TECHNICAL AND COST MODEL FOR SLIPWAY DEVELOPMENT

NOOR RASHIDAWANI BINTI MD NOOR

UNIVERSITI TEKNOLOGI MALAYSIA

TECHNICAL AND COST MODEL FOR SLIPWAY DEVELOPMENT

NOOR RASHIDAWANI BINTI MD NOOR

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Marine Technology)

Faculty of Mechanical Engineering Universiti Teknologi Malaysia

OCTOBER 2014

To my precious and beloved father and late mother, for the love and prays during the day and night, Whom I dedicate this work with great respect and love, Eternally...

ACKNOWLEDGEMENT

In the name of Allah, Most Gracious, Most Merciful. Praise be to Allah, The Cherisher and Sustainer of the worlds; Most Gracious, Most Merciful; Master of The Day of Judgment. The do we worship, and Thine aid we seek. Show us the straightway, the way of those whom Thou has bestowed Thy grace, those whose (portion) is nor wrath, and who go not astray. This thesis is the testimony of the fact that by having faith in Allah, the impossible is made possible. Many times I reached dead ends; many times I felt frustrated and stressful; it is in Him I found the strength, peace and hope to carry on.

I would also like to express my heartfelt gratitude to my supervisor, Associate Professor Dr. Mohd Zamani Bin Ahmad of all his encouragements, guidance, patience, dedication and confidence in helping me to complete this project. I would like to express my appreciation for him in sharing his professional opinion and knowledge while working on my project.

Warmest gratitude and special dedication to late mother and father, whom I can afford on facing any hardship and accomplish this work at my best. Special gratitude to dearest sisters for the understanding, support and prays. Also thanks to Kamarudin, who inspired me to move on forward despite the painstakingly sacrificial. I dedicate this work for our beloved family gratefully. I also extend my utmost gratitude to all my friends who lend a hand in the success of my thesis. I would like to thank Sunarsih for their dedication and motivation in helping me to achieve the completion of the research.

ABSTRACT

In recent years, the discussion and progression of slipway construction in Malaysia is developing extensively due to the growth of the fleets registered in the country. In conjunction with the slipway constructions, it is crucial for the developer to have an early estimation of the principal dimensions of the slipway as well as the final cost since the development of the slipway involves a huge cost. The technical and cost estimation tools are oftenly used by the key person in the project management team to identify the technical feature and cost involved in slipway construction project. Therefore, this research is aimed at developing a model to identify the principal dimensions of the slipway including length, breadth, maximum capacity, angle, cradle size and construction cost. The technical and cost model developed can be used as a tool to support the developer in performing the decision making during the pre-design stage of the slipway development project. The model was developed by performing regression analysis to the collected historical data from the previous slipway projects in Malaysia. A total of thirteen (13) mathematical equations to identify the slipways' principal dimension and construction cost has been successfully generated. An Excel package for technical and cost model have also been developed. The package has been verified by substituting the historical data in order to determine the limitations of the package. The technical and cost model package was deemed appropriate for the slipways with capacity between 277 tones to 3363 tones. At the end of the research, the package has been tested to determine the accuracy of the output was validated by comparing the results against the real world data from Slipway Kuala Linggi Project. The highest error found was only 13.1% for the slipway length variables, showing that the package resembles the real world data. Therefore, the technical and cost model developed is considered relevant to both industry practitioners and academic researchers.

ABSTRAK

Kebelakangan ini, pembinaan tempat pelancaran kapal semakin meningkat iaitu selari dengan pertambahan bilangan kapal yang berdaftar di Malaysia. Seiring dengan perkembangan ini, adalah penting bagi pemaju menganggar parameter utama tempat pelancaran kapal ini dan sekaligus menganggar kos yang diperlukan untuk membina tempat pelancaran kapal yang mana ia melibatkan kos yang sangat tinggi. Teknikal dan kos model seringkali diguna pakai oleh orang yang berkepentingan dalam industri pembinaan tempat pelancaran kapal walaupun kejituan keputusan yang diperolehi itu berkemungkinan rendah. Kajian ini menumpukan terhadap pembinaan model untuk mengenal pasti parameter utama panjang, lebar, kebolehan maksimum, sudut, dan kos pembinaan bagi tempat pelancaran kapal. Model ini boleh digunakan sebagai medium utama dalam peringkat awal merekabentuk tempat pelancaran kapal. Model ini dibina dengan mengaplikasikan analisis regresi terhadap data yang diperolehi daripada projek-projek pembinaan tempat pelancaran kapal yang terdahulu di Malaysia. Sejumlah tiga belas (13) persamaan matematik untuk mengenal pasti parameter utama tempat pelancaran kapal dan kos pembinaan telah berjaya dihasilkan. Pakej 'Excel' juga telah dibina untuk mengenal pasti parameter teknikal dan kos pembinaan tempat pelancaran kapal. Pakej ini telah disahkan dengan menggunakan data yang terdahulu untuk menentukan had kebolehan pakej dalam menentukan parameter utama dan kos pembinaan tempat pelancaran kapal. Teknikal dan kos model yang dibina sesuai untuk pelancaran kapal dengan kapasiti antara 277 hingga 3363 ton. Pada akhir kajian ini, pakej yang telah diuji untuk menentukan ketepatan output. Pakej ini telah disahkan dengan membandingkan data sebenar dari tempat pelancaran kapal Projek Kuala Linggi. Ralat paling tinggi didapati hanya 13.1% bagi panjang tempat pelancaran kapal. Oleh itu, model yang dibina dianggap bermanfaat untuk sektor industri dan juga penyelidik akademik.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xvii
1	INTRODUCTION	1
	1.1 Background of Study	1
	1.2 Statement of Problem	3
	1.3 Research Objective	4
	1.4 Scope of Research	4
	1.5 Structure of Dissertation	5
2	LITERATURE REVIEW	
	2.1 Introduction	6
	2.2 Short Review of Slipway	6
	2.3 Types of Slipway	9
	2.4 Site Selection of Slipway Development	11
	2.4.1 Bathymetry and Approach Channel	11
	2.4.2 Sheltered Area	12

	2.4.3	Environmental Impact	12
	2.4.4	Soil Condition	13
	2.4.5	Site Accessibility	13
2.5	Main C	omponent of Slipway	14
	2.5.1	Repair Berth	15
	2.5.2	Keel Blocks	15
	2.5.3	Ground Ways	16
	2.5.4	Sliding Ways	16
	2.5.5	Cradle	17
2.6	Design	Theory of Slipway	18
	2.6.1	Slipway Slope and Length Calculation	18
	2.6.2	Pulling Capacity Calculation	20
2.7	Factors	Need To Be Considered in Develop a	22
	New Sl	ipway	
2.8	Overvie	ew of Technical Cost Model	23
2.9	Overvie	ew of Regression Analysis	24
2.10	Variabl	e Selection for Regression Analysis	25
2.11	Buildin	g of Regression Model	27
RES	SEARCI	H METHODOLOGY	
3.1	Introdu	action	30
3.2	Resear	ch Methodology Flowchart	31
3.3	Selecti	on of Research Variables	32
3.4	Data C	ollection	34
3.5	Develo	opment of Technical Model	35
	3.5.1	Research Hyphotesis	36
	3.5.2	Test for Statistical Significance	40
	3.5.3	Interpretation of Pearson Correlation Result	43
	3.5.4	Develop Technical Model	45
3.6	Develo	ppment of Cost Estimation Model	48
3.7	Develo	pment of Excel Package	55
3.8	Model	Verification	56
3.9	Model	Validation	58

3

4 **RESULT AND FINDINGS**

4.1	Introdu	uction	60
4.2	The Te	echnical Model	61
	4.2.1	Slipway Length	61
	4.2.2	Slipway Breadth	64
	4.2.3	Slipway Angle	67
	4.2.4	Slipway Capacity	69
	4.2.5	Cradle Length	72
	4.2.6	Cradle Breadth	75
4.3	Cost N	Iodel	77
	4.3.1	Engineering Cost	81
	4.3.2	Earthwork Cost	82
	4.3.3	Cradle Cost	85
	4.3.4	Rail Track Cost	86
	4.3.5	Winch Cost	89
	4.3.6	Assembly Cost	90
	4.3.7	Commissioning Cost	92
4.4	Excel	Package for Technical Cost Model	93
4.5	Result	s of Model Verification	96
4.6	Result	s of Model Validation	98

5 **DISCUSSION**

6

5.1	Introduction	100
5.2	Discussion on Results of Technical Model Developed	100
5.3	Discussion on the Trend of Current Slipway	104
	Development Cost	
5.4	Discussion on the Cost Model Developed	108
5.5	Discussion on the Excel Package Developed	112
5.6	Discussion on the Results of the Package Verification	113
5.7	Discussion on the Results of the Package Validation	114
CON	ICLUSION	
6.1	Overview of the Research	115

6.2 Conclusion 116

6.3	Recommendation for Future Works	117
REFERENC	CES	119
APPENDIC	ES	123

LIST OF TABLES

TABLE NO.	TITLE	PAGE
1.1	Number of vessel registered to Malaysia Marine Department based on DWT	3
2.1	Magnitude of the Effect for Pearson's Coefficient	26
3.1	Technical variable	33
3.2	Short listed variables	33
3.3	Factors that affect slipway construction cost	34
3.4	Regression assumption for technical model	36
3.5	Research hypothesis for length of slipway	37
3.6	Research hypothesis for breadth of slipway	37
3.7	Research hypothesis for angle of slipway	38
3.8	Research hypothesis for maximum capacity of slipway	38
3.9	Research hypothesis for cradle length	39
3.10	Research hypothesis for cradle breadth	39

3.11	Magnitude of the effect for Pearson's Coefficient (r)	40
3.12	Pearson correlation result for slipway length	41
3.13	Pearson correlation result for slipway breadth	41
3.14	Pearson correlation result for angle of slipway	41
3.15	Pearson correlation result for maximum capacity of slipway	42
3.16	Pearson correlation result for cradle length	42
3.17	Pearson correlation result for cradle breadth	42
3.18	Final hypothesis for slipway length	43
3.19	Final hypothesis for slipway breadth	43
3.20	Final hypothesis for angle of slipway	44
3.21	Final hypothesis for slipway maximum capacity	44
3.22	Final hypothesis for cradle length	44
3.23	Final hypothesis for cradle breadth	45
3.24	Regression analysis data in identifying length of slipway	46
3.25	Regression analysis data in identifying breadth of slipway	46
3.26	Regression analysis data in identifying angle of slipway	46
3.27	Regression analysis data in identifying slipway capacity	47

3.28	Regression analysis data in identifying length of cradle	47
3.29	Regression analysis data in identifying breadth of cradle	47
3.30	Cost consideration factors	48
3.31	Regression assumption for cost model	50
3.32	Conversion factors	51
3.33	Detail of cost figure as of year 2012 for slipway construction	52
3.34	Regression analysis data in identifying engineering cost	53
3.35	Regression analysis data in identifying earthwork cost	53
3.36	Regression analysis data in identifying cradle cost	54
3.37	Regression analysis data in identifying rail track cost	54
3.38	Regression analysis data in identifying winch cost	54
3.39	Regression analysis data in identifying assembly cost	55
3.40	Regression analysis data in identifying commissioning cost	55
3.41	Verification data	56
3.42	Verification input data for technical and cost model	57
3.43	Validation data for technical model	58
3.44	Validation data for cost model	59

4.1	Regression statistic for slipway length model	63
4.2	Regression analysis for slipway length model	63
4.3	Regression statistic for slipway breadth model	66
4.4	Regression analysis for slipway breadth model	66
4.5	Regression statistic for slipway angle model	68
4.6	Regression analysis for slipway angle model	69
4.7	Regression statistic for slipway capacity model	71
4.8	Regression analysis for slipway capacity model	71
4.9	Regression statistic for cradle length model	74
4.10	Regression analysis for cradle length model	74
4.11	Regression statistic for cradle breadth model	76
4.12	Regression analysis for cradle breadth model	77
4.13	Regression statistic for engineering cost model	81
4.14	Regression analysis for engineering cost model	82
4.15	Regression statistic for earthwork cost model	84
4.16	Regression analysis for earthwork cost model	84
4.17	Regression statistic for cradle cost model	86

4.18	Regression analysis for cradle cost model	86
4.19	Regression statistic for rail track cost model	88
4.20	Regression analysis for rail track cost model	88
4.21	Regression statistic for winch cost model	89
4.22	Regression analysis for winch cost model	90
4.23	Regression statistic for assembly cost model	91
4.24	Regression analysis for assembly cost model	91
4.25	Regression statistic for commissioning cost model	92
4.26	Regression analysis for commissioning cost model	93
4.27	The summarize of verification results	96
4.28	Verification Results	97
4.29	Validation factor for the technical model developed	99
4.30	Validation factor for the cost model developed	99
5.1	List of technical variables	101
5.2	Technical model for the slipway development	102
5.3	Summary of statistical regression for technical components	104
5.4	Cost model for slipway development	109

5.5	Summary of statistical regression for cost components	111
5.6	Verification result (Minimum Limit)	113
5.7	Verification result (Maximum Limit)	113
5.8	Validation results of the technical model developed	114
5.9	Validation results of the cost model developed	114

LIST OF FIGURES

FIGURE NO	D. TITLE	PAGE
2.1	Slipway schematic diagram	7
2.2	Transverse or Crosswise Slipway	9
2.3	Longitudinal Slipway	10
2.4	Main Components of Slipway	14
2.5	Free body diagram of force in slipway slope	19
2.6	Acceleration and velocity of sloping cradle	21
2.7	Different Types of Scatterplot	27
2.8	Possible Power Transformation for Strengthen Scatterplot	28
2.9	Typical Pattern for Residual Plot	29
3.1	Flowchart of research methodology	31
3.2	The flow chart of regression analysis	35
3.3	Relationship between cost and technical factors	49
4.1	Residual plot of ship length for slipway length model	62

4.2	Residual plot of ship draft for slipway length model	62
4.3	Residual plot of ship deadweight for slipway length model	62
4.4	Residual plot of ship breadth for slipway length model	63
4.5	Residual plot of ship length for slipway breadth model	64
4.6	Residual plot of ship draft for slipway breadth model	65
4.7	Residual plot of ship deadweight for slipway breadth model	65
4.8	Residual plot of ship breadth for slipway breadth model	65
4.9	Residual plot of ship length for slipway angle model	67
4.10	Residual plot of ship draft for slipway angle model	67
4.11	Residual plot of ship deadweight for slipway angle model	68
4.12	Residual plot of ship breadth for slipway angle model	68
4.13	Residual plot of ship length for slipway capacity model	70
4.14	Residual plot of ship draft for slipway capacity model	70
4.15	Residual plot of ship deadweight for slipway capacity model	70
4.16	Residual plot of ship breadth for slipway capacity model	71
4.17	Residual plot of ship length for cradle length model	72
4.18	Residual plot of ship draft for cradle length model	73

4.19	Residual plot of ship deadweight for cradle length model	73
4.20	Residual plot of ship breadth for cradle length model	73
4.21	Residual plot of ship length for cradle breadth model	75
4.22	Residual plot of ship draft for cradle breadth model	75
4.23	Residual plot of ship deadweight for cradle breadth model	76
4.24	Residual plot of ship breadth for cradle breadth model	76
4.25	Percentage of cost element for Geliga Slipway 1	78
4.26	Percentage of cost element for Geliga Slipway 2	78
4.27	Percentage of cost element for Geliga Slipway 3	78
4.28	Percentage of cost element for Muhibbah Engineering	79
4.29	Percentage of cost element for Sapor Engineering	79
4.30	Percentage of cost element for University Kuala Lumpur	79
4.31	Percentage of cost element for Sarawak Slipway	80
4.32	Percentage of cost element for Prospect Dockyard	80
4.33	Percentage of cost element for Tok Bali Dockyard	80
4.34	Residual plot of maximum slipway capacity for engineering cost model	81
4.35	Residual plot of slipway length for earthwork cost model	83

4.36	Residual plot of slipway breadth for earthwork cost model	83
4.37	Residual plot of slipway angle for earthwork cost model	83
4.38	Residual plot of cradle length for cradle cost model	85
4.39	Residual plot of cradle breadth for cradle cost model	85
4.40	Residual plot of slipway length for rail track cost model	87
4.41	Residual plot of slipway breadth for rail track cost model	87
4.42	Residual plot of slipway capacity for rail track cost model	87
4.43	Residual plot of slipway capacity for winch cost model	89
4.44	Residual plot of slipway capacity for assembly cost model	90
4.45	Residual plot of slipway capacity for commissioning cost model	92
4.46	Information and instruction sheet for the technical cost model package	94
4.47	Input value and result sheet of the technical cost model package	95
4.48	Validation result of the excel package	98
5.1	Percentage of cost element of slipway construction project within Malaysia	107

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Slipways are structures to transfer vessels to or from water for temporary storage of ship repair or new ship building purposes. Maintenance and repair are required by all vessels to keep them in good conditions. Furthermore, it is an obligatory for a vessel to be pulled up for checking and inspection every five years (Soric. Z, 2005). These requirements made slipways and other dry docking methods to be the workhorses of the ship repair facilities.

Slipways are extensively used in small yards in Malaysia to accommodate small or medium size vessels. The slipways are widely used in ship repair and ship building industries before the existence of another method of the new technologies such as dry dock, ship lift and floating dock. However, till now the slipways play important role in the ship repair industries due to minimal cost for the ship owner compared to the other methods with the new technologies.

According to Mackie et al. (2006), usually slipways can accommodate vessel weight up to 3000 ton. However, it is a high risk to load any vessel more than such weight due to safety issues as the stability of the vessel on the slipway totally depends on the center of gravity of the vessel. Hence, loading a vessel with more than the stated weight will lead to a risk of collapse.

Generally, the main component of a slipway consists of winch, rail track and cradle. However, the critical element is the rail track as highlighted by Mackie et al. (2006). The rail track is made up of a deck system with a flat slab and is supported with bore cast in situ piles.

Slipway construction project evolved through a series of stages, beginning from the preliminary study, followed by several design stages and finally implementation of the design through the actual construction. In conjunction with such stages, preliminary design and cost estimation are very important for the developer or project owner. According to Yaman (2007), since 1950s efforts have been made to understand the cause-effect relationship between design parameters and the construction cost as well as to develop a model in estimating the construction cost.

The research addressed the need of a user friendly and reliable technical and cost estimation model on slipway construction during early stage of a project and proposed a conceptual technical and cost estimation method that relies on information known before the detailed plan and specifications identified. Prediction model for the principal dimension and size of the cradle is developed using regression analysis. The data used is collected from the shipyards with slipways in Malaysia.

The model developed in this research can be used as a tool to assist the developer or project owner to identify the particulars of the slipway including the length, breadth, angle of the slipway as well as the cradle size and the required funding for the overall slipway construction project. Users only need to state the desired design criteria such as length, breadth, draft and deadweight by referring to the maximum vessel to be slipped on the slipway. The model will perform the calculation and produce the output for the principal dimension of the slipway and the cost to be incurred in the construction process.

1.2 Statement of Problem

Generally, slipway is the most cost effective dry docking method for small vessels. It is not worth to docking vessels up to 3000 tons on dry dock, ship lift or floating dock since the cost would be slightly higher compared to docking on a slipway. The higher cost is the resultant of the higher technology used special and complex design of the docking system which is more suitable for larger vessels.

According to the list of ship registered to Malaysia Marine Department, there are 2150 numbers of ships have a deadweight less than 3000 ton. The detail data is presented in Table 1.1.

Table 1.1: Number of vessel registered to Malaysia Marine Department based on DWT (<u>http://www.marine.gov.my/jlmeng/index.asp</u>, 26 Feb 2012)

Deadweight	<3000	3000-10000	10000-20000	>20000
(Ton)				
No. of Vessel	2150	1333	420	300

Based on the data, it can be interpreted that slipways will be more demanding in Malaysia since the vessels with capacity of 3000 ton are higher in number compared to other capacities. However, the current developer or shipbuilders are potentially facing many challenges to design and construct the slipway since there is no coherent design theory and pre-design cost estimation which is the crucial elements to construct the slipway. Hence, an effort is necessitated to fill in the gap as to facilitate the requirement of slipway development.

As mentioned by Mackie (2006), specialized theory is required in designing and determining the cost of the slipway. It is not a rocket science but road geometrics of civil engineering as well as hydrostatics and stability analysis from naval architecture side are required. Considering such thought, this research attempts to develop simple mathematical equations to identify the principal dimension of the slipway and the early cost estimation.

In the early stage or pre-design stage, most basic and functional decisions which comprised of principal dimensions and construction cost should be made by the developer or project owner. The developer or project owner required a technique or a system to emphasise and prioritise their effort to control the project cost, otherwise worst impact will affect the total cost of the slipway construction project. Therefore, the mathematical equations developed in the current study will benefit the developer and project owner in managing the project by predicting the basic principal dimension and estimating the slipway construction cost.

1.3 Research objective

The objective of this research as per following:-

- To develop a technical model for a main slipway parameters.
- To develop a cost model for slipway construction.
- To develop an excel package which can be used as a tool for predicting the principal dimension and cost of the slipway construction.

1.4 Scope of the research

The scopes of the research are as follows.

i. This research will develop a cost model for slipway which based on technical and construction parameter applicable in Malaysia.

- ii. This research focusing on quantitative parameters only.
- iii. The technical and cost model includes only the slipway main parameters and the construction cost for the main components of the slipway while the overhead cost are excluded
- iv. The cost model developed focuses on the construction cost only while the land price are neglected
- v. The historical data is collected from the shipyards in Malaysia only

1.5 Structure of Thesis

This thesis is divided into six chapters. Each chapter has been partitioned into few parts where each part has its own sectioning. The sectioning and partitioning have been carefully done hence the content and the positioning emphasise the whole flow of the dissertation.

Chapter 1 is the introduction of the research which contains five parts including the background of the research, the problem statement, the objective and the scope of the research. Chapter 2 reviews all topics which are essential to understand the detail of the research and hence the content is related to the literature on slipway design, technical and cost model as well as the regression analysis. Chapter 3 overviews the detail of the methodology applied in the research which covers all the utilized methods and activities performed towards achieving the required results. Chapter 4 presents the result generated from the study which is further discussed in Chapter 5. Finally, chapter 6 concludes and highlights research achievements and makes some recommendations for the possible continuation of the research.

- Anonym. Cost Estimation. Retrived on 19 January 2014 from http://pmbook.ce.cmu.edu/05_Cost_Estimation.html. (19 Jan 2014)
- Anonym. Statistics and Probability Dictionary on 16 January 2014 from http://stattrek.com/statistics/dictionary.aspx?definition=residual%20plot. (16 Jan 2014)
- Anonym. Ship Registered in Malaysia. Retrived on 26 February 2012 from http://www.marine.gov.my/jlmeng/index.asp. (26 Feb 2012)
- Anonym. Longitudinal Slipway. Retrived on 24 December 2012 from http://www.the-navy-commissions-slipway-38325.php (24 Dec 2012)
- Alqedra. Early Stage cost Estimation of Buildings Construction Projects using Artificial Neural Networks. Journal of Artificial Intelligence 4 (1): 63-75. 2011
- British Standard. Code of practice for Maritime structures Part 3: Design of dry docks, locks, slipways and shipbuilding berths, shiplifts and dock and lock gates.
 Civil Engineering and Building Structures Standards Committee. 1988
- Butcher, N. Cost Estimating Simplified. Institute of Museum and Library Services, California. 2003
- Civil Engineering Department. *Port Works Design Manual Part 2*. The Government of the Hong Kong Special Administrative Region. 2004
- Colonna. Horse Drawn Turnstyle marine Railway Hauling Machinery. Norfolk, Virginia. 1989
- Douglas, H. J. *The Insignificance of Statistical Significance Testing*. Northern Prairie Wildlife research Center, University of Nebraska, Lincoln. 1999

- Environmental Protection Department, Hong Kong. Technical Memorandum on Environmental Impact Assessment Process. 1997
- Fragkakis, N. A Cost Estimate Method for Bridge Superstructure using Regression Analysis and Bootstrap. Centre for Construction Innovation, Department of Construction, Engineering and Management, Faculty of Civil Engineering, National Technical University of Athens, Athens, Greece. 2010
- Gaythwaite, J. Design of Marine Facilities for the Berthing, Mooring and Repair Vessel. 1990
- Greves, D. Cost Engineering for Cost Effective Space Programme. Cost Analysis Division, ESA Directorate for Industrial Matters and Technology Programmes, ESTEC, Noordwijk, Netherlands. 2003
- Hegazy T. and Ayed A. Neural network model for parametric cost estimation of highway projects. Journal of Construction Engineering and Management. 124(3), pp. 210 - 218.
- Izham, N.M. Morphological Characteristics, distribution, and Mycotoxin Profiles of Fusarium Species from Soils in Peninsular Malaysia. University of Science Malaysia. 2008
- Kleijnen, J.P.C. Verification and Validation Simulation Models. Center and Department of Information System and Auditing, Katholieke University Brabant, LE Tilburg, Netherlands. 1993
- Leong. The analysis and design of a slipway system for repair and maintenance of boat or small ships. University Technology Malaysia. 1991
- McCaffer, R. Some examples of the use of regression analysis as an estimating tool, Quantity Surveyor, p.81–86. 1975

- Mackie, R. F. Deane. Issue in Dry Docking Economics, Shiplifts, Slipway and Keel Blocks. Consulting Coastal & Habour Engineer Cape Town, S. Africa. 2006
- Mahamid, I. Early Cost Estimating for Roads Construction Projects Using Multiple Regression Technique. Hail University, Saudi Arabia. 2011
- Mallick, B. Variable Selection for Regression Models. The Indian Journal of Statistics, Series B: 65-81. 1998
- Miskan. *Design of Slipway System for Fishing Fleet*. Undergraduate Thesis of Marine Technology, Mechanical Engineering, University Technology Malaysia. 2004
- Sabol, L.A. *Challenges in Cost Estimating with Building Information Modelling*. Design and Construction Strategy LLC, Washington. 2008

Sankhya. Probability Theory. The Indian Journal of Statistic. 1998

- Shin, J.M. Comparison of School Building Construction Costs Estimation Method Using Regression Analysis, Neural Network, and Support Vector Machine. Department of Plant & Architectural Engineering, Kyonggi University, Suwon-Si, Korea. 2011
- Silalahi, Hotmatua Hamonangan. Comparative Study of the Slipway Structure to the Type of Elongated and Transversely to the Type of Ship 3000 DWT on the Island of Seram Maluk. Undergraduate Thesis of Offshore Engineering, Institute Technology Sepuloh Nopember. 2012
- Skitmore, R.M. Forecast Models for Actual Construction Time and Cost. School of Construction Management and Property, Queensland University of Technology, Australia. 2003
- Soric, Z. A Slipway Structure for River Ship Repair. International Symposium on Water Management and Hydraulic Engineering. 2005

- Sundravadivelu, Natarajan, Gandhi, Thilakavathy. Design of Slipway Facility for Repair and Maintenance of Port Crafts. 4th International Conferenceon Coasts, Ports and Marine Structure. November 2000
- Sykes, A. An Introductionto Regression Analysis. Law School, University of Chicago. 1993
- Thomas, Ben, Hadfield, M. and Austen, S. "Wear observations applied to lifeboat slipway launches." Wear 267.11: 2062-2069. (2009)
- Touran, A. "Probabilistic cost estimating with subjective correlations." Journal of Construction Engineering and Management 119 (1) 58-71. 1993
- Trail-Sail Association. Slipway Design. Retrieved on 3 March 2013 from http://www.scribd.com/doc/147174899/Good-Slipway-Design. (3 March 2013)
- Tsai, C.L. Cai. Z. Wu, X. *The Examination of Residual Plots*. University of California, Southwest Missouri State University and Nankai University. 1997
- Yaman. A Building Cost Estimation Model Based on Functional Elements. Istanbul Technical University, Faculty of Architecture, Istanbul Turkey. 2007
- Yung, P. Construction Cost Studies Using a Multivariate Regression Method. Nottingham Trent University. 2010
- Zayed, T.M. Halpin, D.W. Productivity and Cost Regression Models for Pile Construction. Journal of construction engineering and management 131.7 : 779-789. 2005

APPENDICES

DESCRIPTION	ITEM	UNIT	VALUE
	Vessel Length (Max)	m	32
Limitation Easter	Breadth (Max)	m	10
	Deadweight	tonnes	400
	Vessel Draft (Max)	m	2.6
	Length of Slipway	m	65
Slipway	Breadth of Slipway	m	15
Parameter	Maximum Capacity	tonnes	500
	Angle of Slipway	degree	2
Cradla Daramatar	Length of Cradle	m	34
	Breadth of Cradle	m	16

Technical data for Geliga Slipway 1

Technical data for Geliga Slipway 2

DESCRIPTION	ITEM	UNIT	VALUE
	Vessel Length (Max)	m	40
Limitation Easter	Breadth (Max)	m	13
Limitation Factor	Deadweight	tonnes	600
	Vessel Draft (Max)	m	2.8
	Length of Slipway	m	85
Slipway	Breadth of Slipway	m	21
Parameter	Maximum Capacity	tonnes	600
	Angle of Slipway	degree	2
Cradla Daramatar	Length of Cradle	m	45
Claule Falameter	Breadth of Cradle	m	17

DESCRIPTION	ITEM	UNIT	VALUE
	Vessel Length (Max)	m	45
Limitation Easter	Breadth (Max)	m	15
	Deadweight	tonnes	1000
	Vessel Draft (Max)	m	3.0
	Length of Slipway	m	103.5
Slipway	Breadth of Slipway	m	25
Parameter	Maximum Capacity	tonnes	1000
	Angle of Slipway	degree	2
Cradla Paramatar	Length of Cradle	m	49
	Breadth of Cradle	m	20

Technical data for Geliga Slipway 3

Technical data for Muhibbah Engineering

DESCRIPTION	ITEM	UNIT	VALUE
	Vessel Length (Max)	m	55
Limitation Easter	Breadth (Max)	m	16
Limitation Factor	Deadweight	tonnes	1000
	Vessel Draft (Max)	m	3.0
	Length of Slipway	m	150
Slipway	Breadth of Slipway	m	21.33
Parameter	Maximum Capacity	tonnes	1000
	Angle of Slipway	degree	2.5
Cradla Parameter	Length of Cradle	m	55
Claule Falameter	Breadth of Cradle	m	21

DESCRIPTION	ITEM	UNIT	VALUE
	Vessel Length (Max)	m	80
Limitation Easter	Breadth (Max)	m	20
Limitation Factor	Deadweight	tonnes	3000
	Vessel Draft (Max)	m	3.4
	Length of Slipway	m	210
Slipway	Breadth of Slipway	m	30
Parameter	Maximum Capacity	tonnes	3200
	Angle of Slipway	degree	3
Cradla Paramatar	Length of Cradle	m	82
	Breadth of Cradle	m	24

Technical data for Sapor Engineering

Technical data for University Kuala Lumpur

DESCRIPTION	ITEM	UNIT	VALUE
	Vessel Length (Max)	m	42
Limitation Easter	Breadth (Max)	m	8
Limitation Factor	Deadweight	tonnes	250
	Vessel Draft (Max)	m	1.8
	Length of Slipway	m	98
Slipway	Breadth of Slipway	m	10
Parameter	Maximum Capacity	tonnes	300
	Angle of Slipway	degree	1.8
Cradla Daramatar	Length of Cradle	m	34.5
Claure Falameter	Breadth of Cradle	m	10

DESCRIPTION	ITEM	UNIT	VALUE
	Vessel Length (Max)	m	50
Limitation Easter	Breadth (Max)	m	16
	Deadweight	tonnes	1800
	Vessel Draft (Max)	m	3.2
	Length of Slipway	m	80
Slipway	Breadth of Slipway	m	20
Parameter	Maximum Capacity	tonnes	2000
	Angle of Slipway	degree	0.8
Cradla Parameter	Length of Cradle	m	64
Craule Parameter	Breadth of Cradle	m	20

Technical data for Sarawak Slipway

Technical data for Prospect Dockyard

DESCRIPTION	ITEM	UNIT	VALUE
	Vessel Length (Max)	m	35
Limitation Easter	Breadth (Max)	m	8
Limitation Factor	Deadweight	tonnes	250
	Vessel Draft (Max)	m	1.2
	Length of Slipway	m	70
Slipway	Breadth of Slipway	m	10
Parameter	Maximum Capacity	tonnes	300
	Angle of Slipway	degree	0.7
Cradla Daramatar	Length of Cradle	m	33
Claule Falameter	Breadth of Cradle	m	12

DESCRIPTION	ITEM	UNIT	VALUE
Limitation Factor	Vessel Length (Max)	m	38
	Breadth (Max)	m	15
	Deadweight	tonnes	500
	Vessel Draft (Max)	m	1.6
	Length of Slipway	m	96
Slipway	Breadth of Slipway	m	18
Parameter	Maximum Capacity	tonnes	500
	Angle of Slipway	degree	1.2
Cradla Daramatar	Length of Cradle	m	39
	Breadth of Cradle	m	20

Technical data for Tok Bali Dockyard

Total and breakdown cost for slip	way construction
-----------------------------------	------------------

NT		COST ELEMENT							
NO	SHIPYARD	Engineering	Earthwork	Cradle	Rail Track	Winch	Assembly	Comm.	Total
		(RM)	(RM)	(RM)	(RM)	(RM)	(RM)	(RM)	(RM)
1	Geliga Slipway 1 (1983)	159,950	54,840	319,900	434,150	388,450	100,540	82,260	1,540,090
2	Geliga Slipway 2 (1983)	191,940	68,550	457,000	502,700	411,300	127,960	114,250	1,873,700
3	Geliga Slipway 3 (1983)	228,500	82,260	491,275	731,200	479,850	159,950	123,390	2,296,425
4	Muhibbah Engineering (1990)	389,350	149,750	658,900	1,141,502	658,900	269,550	197,670	3,465,622
5	Sapor Engineering (1990)	778,940	492,597	838,600	2,836,974	898,847	572,385	521,430	6,939,773
6	University Kuala Lumpur (2002)	231,000	660,000	495,000	742,500	495,000	165,000	123,750	2,912,250
7	Sarawak Slipway (1985)	394,400	147,900	594,065	690,200	640,900	320,450	290,870	3,078,785
8	Prospect Dockyard (1990)	167,720	71,880	359,400	419,300	299,500	119,800	89,850	1,527,450
9	Tok Bali Dockyard (2000)	316,000	94,800	711,000	790,000	711,000	237,000	181,700	3,041,500