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ABSTRACT 

 

 

 

 

 This dissertation presents the formulation and numerical computation of the 

two dimensional fluid flow whose physics is governed by the Navier Stokes 

equations. The derivation of the governing equations follows the model of an 

infinitesimally small element fixed in space with the fluid moving through it. The 

study focuses using finite element method for solving the fluid flow. Finite element 

method is believed as the most powerful numerical method for analysis. Mixed 

formulation has been used for the discretization of the governing equations. It is 

because we have two primitive variables; velocities and pressure. Source code for 

Navier Stokes equations has been developed and tested against existing benchmark 

solutions. 
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ABSTRAK 

 

 

 

 

 Disertasi ini bertujuan menunjukkan formulasi dan kiraan berangka untuk 

aliran dua dimensi bendalir di mana keadaan fizik aliran tersebut ditentukan atau 

ditadbir oleh persamaan Navier Stokes. Penerbitan persamaan pentadbir ditunjukkan 

dengan menggunakan model elemen yang amat kecil tetap di dalam ruang dengan 

cecair yang bergerak melaluinya. Kajian ini memfokuskan kepada kaedah unsur 

terhingga bagi menyelesaikan bendalir dinamik (aliran cecair). Kaedah unsur 

terhingga ini dipercayai sebagai kaedah berangka yang terbaik untuk analisis. 

Formulasi campuran telah digunakan untuk diskretasi persamaan pentadbir kerana 

terdapat dua pembolehubah primitif iaitu halaju dan tekanan. Kod sumber 

pengaturcaraan untuk persamaan Navier Stokes telah dibangunkan dan diuji dengan 

penyelesaian penanda aras sedia ada.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

Fluid mechanics is one of the branches in physics that study fluids (which 

consists of liquids, gases and plasmas) and the forces on them. Fluid mechanics can 

be divided into three categories. The first one is fluid statics (the study of fluids at 

rest), fluid kinematics (the study of fluids in motion) and the last one is fluid 

dynamics (the study of the effect of forces on fluid motion). Fluid dynamics is an 

active field of research with many unsolved or partly solved problems. Fluid 

mechanics are mathematically complex and can best be solved by numerical methods 

typically by using computers. A modern discipline, called computational fluid 

dynamics (CFD), is devoted to this approach to solving fluid mechanics problems. 

 

One of the famous equations in CFD is Navier–Stokes equations; named after 

Claude-Louis Navier and George Gabriel Stokes describes the motion of fluid 

substances. These equations arise from applying Newton's second law to fluid 

motion. The assumption is that the stress in the fluid is the sum of a diffusing viscous 

term (proportional to the gradient of velocity) and a pressure term, hence describing 

viscous flow. 
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The equations are very useful because they describe many things of academic 

and economic interest. They may be used to model the weather, ocean currents, 

water flow in a pipe and air flow around a wing. The Navier–Stokes equations in 

their full and simplified forms help with the design of aircraft and cars, the study of 

blood flow, the design of power stations, the analysis of pollution and many other 

things. 

 

The Navier–Stokes equations are also of great interest in a purely 

mathematical sense. Surprisingly, given their wide range of practical uses, 

mathematicians have not yet proven that, in three dimensions, solutions always exist 

(existence), or that if they do exist, then they do not contain any singularity 

(smoothness). These are called the Navier–Stokes existence and smoothness 

problems. The Clay Mathematics Institute has called this one of the seven most 

important open problems in mathematics and has offered a US$1,000,000 prize for a 

solution or a counter-example. 

 

 The finite element method constitutes a general tool for the numerical 

solution of partial differential equations in engineering and applied science. 

Historically, the method has taken place since early 1950s in coincidence with the 

development of digital computers. However, interest in approximate solutions dates 

as far back in time as the development of the classical field theories (e.g. elasticity, 

electro-magnetism) themselves. The work of Lord Rayleigh (1870) and W. Ritz 

(1909) on variational methods and the weighted-residual approach taken by B. G. 

Galerkin (1915) and others form the theoretical framework to the finite element 

method. With a bit of a stretch, one may even claim that Schellbach’s approximate 

solution to Plateau’s problem (to find a surface of minimum area enclosed by a given 

closed curve in three dimensions), which dates back to 1851 is an elementary 

application of the finite element method. 

 

 Most researchers agree that the era of the finite element method begins with a 

lecture presented in 1941 by R. Courant to the American Association for the 

Advancement of Science. In his work, Courant used the Ritz method and introduced 

the pivotal concept of spatial discretization for the solution of the classical torsion 
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problem. Courant did not pursue his idea further, since computers were still largely 

unavailable for his research. 

 

 More than a decade later, Ray Clough Jr. of the University of California at 

Berkeley and his colleagues essentially reinvented the finite element method as a 

natural extension of matrix structural analysis and published their first work in 1956. 

He attributes the introduction of the term “finite element” to M.J. Turner, one of his 

associates at that time. An apparently simultaneous effort by John Argyris at the 

University of London independently led to another successful introduction of the 

method. To a large extent, the finite element method appears to owe its reinvention 

to structural engineers. In fact, the consideration of a complicated system as an 

assemblage of simple components (elements) on which the method relies is very 

natural in the analysis of structural systems. 

 

 Few years after its introduction to the engineering community, the finite 

element method has attracted the attention of applied mathematicians, particularly 

those who is interested in numerical solution of partial differential equations. In 

1973, G. Strang and G.J. Fix authored the first conclusive treatise on mathematical 

aspects of the method, focusing exclusively on its application to the solution of 

problems emanating from standard variational theorems. 

 

 The finite element has been subject to extreme research. By the beginning of 

the 1990s, the method clearly dominated the numerical solution of problems in the 

fields of structural analysis, structural mechanics and solid mechanics. Moreover, the 

finite element method currently competes in popularity with the finite difference 

method in the areas of heat transfer and fluid mechanics. 
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1.2 Problem Statement 

 

 

 There are a lot of methods to solve fluid equations which require us to 

understand its governing equations. These governing equations are in the form of 

partial differential equations (PDEs) which are differs from ordinary differential 

equations (ODEs) in the way that they have two or more independent variables. It is 

very tedious and impractical to solve PDEs analytically, though is not impossible. To 

that end, various numerical approaches are available to give approximate solutions. 

 

 The application of numerical methods to solve problems involving fluid flow 

is known as computational fluid dynamics (CFD). Most of the previous studies on 

CFD are using finite difference, finite volume and finite element methods. One of the 

major difficulties in solving fluid flow problem is the handling of pressure terms in 

which singularity occurs and the stability of the time integration in obtaining a 

converged solution. Among available techniques, mixed formulation which is the 

subset of finite element method has been shown to be the most appropriate. 

Therefore, the goal of this study is to use finite element method with mixed 

formulation to solve Navier Stoke equations. 

 

 

 

 

1.3 Aim and Objectives 

 

 

  The purpose for this study is to solve the Navier Stokes equation using a 

finite element method with mixed formulation. The objectives of this study are: 

i. To use mixed formulation for solving fluid flow equations (Navier 

Stokes equations). 

ii. To develop the MATLAB program for (i). 

iii. To verify and validate the derived formulation with CFD benchmark 

problems (Lid driven cavity flow). 
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1.4 Scope of Research 

 

 

The scope of this study is on numerical simulations for fluid flow. Therefore, 

for this project, we will use Navier Stokes Equation. Finite element method with the 

mixed formulation is used as the numerical technique. The fluid is assumed to be 

Newtonian, viscous, incompressible, isothermal and electrically nonconducting. 

 

 

 

 

1.5 Significance of Study 

 

 

This study is only focus on the mixed finite element in the fluid dynamics. 

Other numerical technique has been done for the past decades, but not by using finite 

element method. May be, there are setbacks which hinder the efficiency of the 

solution process. Hopefully, with the approach of this study will increase the 

understanding on the behaviour of the flow. 

 

 

 

 

1.6 Overview of Thesis 

 

 

 This chapter gives an introduction of Navier Stokes equation and some of the 

application widely used of the equations. In problem statement, the problem that the 

research will address is highlighted. This is followed by the aim and objectives of the 

research. The scope and significance of the research is also highlighted at the end of 

the chapter. 
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 For chapter two, the literature review is discussed. It begins with a brief 

discussion for Navier Stokes equations which consist of conservation of mass, 

momentum and energy. A number of numerical method typically used to solve 

Navier Stokes equation are highlighted. Lastly, the mixed formulation for the 

solution of Navier Stokes equation is presented. 

 

 In chapter three, the derivation of Navier Stokes equation is presented and 

discussed. It starts with the derivation of continuity equation. There are four models 

that can be discussed. There are the finite control volume fixed in space, the finite 

control volume moving with the fluid, infinitesimal fluid element fixed in space with 

fluid moving through it and infinitesimal fluid element moving along a streamline. 

For this, we will use the model of small element fixed in space. Next, the momentum 

equation is derived where the infinitesimally small and moving fluid element will be 

used to derive the x component of momentum equation. The Navier Stokes equation 

in conservation and non conservation is also discussed an presented. 

 

 In chapter four, the mixed formulation for Navier Stokes is discussed. It 

begins with the discussion of Galerkin weighted residual method. Next, the 

dimensionless of the equation is discussed. Subsequently, the discretization of the 

equations from continuous to matrix and vector form is presented. Then the finite 

element method formulation of the equation is discussed. After that, the 

discretization of the equations by Galerkin weighted residual method is introduced 

and discussed briefly. This will be followed by time integration with the basic 

concept of iterative scheme. Lastly, Piccard nonlinear method is presented. 

 

 In chapter five, the verification of the code were done by the benchmark case 

where lid driven cavity flow is considered. The results are compared and discussed 

with the result from the commercial software. 

 

 Chapter six summarized the mixed formulation for Navier Stokes equations. 

The results from the programming are concluded and several recommendations for 

future works are suggested. 
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