CONTRIBUTION OF HUMAN FACTORS TO SHIPPING SAFETY

ARFENA DEAH LESTARI

A thesis submitted in partial fulfillment of the requirements for the award of the degree of Master of Mechanical Engineering (Marine Technology)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > JANUARY 20

Special dedication to my beloved mother and father

ACKNOWLEDGEMENT

First and foremost, all praises and thanks to Allah (S.W.T) to give me strength and ability to complete this project. A lot of works have been put in this project until the end of this completing thesis. Without His bless, maybe I may not have achieved what I got in this thesis.

I would like to take this opportunity to express my highest appreciation to Prof. Dr. Ir Ab Saman b. Abd Kader and Dr. Eng Jaswar, my respectful thesis supervisor and co supervisor to provide the best guidance, encouragement, invaluable ideas, comment, recommendation and advice that to lead me for the successful completion of this project.

Then i would like to thank to government of Riau Archipelago Province that support my master education in UTM, especially to Mr. Fansuri that help me to handle everything on administrative and financial.

Finally, I would like to thank to my parents, family, friends and everyone who involved toward of success of this project. They are not only helping me but also encourage me to complete this project.

Thank you very much. May Allah S.W.T bless you all here and the day after.

ABSTRACT

This thesis empirically determines "Contribution of Human Factors to Shipping Safety". Human factors can be classified into three categories. They are organizational factor, group factor, and individual factor Based on its classification, questionnaire was made. Questionnaire was tested to 30 respondents who are working at a shipping company (PT. Baruna Jaya) to determine its validity and reliability by using Ms.Excel program. After the test is done, results shows that 17 organizational factor statements, 11 group factor statements, 12 individual factor statements, and 10 shipping safety statements are valid with reliability value for each variables are 0860, 0.767, 0721, and 0.8. By using its valid statements, questionnaires distributed to 86 respondents who are working as passenger ship's crew at two shipping companies (PT Baruna Jaya and PT. Lestari Indoma Bahari). After obtained data, analysis requirements test (normality, homogeneity, linearity and independence test between independent variables) need to be done to determine statistical method to be used. Correlation and regression method by using SPSS program was used to determine contribution of human factors to shipping safety, either carried out independently between independent variable to dependent variable, or together between three independent variables to dependent variable. Analyzed data was found that there are 28.8% contribution of human factors to shipping safety with correlation coefficient is 0.488. This lower contribution of human factors to the shipping safety is one of the causes of ship accidents frequently happen in case study area. During the last two years there were 22 cases of ship accidents. With respect to that all parties which involve in shipping include shipping companies, ship's owners, government, regulatory authorities, classification society and other parties should take a serious concern about safety in shipping by improving on all aspect of human factors.

ABSTRAK

Secara empirikal tesis ini menentukan "Sumbangan faktor manusia terhadap keselamatan perkapalan". Faktor manusia dikelaskan kepada 3 kategori iaitu faktor organisasi, faktor kumpulan dan faktor individu. Berdasarkan pengkelasannya, soal sedilik dibuat. Soal selidik diujikan kepada 30 responden bekerja di syarikat perkapalan (PT. Baruna Jaya) bagi menentukan kesahihan dan kebolehpercayaan. Selepas ujian dilakukan, keputusan menunjukkan 17 pernyataan faktor organisasi, 11 pernyataan faktor kumpulan, 12 pernyataan faktor individu, dan 10 pernyataan keselamatan perkapalan adalah sah dan nilai kebolehpercayaan setiap pembolehubah 0860, 0,767, 0721, dan 0.8. Dengan menggunakan pernyataan yang sah itu, soal selidik diedarkan kepada 86 responden bekerja sebagai kru kapal penumpang di dua buah syarikat perkapalan (PT Baruna Jaya dan PT Lestari Indoma Bahari). Selepas memperolehi data, pengujian keperluan analisis (kenormalan, kesamaan, kelinearan dan kebebasan di antara pembolehubah bebas) dilakukan bagi menentukan kaedah statistik yang digunakan. Kaedah korelasi dan regresi dengan program SPSS digunakan bagi menentukan sumbangan faktor manusia kepada keselamatan perkapalan, sama ada dijalankan secara bebas, atau bersama antara tiga pembolehubah bebas dengan pembolehubah bersandar. Analisa data mendapati bahawa terdapat sumbangan 28.8% faktor manusia kepada keselamatan perkapalan dengan pekali korelasi 0,488. Sumbangan yang rendah dari faktor manusia kepada keselamatan perkapalan ini merupakan salah satu punca kemalangan kapal kerap berlaku di kawasan kajian kes. Dalam tempoh dua tahun lepas, 22 kes kemalangan kapal berlaku. Berkenaan dengan itu pihak yang terlibat dalam perkapalan termasuk syarikat perkapalan, pemilik kapal, kerajaan, pihak berkuasa, pertubuhan klasifikasi, dan pihak lain harus mengambil kebimbangan serius mengenai keselamatan perkapalan dengan mempertingkatkan semua aspek dari faktor manusia.

TABLE OF CONTENTS

CH	APTER	TITLE	PAGE
		TITLE PAGE	i
		DECLARATION	ii
		DEDICATION	iii
		ACKNOWLEDGEMENT	iv
		ABSTRACT	v
		TABLE OF CONTENTS	vii
		LIST OF TABLES	X
		LIST OF FIGURES	xii
		LIST OF ABBREVIATIONS	xiii
		LIST OF SYMBOLS	xiv
		LIST OF APPENDICES	xvi
1	INTI	RODUCTION	1
	1.1	General	1
	1.2	Background	1
	1.3	Problem Statements	3
	1.4	Objectives	4
	1.5	Hypothesis	5
	1.6	Scope of Study	5
	1.7	Implication of Study	6
	1.8	Research Methodology	6
	1.9	Flow Chart	8

	٠	٠	٠	
V	1	1	1	

2		LITE	RATU	RE REVIEW	9
		2.1	Gener	al	9
		2.2	Litera	ture Review	9
		2.3	Concl	usion	14
3		RESE	ARCH	I METHODOLOGY	15
		3.1	Gener	al	15
		3.2	Resear	rch Design	15
		3.3	Study	Area	16
		3.4	Popula	ation	16
		3.5	Sampl	le and Sampling Method	18
		3.6	Study	Instrument	19
			3.6.1	Questionnaire Preparation	19
			3.6.2	Measurement Scale	21
			3.6.3	Questionnaire Test	21
		3.7	Data A	Analysis Method	22
			3.6.1	Analysis Requirements Test	22
			3.6.2	Hypothesis Test	23
		3.8	Concl	usion	24
	4	FUND	DAMEN	NTAL THEORY	25
		4.1	Genar	al	25
		4.2	Huma	n Factors	25
			4.2.1	Organizational Factor	26
			4.2.2	Group Factor	27
			4.2.3	Individual Factor	28
		4.3	Shippi	ing Safety	29
		4.4	Shippi	ing Accidents	31
		4.5	Statist	ical Analysis	34
			4.5.1	Descriptive Statistical Method	35
				4.5.1.1 Measurement of Central Tendency	35
				4.5.1.2 Measurement of Variability	37
				4.5.1.3 Product Moment Correlation or Pierson Correlation	38

		4.5.1.4 Regression Analysis	39
		4.5.2 Inferential Statistical Method	39
	4.6	Conclusion	40
5	RES	SULT AND DISCUSSION	42
	5.1	General	42
	5.2	Shipping Accident in Case Study Area	42
	5.3	Indicators of Human Factors	45
	5.4	Data Description	45
		5.4.1 Organizational Factor Variable (X ₁)	46
		5.4.2 Group Factor Variable (X_2)	48
		5.4.3 Individual Factor Variable (X ₃)	50
		5.4.4 Shipping Safety Variable (Y)	52
	5.5	Analysis Requirments Test	54
		5.5.1 Normality Test	55
		5.5.2 Homogeneity Test	56
		5.5.3 Linearity Test	57
		5.5.4 Independence Test Between Independent Variables	59
	5.6	Hypothesis Test	60
		5.6.1 First Hypothesis Test	60
		5.6.2 Second Hypothesis Test	63
		5.6.3 Third Hypothesis Test	65
		5.6.4 Fourth Hypothesis Test	67
	5.7	Discussion	70
	5.8	Conclusion	72
6	CON	NCLUSION AND RECCOMENDATION	74
	6.1	General	74
	6.2	Conclusion	75
	6.3	Reccomendation	75
	REF	FERENCES	77
	APP	PENDIX A- I	81

LIST OF TABLES

TABLE NO.

TITLE

PAGE

3.1	Passenger ship data	17
3.2	Questionnaire indicator	20
3.3	Result of validity and reliability test	22
4.1	Indicator of organizational factor	27
4.2	Indicator of group factor	28
4.3	Indicator of individual factor	29
4.4	Ship accident on case study area	33
5.1	Basic statistical calculation	46
5.2	Frequency distribution table of organizational factor variable	47
5.3	Frequency distribution table of group factor variable	49
5.4	Frequency distribution table of individual factor variable	51
5.5	Frequency distribution table of shipping safety variable	53
5.6	Result of normality test	55
5.7	Result of homogeneity test	56
5.8	Result of linearity test $X_1 - Y$ variable	58
5.9	Result of linearity test $X_2 - Y$ variable	58
5.10	Result of linearity test $X_3 - Y$ variable	58
5.11	Result of independence test between independent variables	59
5.12	Result of correlation analysis between organizational factor (X_1)	and
	shipping safety (Y)	61

5.13	Regression equation coefficient $X_1 - Y$	61
5.14	Regression equation test $X_1 - Y$	62
5.15	Result of correlation analysis between group factor (X_2) are	nd shipping
	safety (Y)	63
5.16	Regression equation coefficient $X_2 - Y$	64
5.17	Regression equation test $X_2 - Y$	64
5.18	Result of correlation analysis between individual factor (X	$_{3}$) and
	shipping safety (Y)	65
5.19	Regression equation coefficient $X_3 - Y$	66
5.20	Regression equation test $X_3 - Y$	67
5.21	Result of correlation analysis between organizational factor	or (X ₁),
	group factor (X_2) and individual factor (X_3) and shipping	safety (Y)68
5.22	Regression equation coefficient X_1 , X_2 , X_3 and Y	69
5.23	Regression equation test X_1, X_2, X_3 and Y	70

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE

1.1	Flowchart	8
3.1	Nomogram Harry King	18
4.1	Percentage type of accident ship accident	32
4.2	Causes factors in shipping accident	32
5.1	Case study area	43
5.2	Shipping accident in case study area	44
5.3	Histogram of organizational factor (X1)	48
5.4	Histogram of group factor (X ₂)	50
5.5	Histogram of individual factor (X ₃)	52
5.6	Histogram of shipping safety (Y)	54

LIST OF ABBREVIATIONS

ANOVA	=	Analysis of Variance
FAHP	=	Fuzzy Analitical Hierarchy Process
HFACS	=	Human Factor Analysis and Classification System
HFIT	=	Human Factor Investigation Tools
HSOPSC	=	Hospital Survey on Patient Safety Culture Assestment
IMO	=	International Maritime Organization
KM	=	Kapal Motor
MLC	=	Marine Labour Convention
PT	=	Perseroan Terbatas
SEM	=	Structural Equation Modelling
SPSS	=	Statistical Package for The Social Sciences
SSCS	=	Short Safety Climate Survey

LIST OF SYMBOLS

σ	=	Standard Deviation
σ^2	=	Variance
x	=	Mean or average
$(x-\bar{x})$	=	Deviation
$\sum x$	=	Sum of all values in a distribution
$\sum X$	=	Sum score of X variable
$\sum X^2$	=	Sum score variable X squared
∑XY	=	Product sum between X dan Y variable
$\sum Y$	=	Sum score of X variable
a, b, c , , z	=	Regression Coefficient
cfb	=	Number of cases lying below the LL
F	=	Ratio of two Variance Estimates
fw	=	Number of scores in the interval containing the median
i	=	Width of the score interval
LL	=	Lower real limit of the score containing the 50th percentile,
M^2_{b}	=	Between-groups estimate of variance
M^2_{w}	=	Within-groups estimate of variance
Md	=	Median
Мо	=	Mode

Ν	=	Number of cases
r _{XY}	=	Product moment correlation or pierson correlation
r _{XY}	=	Product moment correlation or pierson correlation
t	=	t-test
Х	=	Independen Variable
XY^2	=	Sum score variable Y squared
Y	=	Dependent Variabel

LIST OF APPENDICES

APPENDIX

TITLE

Validity and Reliability Test
Output of Descriptive Statistic Analysis
Output of Normality Test
Output of Homogeneity Test
Output of Linearity Test
Output of Indendence Test Between Independent Variables
Output of Hypothesis Test
Undestanding Level of Respondents Calculation
Questionnaire Example

CHAPTER 1

INTRODUCTION

1.1 GENERAL

This chapter provides preliminary information about this study. It covers background of study, problem statement, objectives, scope, implication of study, research methodology and research flowchart. It is intended to assist readers in understanding the study and to sparking interest in readers to find out more about the content of subsequent chapters.

1.2 BACKGROUND

Indonesia is an archipelagic state that have 17,480 islands (Ministry of marine affairs and fisheries, 2012) with 5.9 million km^2 of water area and 1.9 million km^2 of land area (more than 2/3 area of Indonesia is water) (Soewedo, 2009). With the wider water area than land area, Indonesia cannot be separated with the ship as a main transportation facility.

Water transportation in Indonesia has an important role as a bridge of nationwide and can't be replaced with other transportation like land and air transportation (Ministry of marine affairs and fisheries Republic Indonesia, 2012). It is used as primary farcilities and strategic on accelerate the economical. By connecting one island to other islands, the movement of goods and passeengers can run properly and can make the unity and nation integrity to be strengthen.

The important of Indonesia water transport can be viewed with increasing the needs of water transport service from time to time for goods and passengers mobility (Ministry of transportation, 2000). It have some negative impacts like pollution and accidents. The Oxford English Dictionary defines an accident as anything that happens without foresight and expectation: an unusual event, which proceeds from unknown cause, or is an unusual effect of a known cause (Baldick, 2008). At the same time, Webster's Third New International Dictionary gives the similar essence - but with slightly more explanation, as a usually sudden event or change, occurring without intent or volition through carelessness, unawareness, ignorance, or combination of causes and producing an unfortunate result (Gove, 2002). While Akten (1982) said accident in shipping is a general term which use for any result of accident in shipping that causes financial prejudice, loss of property, and loss of life.

Although nowadays is the age of precision navigation and satellite era, with there are very advanced and sophisticated navigation and communication equipment. Its aim to preventing accident at sea, however in the fact accident still frequently happen.

There are many types of shipping accident and can effect to the environment around the ship, ship property itself, and can effect to the people. Collision or contact (can be ship to ship or ship to other structure), capsize, sinking, breaking up, breakdown of the ship underway, stranding, and fire or explosion are examples of shipping accidents commonly (Akten, 2006).

Akten (2006) said there are many factors that make accident happen. Generally can be classified as several factors :

- Natural conditions could be natural phenomena such as tidal stream, high wave, strong winds, restricted visibility due to fog, smoke, rain or snow, storm, etc.
- Technical failure such as lack of repair and maintenance, setering failure, engine failure, and structure failure as a result from lack of accurately ship design.
- iii. Human factors are all of human factors which contribute accident happen both of organisation, group, or individual factor.

In this study area, ship is become main transportation fasility. Due to in this area is wider than land area (the ratio is about 1 : 24) (Health Department of Riau Archipelago province, 2006). Many ship that serve international and national shipping through Riau Archipelago water. It has negative impact. Ship accident frequently happen in Riau Archipelago water. Search and Rescue Agency (2012) recorded over than 25 case ship accidents occurred during the last two years without analysis. Based on that condition, researcher is trying to discuss shipping accident in case study area, determine indicators of human factors that influence shipping safety, to determine how much correlasion and contribution between human factors and shipping safety and discuss human factors as one element of shipping safety.

1.3 PROBLEM STATEMENT

The human factors found can affect safety (Heinrich et al, 1980; Gordon, 1996; Varonen and Mattila, 2000; Gordon et al, 2005; Hetherington et al, 2006; Chin and Chaur, 2008; Baysari et al, 2008; Celik and Cebib, 2009; Oslen, 2010; Luria, 2010; Petterson et al, 2010; Chin and Chung, 2011; Nathanael, 2011; and Fugas et al, 2012). It can be classified as 3 categories. They are organizational, group and individual factors. At the organizational category, various factors may contribute the incidents and accidents, including company policies, company standard, and system and procedures. At the group category, management, supervision and work with

relationships between members of a work group have the potential factor to influence the safety. And at the individual category, competence of the individu, perceptual judgments, stress, motivation, health risks (such as work over-load) and the contribution of human error can make a probability of accidents happen (Wilpert, 1995)

However, the most significant problem which influence shipping safety that can cause accident, like collision or contact (can be ship to ship or ship to other structure), capsize, sinking, breaking up, grounding, breakdown of the ship underway, stranding, and fire or explosion are mostly caused by human (Heinrich et al, 1980). Hence, this study is to be undertaken to discuss shipping accident in case study area, to determine indicators of human factors that influence shipping safet, to determine how much correlasion and contribution between human factors and shipping safety and to discuss human factors as one element of shipping safety.

1.3 OBJECTIVES

The objectives of this study are to:

- i. To discuss ship accident and types of ship accident which occurred in case study area.
- ii. To determine indicators of human factors that influence shipping safety.
- iii. To determine how much correlation and contribution between human factors and shipping safety if hypothesis test is carried out independently between independent variable to dependent variable and if hypothesis test is carried out together between three independent variables to dependent variable.

1.4 HYPOTHESIS

Based on this study objectives, hypothesis that be proposed in this study are:

- i. Shipping safety (Y) is contributed by organizational factor (X_1) .
- ii. Shipping safety (Y) is contributed by group factor (X_2) .
- iii. Shipping safety (Y) is contributed by individual factor (X_3) .
- iv. Shipping safety (Y) is contributed together by organizational factor (X_1) , group factor (X_2) , and individual factor (X_3) .

1.5 SCOPE OF STUDY

The scope of this study are:

- i. This study was conducted on pasenger ships at Riau Archipelago Province Indonesia.
- ii. This study just view one factor that can influence shipping safety, it is human factors.
- iii. Hypothesis test is conducted by using correlation method and linear regression both simple linear regression or multiple linear regression.

1.6 IMPLICATION OF STUDY

The implications of this study are:

- Master Thesis
 To complete postgraduate study at University Technology Malaysia as a graduation requirement.
- ii. Potentian Aplication

Can be applied in the shipping company as a basic that contribution of human factors to shipping safety and to improve shipping safety mainly related to human factors.

1.7 RESEARCH METHODOLOGY

The study of this thesis is divided into two parts:

i. Semester I

In this part, the research works began with conducting literature review of the human factors and shipping safety. The main emphasis on this part is the approaches were taken to understand the indicators of human factors and contribution of human factors to shipping safety. Then, the concept of data collecting and data analysis was studied in this semester

ii. Semester II

The second part had been carried out in the second semester. For this part, the testing of instrument is conducted. After thet direct survey and data analyzing is conducted in this part. Then, the discussion had been carried out. Finally, the recommendation for future work has been suggested.

1.8 FLOW CHART

This research will be conducted in several processes. Flow chart is used to make the this process easier to read. The flow chart consist of several process as shown in a figure 1.1.

Figure 1.1 Flow chart

REFERENCES

- Akten, N. (1982). Turkish Maritime Accident. *Maritime Accidents in Turkey Symposium*. October 1st 1982. Istanbul: Insurance Law Association
- Akten, N. (2006). Shipping Accidents: a Serious Threat for Marine Environment. J. Black Sea/Mediterranean Environment. 12: 269 – 204.
- Arikunto, S. (1996). Prosedur Penelitian. Edisi III. Jakarta: PT. Rineka Citra.
- Ary, D., Jacobs, L. C., and Razavieh, A. (2009). Introduction to Reasearch in Education. 8th ed. Wardsworth.: USA
- Baldick, C. (2008). *Oxford Dictionary of Literary Terms*. 3th edition. New York: Oxford University Press.
- Baysari, M.T., Andrew, S., McIntosh, and Wilson, J. R. Understanding The Human Factors Contribution to Railway Accidents and Incidents in Australia. *Accident Analysis and Prevention*. 2008; (40) 1750 – 1757.
- Celik, M. and Cebib, S. Analytical HFACS for investigating human errors in shipping accidents. *Accident Analysis and Prevention*. 2009; (41) 66 75.
- Chapman, S.E and Akten, N. (1998). Marine Casualties in the Turkish Straits- a Way Ahead, Seaways, The Nautical Institute, London, October 1998, 6-8, ISSN 0144-1019.
- Chin, Shan Lu and Chaur, Luh Tsai. The Effects of Safety Climate on Vessel Accidents in The Container Shipping Context. Accident Analysis and Prevention. 2008; (40) 594–601.
- Chin, Shan Lu and Chung, Shan Yang. Safety Climate and Safety Behavior in the Passenger Ferry Context. Accident Analysis and Prevention. 2011; (43) 329 – 341.
- De Oses, X, M., and Ventikos, N.P. (2005). A Critical Assessment of Human Element Regarding Maritime Safety: Issues of Planning, Policy and Practice

- Donald, I. and Canter, D. (1994). Employee Attitudes and Safety in the Chemical Industry. *Journal of Loss Prevention in the Process Industries*. 7(3)
- Fugas, C. S., Silvia, A., Silva, B., Jose, L., and Meliac. Another Look at Safety Climate and Safety Behavior: Deepening The Cognitive and Social Mediator Mechanisms. *Accident Analysis and Prevention*. 2011; (45) 468 – 477.
- Gordon, P.E.R. (1996). The Contribution of Human Factor to The Accidents in The Offshore Oil Industry. *Reliability Engineering and System Safety*. 61(1998), 95 – 108.
- Gordon, R., Flin, R., and Mearns, K. Designing and Evaluating a Human Factors Investigation Tool (HFIT) for Accident Analysis. *Safety Science*. 2005; (43) 147 – 171.
- Gove, P. B. (2002). Webster's 3rd New International Dictionary of the English Language. USA: Merriam Inc.
- Health Department of Riau Archipelago province (2006). Profil Kesehatan Provinsi Kepulauan Riau 2006, Tanjungpinang..
- Heinrich, H. W., Peterson, D., and Roos, N. (1980). Industrial Accident Prevention. McGraw-Hill, New York.
- Hetherington, C., Flin, R., and Mearns, K. (2006). Safety in shipping: The human element. *Safety Reasearch*. 37 (2006), 401 404.
- Indonesia (2008). Pelayaran .: 17
- Indonesia Marine Safety Coordination Agency (2009). *Kebijakan Keselamatan dan Keamanan Transportasi Laut*. Badan Koordinasi Keamanan Laut.: Jakarta.
- Institute of Nuclear Power Operations (1985). An Analysis of Root Causes in 1983 Significant Event Reports. Atlanta, 85-027.
- Irianto, A. (1998). Statistik Konsep Dasar & Aplikasinya, Jakarta.: Prenada Media Group.
- Luria, G. The Social Aspects of Safety Management: Trust and Safety Climate. Accident Analysis and Prevention. 2010; (42) 1288 – 1295.
- Maritime Safety Authority of New Zealand (1995 1996). *Maritime Accidents*. New Zealand.
- Ministry of marine affairs and fisheries (2012). Transportasi laut Indonesia Miliki Peran Penting dalam Pembangunan Nasional. Seminar Peran Transportasi Laut di Negara Kepulauan. March 2012. Jakarta: Ministry of marine affairs and fisheries.

- Ministry of marine affairs and fisheries (2012). Transportasi laut Indonesia Miliki Peran Penting dalam Pembangunan Nasional. Seminar Peran Transportasi Laut di Negara Kepulauan. March 2012. Jakarta: Ministry of marine affairs and fisheries.
- Ministry of transportation (2000). Orasi Ilmiah pada Dies Natalis XXX STMT Trisakti. April 2000. Jakarta.
- Nathanael, I. (2011), Safety Analysis on Crew of Ship Based on Concept of Marine Labour Convention (MLC) 2006 in Passenger Ship. Sepuluh Nopember Institute of Technology: Undergraduate Thesis.
- National transportation safety committe of indonesia (2011). Analisis Data Kecelakaan dan Investigasi Transportasi Laut Tahun 2007 – 2011. Konferensi Pers Akhir Tahun 2011. Desember 2011. Jakarta: Ministry of Transportation.
- Olsen, E. Exploring The Possibility of a Common Structural Model Measuring Associations Between Safety Climate Factors and Safety Behaviour in Health Care and The Petroleum Sectors. *Accident Analysis and Prevention*. 2010; (42) 1507 – 1516.
- Patterson, J.M., Scott, A., and Shappell. Operator Error and System Deficiencies: Analysis of 508 Mining Incidents and Accidents from Queensland, Australia Using HFACS. Accident Analysis and Prevention. 2010; (42) 1379 – 1385.

Reason, J. (1991). Human Error. University Press: Cambridge.

- Search and Rescue Agency of Riau Archipelago Province. (2012). Report of Disaster on Avition, Shipping, Natural Disaster and Other Disaster. Not Published.
- Smallegange. Dam, V. and Derstelt, V. (2001). The Human Factor in Accidents at Sea. Conference Mare Forum. 29th-30th October 2001

Sudjana, N. (1982). Analisi Regresi, Jakarta.: Sera Jaya.

- Suewedo, H. (2009). Environment and Transportation Safety. *Quality Management*. 8(2): 133 140.
- Sugiyono. (2002). Metode Penelitian Administrasi. Edisi I. Bandung: CV. Alfabeta.
- Transportation Department of Riau Archypelago Province. (2012). *Tanjungpinang Working Area Passenger Ship Fleet Data*. Transportation Department of Riau Archypelago Province.
- Trihendradi, C. (2011). Langkah Mudah Melakukan Analisis Statistik Menggunakan SPSS 19. 1st ed.Andi.:Yogyakarta.

- Tuckman, B. (1972). *Conducting Educational Research*. New York: Harcourt Brace Jovanovich, Inc.
- Varonen, U., and Mattila, M. The Safety Climate and Its Relationship to Safety Practices, Safety Of The Work Environment And Occupational Accidents In Eight Wood-Processing Companies. *Accident Analysis and Prevention*. 2000; (32) 761 – 769.
- Wilpert, B. (1995). Psychology in High Hazard Systems-Contributions to Safety and Reliability. Invited Keynote Address given at the IV European Congress of Psychology. July 1995. Athens.