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     ABSTRACT 

 

 

 

 

In this study, the Finite Difference Method and Differential Quadrature Method are used 

to solve the Burgers equation. These methods are used to solve some examples of Burgers 

equation. The different number of nodes is used in these methods to investigate in terms of 

accuracy study. The solutions of these methods are compared in terms of accuracy of the 

numerical solution. C- language programs have been developed based on the discussion in order 

to solve the Burgers equation. The results of this study are collected to compare the solution in 

terms of convergence study and the accuracy of the numerical solution. The different number of 

nodes also can affect the solution in term of accuracy study. Decreasing the number of nodes will 

increasing the errors of the solution. Generally, from the results between the Finite Different 

Method and Differential Quadrature Method showed the Differential Quadrature Method is 

better than the Finite Different Method in terms of accuracy of the numerical solution and in 

terms of convergence study. 
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ABSTRAK 

 

 

 

 

Di dalam pengajian ini, FDM dan DQM digunakan untuk menyelesaikan masalah 

persamaan Burgers. Kaedah-kaedah ini digunakan untuk menyelesaikan beberapa contoh 

persamaan Burgers. Perbezaan saiz jarak titik x digunakan dalam kaedah-kaedah ini untuk 

mengkaji dari segi ketepatan jawapan. Penyelesain kaedah-kaedah ini dibandingkan dari segi 

ketepatan jawapan daripada penyelesaian secara teori. Bagi menyelesaikan masalah ini, program 

bahasa C telah digunakan. Kemudian data daripada setiap kaedah dikumpulkan dan 

dibandingkan dengan jawapan sebenar untuk mengkaji dari segi ketepatan jawapan. Semakin 

kecil saiz jarak titik akan menyebabkan jawapan semakin tidak tepat. Secara keseluruhannya, 

daripada keputusan dan data yang telah dikumpulkan, didapati kaedah DQM lebih memberikan 

ketepatan jawapan berbanding dengan kaedah FDM.  
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INTRODUCTION 

 

 

 

 

1.1 Background of the Problem 

 

 

Single or a system of Partial Differential Equations (PDEs) is mostly 

encountered by us in many sciences and engineering fields. PDEs also 

describe many of the basic natural laws in physical or chemical phenomena. 

In this study, the partial differential equation considered is the Burgers–

Huxley equation which can effectively models the interaction between 

reaction mechanisms, convection effects and diffusion transports (Murat Sari 

and Gurhan Gurarslan, 2009). In general, the closed–form solution is not 

available or not easily obtained because most of these problems may involved 

the nonlinear partial differential equations. This fact leads to the development 

of another alternative to approximate the solutions of these partial differential 

equations. As a result, after years of researches scientists found that the 

approximation of the solution of the system of partial differential equations 

can be obtained by using numerical discretization techniques on some 

function value at certain discrete points, so-called grid points or mesh points. 

There are three most commonly used numerical methods in engineering and 

in computational fluid dynamics are the finite difference, finite element, and 

the finite volume methods. 
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One of the techniques to solve the Burgers equation is by using the 

Finite Difference Method (FDM) which is the simplest method. This method 

solved by replacing the values at certain grid points and approximates the 

derivatives by differences in these values. The partial derivatives in the PDE 

at each grid point are approximated from the neighborhood values.  

 

 

Another technique which is discussed in this study is Differential 

Quadrature Method (DQM). As stated by (C. Shu, 2000), DQM is an 

extension of FDM for the highest order of finite difference scheme. This 

method represents by sum up all the derivatives of the function at any grid 

points, and then the equation transforms to a system of ordinary differential 

equations (ODEs) or a set of algebraic equations (R.C. Mittal and Ram 

Jiwari, 2009). The system of ordinary differential equations is then solved by 

numerical methods such as the implicit Runge-Kutta method that will be 

discussed in order to get the solutions in this study. 

 

 

 

 

1.2 Statement of the Problem 

 

 

There are many ways to approximate the solution of Burgers 

equation. A set of initial and boundary conditions are needed to solve the 

Burgers equation. Finite Difference Method (FDM) is easy to solve the 

examples of Burgers equation but is less accurate. Then, the Differential 

Quadrature method (DQM) is used to solve the problem but it needs more 

calculation and more time. 
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1.3 Objectives of the Study 

 

 

The objectives of this study are: 

 

i. To solve Burgers equation numerically using FDM and DQM. 

 

ii. To compare the FDM and DQM in terms of accuracy of Burgers 

equation. 

 

iii. To develop C language program codes for FDM and DQM.  

 

 

 

 

1.4 Scope of the Study 

 

 

In this study, the main numerical technique discussed is the 

Differential Quadrature Method and Finite Differential method. The accuracy 

or convergence on DQM in solving the 1 D Burgers equation with Dirichlet’s 

boundary conditions will be discussed in this study. Other than that, the 

results from DQM and FDM will be used to compare with the exact solutions 

in term of the accuracy of numerical solution in solving the Burgers equation. 

In this study also focused on solving the Burgers equation. 
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1.5 Significance of the study 

 

 

In this study, the FDM and DQM will be discussed and applied to 

Burgers equation which is important in engineering field. This project also 

will give benefit to other researchers in this area of linear and nonlinear 

partial differential equation to be able to understand how the methods work 

on solving the Burgers equation with dirichlet boundary conditions. 
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The calculation of the exact for Example 4.1. 
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APPENDIX B 

 

 

The result from Example 4.1 

 

Number of nodes , N = 10 

 

u(x, t)  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 0 0.587785 0.951057 0.951057 0.587785 0 -0.58779 -0.95106 -0.95106 -0.58779 0 

0.002 0 0.538305 0.875908 0.881728 0.547908 0 -0.54791 -0.88173 -0.87591 -0.53831 0 

0.004 0 0.493952 0.807401 0.816634 0.509462 0 -0.50946 -0.81664 -0.8074 -0.49395 0 

0.006 0 0.453904 0.744724 0.755779 0.472794 0 -0.47279 -0.75578 -0.74472 -0.4539 0 

0.008 0 0.41759 0.68722 0.699056 0.438111 0 -0.43811 -0.69906 -0.68722 -0.41759 0 

0.01 0 0.384574 0.634356 0.646298 0.40551 0 -0.40551 -0.6463 -0.63436 -0.38457 0 

0.012 0 0.354494 0.585696 0.597308 0.375008 0 -0.37501 -0.59731 -0.5857 -0.35449 0 

0.014 0 0.327035 0.540868 0.551875 0.346572 0 -0.34657 -0.55188 -0.54087 -0.32704 0 

0.016 0 0.301916 0.499546 0.509785 0.320131 0 -0.32013 -0.50979 -0.49955 -0.30192 0 

0.018 0 0.278892 0.461441 0.470827 0.295597 0 -0.2956 -0.47083 -0.46144 -0.27889 0 

0.02 0 0.257745 0.426292 0.434795 0.272868 0 -0.27287 -0.4348 -0.42629 -0.25775 0 

 
 

 

 

 

 

 

 

 

 

 

 

 



 

 

Number of nodes , N = 20 
 

 

  0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

0 0 0.309017 0.587785 0.809017 0.951057 1 0.951057 0.809017 0.587785 0.309017 0 

0.002 0 0.282666 0.538469 0.742876 0.875898 0.924026 0.881731 0.752315 0.547907 0.2885 0 

0.004 0 0.259325 0.494518 0.683359 0.807408 0.853775 0.81664 0.698299 0.50946 0.26856 0 

0.006 0 0.238443 0.455015 0.629477 0.744812 0.788859 0.755793 0.647249 0.472792 0.249429 0 

0.008 0 0.219623 0.419274 0.580458 0.687459 0.728889 0.699093 0.599289 0.438111 0.231253 0 

0.01 0 0.202586 0.386768 0.535687 0.634801 0.67349 0.646381 0.554435 0.405516 0.214115 0 

0.012 0 0.187223 0.357115 0.494656 0.586373 0.622315 0.597462 0.512627 0.375028 0.198047 0 

0.014 0 0.173753 0.33022 0.456904 0.541764 0.575045 0.55212 0.473759 0.346614 0.183049 0 

0.016 0 0.162712 0.307316 0.421874 0.500547 0.531402 0.51014 0.437693 0.320206 0.169095 0 

0.018 0 0.149407 0.296954 0.388624 0.46189 0.491207 0.471329 0.404265 0.295711 0.156144 0 

0.02 0 0.066224 0.347458 0.356375 0.422343 0.454544 0.43566 0.373275 0.273018 0.144151 0 

 

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 

-0.30902 -0.58779 -0.80902 -0.95106 -1 -0.95106 -0.80902 -0.587785 -0.309017 0 

-0.2885 -0.54791 -0.75232 -0.88173 -0.92403 -0.8759 -0.74288 -0.538469 -0.282666 0 

-0.26856 -0.50946 -0.6983 -0.81664 -0.85378 -0.80741 -0.68336 -0.494518 -0.259324 0 

-0.24943 -0.47279 -0.64725 -0.75579 -0.78886 -0.74481 -0.62948 -0.455016 -0.23844 0 

-0.23125 -0.43811 -0.59929 -0.69909 -0.72889 -0.68746 -0.58046 -0.419274 -0.219606 0 

-0.21412 -0.40552 -0.55444 -0.64638 -0.67349 -0.6348 -0.53569 -0.386761 -0.202499 0 

-0.19805 -0.37503 -0.51263 -0.59746 -0.62231 -0.58637 -0.49469 -0.357037 -0.186805 0 

-0.18305 -0.34661 -0.47376 -0.55212 -0.57503 -0.54179 -0.4571 -0.329594 -0.172007 0 

-0.16909 -0.32021 -0.4377 -0.51013 -0.53132 -0.50075 -0.42276 -0.302949 -0.157069 0 

-0.15614 -0.29571 -0.4043 -0.47126 -0.49082 -0.46341 -0.39217 -0.26912 -0.143956 0 

-0.14414 -0.27304 -0.37344 -0.43513 -0.45287 -0.43239 -0.3667 -0.182275 -0.18866 0 

 




