390
- Kolehmainen, I., Harms-Ringdahl, K. and Lanshammar, H. (1989) 'Cervical spine positions and load moments during bicycling with diferent handlebar positions' Clin Biomech 4 (2), 105-110

- Kroemer.K.H.E and Granjean.E (1997). *Fitting the Task to the Human* (6thed Kumar, Ss. *Theories of musculoskeletal injury caustion*, Ergonomics, 44901) 17-47.
- Kuorinka, I., Jonsson, B., Kilbom, A., Vinterberg, H., mBiering-Sorensen, F., Andersson, G., et al. (1987). *Standardized Nordic questionnaires for the analysis* of musculoskeletal symptoms. Applied Ergonomics, 18, 233-237.
- L.A. Weaver Co (2009)., A Guide to Ergonomics N.C Department of Labour.
- L.Laios and J.Giannatsis.2000,. *Ergonomics evaluation and redesign of chilfren bicycles based on anthropometric data*.
- M. Aptel, L. Claudon, and J.Marsot (2002). Integration of Ergonomics Into Hand Tool Design: Principle and Presentation of an Example. International Journal of Occupational Safety and Ergonomics (JOSE), Vol. 8 No.1, 107-115

MacLeod D., et al., "The Ergonomics Kit for General Industry" Chapter 2, p13.

- Muhammad Iqbal,SalmanA.Iqbal,A.NMustafizurRahman and A.H.M Samsuzzoha(2011),. *Ergonomics and Design*,.International Conference on Industrial Engineering and Operation Management,.2011
- Moes, C. C. M. and Van Hulten, C. M. J. (1989) 'The development of a pressure distribution measuring device for various person product contact areas' in Megaw, E. D. (ed) Contemporary Ergonomics, Taylor and Francis, London, pp 349-354
- Mandroukas, K. (1990) 'Some efects of knee angle and foot placement in bicycle ergometry' J Sports Med Phys Fitness 30 (2), 155-159.
- Donkers, P. C. M., Toussaint, H. M., Molenbroek, J. F. M. and Steenbekkers, L. P.A. (1993) '*Recommendations for the assessment and design of young children's*

bicycles on the basis of anthropometric data' Applied Ergonomics 24 (2), 109-118

- Nordeen-Snyder, K. S. (1977) 'The efect of bicycle seat height variation upon oxygen consumption and lower limb kinematics' Med Sci Sports, 9, 113-117.
- Nordin, M and Frankel, V. *Basic Biomechanics of the Musculoskeletal System*. Lippincott, Wiliam and Wilson, Sedney, 2001
- OSHA, retrieved from http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=FEDER_AL _REGISTER&p_id=16305
- Poh BK,Safiah MY, Tahir A,Siti Haslinda MD,Siti Norazlin N,NorimahAK, 2010.Physical Activity Pattern & Energy Expenditure of Adults: Findings from MANS,Mal J Nutr 16(1): 13-37,2010
- Rodale Press. The cycling consumer of the 90's: A comprehensive report on the U.S. adultcycling market. Emmaus, PA: Author; 1991.
- Roland, H.E., Hunter, W.W., Stewart, J.R., and Campbell, B.J. *Investigation of motorvehicle/bicycle collision parameters* (Technical Report DOT-HS-804 840).
 Washington, DC:
- Sacks, J.J.; Holmgreen, P.; Smith, S.M.; and Sosin, D.M. Bicycle-associated head injuries anddeaths in the United States from 1984 through 1988: How many are preventable. Journal of the American Medical Association 266(21): 3016-3033; December 4, 1991.
- SAM MIE CAD, retrieved from http://www.Iboro.ac.uk/department/cd /docs_dand/research/ergonomics/sammie/samsum.htm

- Schwellnus MP and Derman EW . Common injuries in cycling: Prevention, diagnosis and management. SA Fam Pract 2005;47(7)
- Stevenson, John (August 8, 2006). "*Fixies outlawed*?". Cycling News.com. Retrieved 2007-09-11.
- Schwellnus, M.P., Derman, E.W.: Common injuries in cycling: prevention, diagnosis and management. SA Fam. Pract. 47(7), 14–19 (2005)
 Sheldon Brown (2013): Articles 'Bicycling and Pain' http://sheldonbrown.com/pain.html
- TaeebeumRyu,In-Jun Jung, Heecheon You ,and Kwang-Jae Kim (2004)., Development and Application of a Genaration Method of Human Models for Ergonomics Product Design in Virtual Environment.
- Thompson, Robert S; Rivara, Frederick P.; Thompson, Diane C. A case control study of theeffectiveness of bicycle safety helmets. The New England Journal of Medicine 320(21): 1361-1367; May 25, 1989.
- Teh LG, Sieunarine K, Van Schie G, Vasudevan T. *Spontaneous common iliac artery dissection after exercise*. J Endovasc Ther2003;10(1):163e6.
- Too, D. (1990) *Biomechanics of cycling and factors afecting performance of Sports* Med, 10 (5), 286-302
- UGS-The PLM Company retrieved from http://www.ugs.com/products/efactory/ jack/
- Weiss BD , Nontraumatic injuries in amateur long distance bicyclists. Am J sports Med 1985;13:187-92.
- Wilber CA, Holland GJ, Madison RE, et al : *An edidemiological analysis of overuse injuries among recreational cyclist*. Int J Sports Med 1995;16(3):201-206

- Wilson, J.C., 2000. Fundamentals of ergonomics in theroy and pratice. Applied Ergonomics, 31, pp.557-567
- Wisenthal, Lucas (June 28, 2007). "*Bare bones biking*". Montreal Mirror. Retrieved 2007-09-11.

Washington, DC: National Highway Traffic Safety Administration; 1977.

- Walker, K. *Biomechanics of Cycling and Running*. Asics Education Fund Report.NZSOPA Bulletin, December. 2010
- Wikipedia Encyclopedia. Retrieved from http://en.wikipedia.org/wiki/ Socialscience.pdf
- Yves Grassioulet (2002). A Cognitive Ergonomics Approach to the Process of Game Design and Development. Master thesis, University of Geneva.