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ABSTRACT 

 

 

 

 

Hydrogen has been recognized as a sustainable and renewable energy carrier 

for the portable application. Acetic acid and phenol are considered as the unwanted 

product in the bio-oil derived from the pyrolysis of biomass. This study is to propose 

the catalytic steam reforming of the mixture over bimetallic Nickel-Cobalt (Ni-Co) 

supported on Lanthanum (III) Oxide (La2O3) and gamma-aluminum oxide (γ-

Al2O3). The scope of works including the catalyst characterization and the catalyst 

testing in a fixed bed reactor operated at ambient pressure. The catalyst performance 

tests are carried out in a fixed bed reactor at atmospheric pressure and temperature 

from 600°C to 800°C to compare the catalyst dilution, feed flow rate in the range of 

0.16 to 0.56 mL/min, and the catalyst weight of 0.1 to 0.3 g. The acidity of the 

prepared catalyst is less than γ-Al2O3 but higher than La2O3. The total surface area 

of the fresh catalyst decreased by exposing in the reaction from 48 to 30 m2/g. It 

was found that the maximum feed conversion achieved 99.99% for acetic acid and 

95.5% conversion for phenol at 800 oC in the effect of temperature by using catalyst 

dilution of silicone carbide (SiC). Instead, hydrogen yield and mole fraction 

decreased with the presence of dilution. The highest temperature of 800 oC in this 

study, and the other parameters like 0.2 gram catalyst and 0.36 ml/min flow rate 

achieved the highest hydrogen gas which was about 98%. It was resulted that the 

presence of SiC was able to increase the conversion of feed due to extension of 

residence time but it affected negatively in hydrogen yield. Hydrogen production 

also increased by increasing of phenol and acetic acid concentration. The catalyst 

did not show a significant deactivation for the period of study. This catalyst is 

promising for the real application. 
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ABSTRAK 

 

 

 

 

Hidrogen telah dikenalpasti sebagai pembawa tenaga mampan dan boleh 

diperbaharui untuk aplikasi mudah alih. Asid asetik dan fenol dianggap sebagai 

produk yang tidak diingini di dalam bio-minyak yang diperolehi daripada pirolisis 

biojisim. Kajian ini mencadangkan pembaharuan stim bermangkin campuran 

terhadap dwi-logam Nikel Cobalt (Ni-Co) yang disokong pada Lantanum (III) 

Oksida (La2O3) dan gamma-aluminium oksida (γ-Al2O3). Skop kajian ini 

merangkumi pencirian pemangkin dan ujian pemangkin di dalam reaktor katil tetap 

yang beroperasi pada tekanan ambien. Ujian prestasi pemangkin dijalankan di dalam 

reaktor katil tetap pada tekanan atmosfera dan suhu 600 oC hingga 800 oC untuk 

mmbandingkan pencairan pemangkin, kadar aliran suapan antara 0.16 mL/min 

hingga 0.56 mL/min dan berat pemangkin dari 0.1g hingga 0.3g. Tahap keasidan 

bagi pemangkin yang disediakan adalah lebih rendah daripada γ-Al2O3 tetapi lebih 

tinggi dariapada La2O3. Luas permukaan untuk pemangkin segar berkurangan 

daripada 48 kepada 30 m2/g  kesan penggunaan daripada reaksi. Adalah didapati 

bahawa penukaran makanann suapan maksimum mencapai 99.99% untuk asid asetik 

dan 95.5% penukaran untuk fenol pada suhu 800 oC di atas kesan suhu dengan 

menggunakan pemangkin pencairan. Sebaliknya, pemilihan dan pecahan mol 

hydrogen berkurang dengan kumunculan pemangkin pencairan. Suhu tertinggi 800 

oC dan parameter lain seperti 0.2 gram pemangkin dan 0.36 mL/min kadar aliran 

menghasilkan gas hidrogen yang tertinggi iaitu sekitar 98% bagi kedua-dua 

komponen. Adalah ditunjukkan bahawa kehadiran silicon karbida (SiC) mampu 

meningkatkan asid asetik dan penukaran fenol disebabkan lanjutan masa yang 

tinggal tetapi ia memberi kesan negatif kepada pemilihan hidrogen. Penyahaktifan 

pemangkin yang ketara tidak diperhatikan sepanjang masa kajian. Pemangkin 

tersebut berpotensi untuk penggunaan sebenar. 
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CHAPTER 1 

 

 

 

 

1 INTRODUCTION 

 

 

 

 

 

 

 

Fossil fuels, particularly in the transition area still play a significant role as 

the world‘s energy utilization which hints to severe energy tension and ecological 

problems like contaminant emission and fossil fuel reduction. The exhaustion of 

the limited fossil fuel as the solicitation of growing energy will get faster. 

Furthermore, the origination of creating the considerable greenhouse gases (e.g. 

CO2 and CH4), poisonous gases (SO2, NOx) and other contaminants are from 

combustion of fossil fuel, affecting acid rain and universal warming (Mohammed 

et al., 2011). Hence, employment of an alternative basis for fossil fuel to avoid 

these threats will be the basic effort in this study. 

 

 

Necessity for remodeling fossil fuels with alternative energy origins that are 

safe for the environment, become one of the most significant matters attached with 

the universal energy requirements. Hydrogen which resulted from fossil fuels 

containing great potential that used in a tolerable comer energy economy which is a 

clean energy bearer with excellent thermal quantity. However; by renewable 

sources like wind, solar and biomass for hydrogen production, it is possible to get a 

 1.1 Background of Study 
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complete environmental interests of producing energy from hydrogen. For 

hydrogen generation biomass which plentifully exists can be measured by means of 

the future resources (Constantinou et al., 2010). 

 

 

Certain specialists realize a modern hydrogen economics will substitute our 

present energy markets which will build fundamental energy substructure by 

substituting today‘s energy substructures that will be the power of coming world. 

However, that idea perhaps will not be appreciated up to far in the futurity. Plus, 

security still a highest importance in all features of hydrogen energy, hydrogen has 

a brilliant security history and as several other fuels, it is harmless for carrying, 

storing and consumptions. Security over severe plan and examination of storing 

and carrying theories, reports by the hydrogen association. Also this association are 

improving programs and principles for all sorts of hydrogen-related tools 

(Momirlan and Veziroglu, 2005).  

 

 

Nowadays hydrogen production is extracted from usual sources namely 

water, coal gasification, acetic acid, natural gas, ethanol, phenols, butanol, 

methane, glycerol, naphtha catalytic steam reforming and bio-oil. (Czernik et al., 

2002; Hu and Lu, 2010). Steam reforming is the main and easy knowledge for 

hydrogen generation which is the benefit of this thought; moreover, steam 

reforming wants lowermost procedure temperature and greater H2/CO2 ratio in 

contrast with dry reforming (DR), partial oxidation (POX) and coal gasification 

(Fatsikostas et al., 2002; Basagiannis and Verykios, 2006; Constantinou et al., 

2010; Bulushev and Ross, 2011). 

 

 

In this work acetic acid and phenol steam reforming is the offered 

technique that has selected for hydrogen generation. Phenol is a broadly faced 

artful contaminant like oil, biocides, painting, coloring factors and medical crafts, 

which is hard to remove from wastewater. Phenol is one of the greatest challenging 

tripartition tars molecules affecting erosion in the interior ignition engines, 
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infecting meaningfully the waste-water resulting from biomass gasifiers and hence, 

daunting a costly wastewater action which is recognized as forerunner of 

naphthalene creation. For reforming of phenols for example usually pure metals are 

adopted because phenols are more strict to be altered than other components 

(Shurong Wang, 2014). Phenols are precious chemicals which resulting from 

biomass pyrolysis oils. They can be applied as mediators in the synthesis of 

medicines, for the generation of pastes and the synthesis of speciality polymers. 

This substance from renewable sources, like biomass via fast pyrolysis procedure 

and more breakdown phenolics in the segment shape, can be manufactured (Žilnik 

and Jazbinšek, 2012). 

 

 

Acetic acid is one of the main ingredients in bio-oil up to 32 wt.% since it 

has been selected as a basis of hydrogen generation and it is one of the greatest 

delegate elements of the water-solvable section of bio-oil so it is a waste product. 

With an overall generation (6.94 million tons in 2009), acetic acid is a significant 

business merchandise chemical. Currently, by applying non-renewable feed, acetic 

acid is generally formed (65%) over methanol carbonylation. From the pyrolysis 

oil the separation of acetic acid could rise the financial attraction of the pyrolysis 

oil worth, because the marketplace fee of acetic acid (0.6 USD/kg, 2009 level) is 

higher than price estimates for pyrolysis oil (0.18–0.38 USD/kg) considerably (C. 

B. Rasrendra and Leijenhorst, 2103). Besides, for the reason that one of the main 

harms as degenerative permanent materials for engine fuel is the acidity of bio-oil 

so it is not appropriate for engine fuel. Acetic acid in the bio-oil can be detached 

out and appended amount in others application for dissolving this problem 

(Takanabe et al., 2004; Weimer, 2004; Medrano et al., 2008). 

 

 

To raise the reaction rate the Nickel/Cobalt supported on gamma-aluminum 

oxide and Lanthanum (III) Oxide is applied in the reformer as a catalyst since it has 

been initiate that Ni and noble based catalysts to hydrogen production were more 

energetic and elective and offers good hydrogen incomes in acetic acid steam 

reforming. Likewise, for bio-oil and biomass gasification Ni catalysts which is not 
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expensive catalyst are promising. To decrease reaction rate and heat production at 

serious points in the reactors, catalyst dilution has been applied (Hwang and Smith, 

2004). Ketonization, water shift reaction, methanation, and thermal analysis 

reaction are the reactions that might occur through the acetic acid steam reforming 

which stated in the next chapter of this study (Fatsikostas et al., 2002; Basagiannis 

and Verykios, 2006; Bulushev and Ross, 2011). 

 

 

 

 

 

 

 

Phenol and acid acetic as a source of hydrogen are unwanted products from 

pyrolysis of biomass for hydrogen production. Acetic acid from bio-oil generation 

are 30% (Takanabe et al., 2004) and phenol around 38% (Bu et al., 2011) of 

unwanted component of pyrolysis oil. One of these problems is that during steam 

reforming process, the high temperature (700 to 1000 
o
C) needs to use toward high 

hydrogen production and high acetic acid and phenol conversion. Another problem 

is the high cost of catalyst due to huge amount usage of catalyst to increase the 

steam reforming reaction rate. Hence, the selection of low cost catalyst is important 

for economic process while to ensure the maximum and stability of hydrogen 

production. Phenol and acetic acid and phenolic compound are not considered as 

fuel and it is corrosive to the combustion engines. Phenol and other phenolic 

mixtures which are difficult to tainted by microorganisms and also poisonous to 

bacterial in the surroundings, were originated high concentration (200-1000 mg/L) 

in palm oil mill effluent (POME) and issuant from anaerobic action of POME. 

Additionally, phenolic mixtures have antibacterial and phytotoxic attributes. 

Another problem is that acetic acid and phenol are soluble in water and separating 

these component from water is not economical at low concentration thus steam 

reforming could be the suitable solution for this issue (Matas Güell et al., 2011; 

Mamimin et al., 2012). 

 

 1.2 Problem Statement 
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The objectives of the work are: 

 

i. To characterize the physical and chemical properties of the Ni/Co 

supported La2O3 and γ-Al2O3.  

ii. To evaluate the effect of silicone carbide (SiC) as a catalyst dilution on 

hydrogen production in different temperature. 

iii. To evaluate the effect of catalyst on the acetic acid/phenol steam 

reforming on various reaction parameters such as temperature, feed 

flow rate and the acetic acid to phenol ratio. 

 

 

 

 

 

 

 

i. Prepare the 10% (Ni-Co) with supported catalyst (La2O3 and γ-Al2O3) 

using an impregnation method.  

ii. Characterize the chemical and physical properties of the catalyst using 

temperature programmed desorption with NH3, temperature 

programmed reduction-hydrogen (TPR-H2), and surface area analysis 

with nitrogen (BET-N2). 

iii. Employ 0.2 g of silicon carbide (SiC) as a catalyst dilution and mix 

with 0.2 g of the main catalyst in different temperature beginning from 

600 
o
C to 800 

o
C and compare the feed conversion and hydrogen 

production when catalyst dilution was removed.  

iv. Study the effect of reaction temperature on the acetic acid and phenol 

reforming in the range of 600-800 
o
C using bimetallic of 5 wt.% cobalt 

and 5wt.% nickel supported on La2O3 and γ-Al2O3 by using 1 atm of 

 1.3  Objective of This Work  

 1.4  Scope of Study 
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pressure, 30 mL/min of flow rate of input gas and 800 
o
C of 

temperature as the reaction conditions. 

 

 

 

 

 

 

 

Nowadays people are seeking for new source of energy instead of fossil 

fuel because it is very dangerous for the environment and causes global warming. 

It is also not renewable and will be finish in the early future. Hence hydrogen can 

be suitable and safe energy carrier. Another importance of the current study is that 

the phenol and acetic acid are unwanted materials in industry with huge quantity 

however these components have a high value of hydrogen in their structure. Extra 

advantage of this work is that there is no research have been done that mix two 

different component and very few topics had spoken about phenol or acetic acid 

separately but in contrast this study had mixed this two components. Moreover as 

stated at the background of the study, steam reforming needs lowest process 

temperature and greater H2/CO2 ratio in contrast with dry reforming (DR), partial 

oxidation (POX) and coal gasification which can be another significant issue of the 

current work. Furthermore, catalyst characterization techniques are significant 

methods in understanding and evaluating the performance of catalyst towards 

acetic acid and phenol conversion. The study would be qualified to prepare a 

thought on reducing the catalyst to rise the hydrogen generation besides feed 

conversion. 

 

 

 

 

 

 1.5  Significant of Research 
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