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ABSTRACT 

 

 

 

 Crime forecasting is an interesting application area of research with ARIMA 

and ANN models offer a good technique for predicting time series. Time series data 

often contain both linear and nonlinear patterns. Therefore, neither ARIMA nor 

neural networks can be adequate in modeling and predicting time series data. In this 

study, a hybrid ARIMA and neural network model is proposed to predict crime 

series data. The hybrid approach for the crime series prediction is tested using 216-

month observations of four crime category that are Non-Domestic Violence Related 

Assault, Break and Enter Non Dwelling, Steal from Retail Store and Steal from 

Person. Specifically, the results from the hybrid model provide a good modeling 

framework capable of capturing the nonlinear nature of the complex time series and 

thus producing more accurate predictions. The accuracy results from the hybrid 

models for the four case studies are 92.08%, 91.78%, 93.62 and 94.13%, 

respectively, which are satisfactory in common model applications. Predicted crime 

data from the hybrid model are compared with those from the ARIMA and neural 

network using the performance measures. As the result, the hybrid model provides a 

better accuracy over the ARIMA and neural network models for crime series 

forecasting.   
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ABSTRAK 

 

 

 

 Peramalan jenayah merupakan bidang kajian yang sangat menarik dengan 

teknik pemodelan ARIMA dan rangkaian neural menawarkan penyelesaian yang 

baik dalam meramalkan siri masa. Data siri masa lazimnya bercorak lurus dan tidak 

lurus. Oleh yang demikian ARIMA dan rangkaian neural masing-masing tidak 

berkeupayaan untuk memodel dan meramal data siri masa secara bersendiri. Di 

dalam kajian ini, model gabungan di antara ARIMA dan rangkaian neural 

dicadangkan untuk meramal data siri jenayah. Pemodelan secara gabungan ini diuji 

terhadap empat set data yang masing-masing dikategorikan sebagai Serangan 

Berkaitan Keganasan Bukan Kediaman, Pecah Masuk Kediaman Mewah, Mencuri 

dari Kedai Runcit dan Mencuri dari Seseorang yang kesemua set tersebut 

mengandungi 216 data. Secara khususnya hasil yang diperolehi daripada gabungan 

tersebut menunjukkan kerangka pemodelan yang dibangunkan itu boleh dipercayai 

dan berupaya mengenalpasti kerumitan corak tidak lurus data siri masa yang 

seterusnya dapat menjana ramalan yang lebih tepat. Peratus ketepatan ramalan yang 

diperolehi daripada pendekatan gabungan tersebut bagi keempat-empat kajian kes 

adalah 92.08%, 91.78%, 93.62% dan 94.13% di mana peratusan yang terhasil itu 

cukup memuaskan berdasarkan penilaian biasa. Data ramalan yang terhasil daripada 

pemodelan gabungan telah dibuat perbandingan dengan yang terhasil daripada 

pemodelan ARIMA dan rangkaian neural dengan menggunakan beberapa pengukur 

prestasi. Secara keseluruhannya, pendekatan gabungan telah menunjukkan prestasi 

peramalan yang lebih baik berbanding ARIMA dan rangkaian neural untuk 

peramalan siri jenayah di dalam kajian yang dibuat ini.       
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1  Introduction  

 

 
Forecasting is a process of predicting or estimating the future events by 

referring to historical data. The information provided about the potential future 

events and their consequences is able to make important decisions confidently. 

Forecasting can be carried out by using the availability of time series data. The type 

of data is time-oriented or a sequence of observations regarding to the variable of 

interest. This kind of forecasting is known as time series forecasting. 

 

 
Time series forecasting is an active domain of research that has become 

increasingly important in various fields of research, such as business, economics, 

finance, science and engineering. With time series forecasting, the data that consists 

historical observations are analyzed in a way to develop an appropriate model which 

describes the inherent structure of the series. It is obvious that a successful time 

series forecasting depends on an appropriate model fitting. This model is then used 

to generate future values for the series. A lot of efforts have been spent over the 

decades in developing efficient models to improve the forecasting accuracy. As the 

result, currently various important time series forecasting models have been evolved. 

 

 
Study in crime has its importance. Obviously crime is an omnipresent 

challenge to societies. The study of Harrendorf et al. (2010) gives some broad 
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comparable international crime cases in homicide, assault, rape, robbery, burglary, 

motor vehicle theft and kidnapping but generally crime can be divided into two 

major categories which are violent crime and property crime. Ehrlich and Saito 

(2010) examine various aspects of criminal activity such as its determinants, 

different types of crime, policy responses and methods to face criminal activity.  One 

of the methods is time series forecasting and it will be conducted in this study. The 

ability to predict can serve as a valuable source of knowledge for law enforcement 

agencies, both from tactical as well strategic perspectives. Forecasting can help a 

police department’s performance by strategic deployment efforts and efficient 

investigation direction.  

 

 

 

1.2  Problem Background 

 

 
In recent times, there is the growing manifestation among stake holders that 

crime cannot be controlled exclusively through the action of the police and criminal 

justice administrators. Always the primary target of the police had been the persons 

and their criminality, for example, examining the modus operandi of serial criminals, 

and arresting them (Gorr and Harries, 2003). A motivating factor in the shift of focus 

from the offender to the offence is the reality that brought the idea of new forms of 

approach on crime prevention against the backdrop of the apparent failure of the 

police, courts and prisons to stem the rising crime rates in many societies.  

 

 
In spite of many limitations of criminal statistics in the current societies, data 

generated from the case gathered are used in dealing with the problem of crime both 

in developed and developing countries. For example Australia, the modern trends of 

criminological studies are that police, executives, judiciaries, prison administrators, 

parole authorities, social workers and researchers in the various multi disciplinary 

which subjects relating to crime and crime control spend resources in terms of 

money and time in assembling, quantifying and analyzing criminality. Empirical data 

on crime rate serves as a veritable source of information on the rate of crimes in the 
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society. The implications of these data or specifically time series data will enable us 

to know the pattern and trend of crimes in the country and further assist us to be able 

to plan for the prevention and curtailment of crime. Crime forecasting is of recent 

development. As a follow up to the successful crime mapping in the 1990s, the US 

National Institute for Justice (NIJ) awarded some grants to study crime forecasting 

for police as an extension of crime mapping with the objective forecasting crime one 

period ahead (Gorr and Harries, 2003).  

 

 
In term of forecasting, there are two types of time series modeling known as 

linear and nonlinear models. Currently there are no single models which able to 

model both linear and nonlinear pattern of time series data. There are many studies 

shown that nonlinear models such as ANN are significantly better in forecast than 

the conventional linear models.  ARIMA is one of the conventional linear models 

and mostly used in time series forecasting (Shahwan and Odening, 2007). But the 

major limitation of these models is the pre-assumed linear form of the associated 

time series which becomes inadequate in many practical situations. ARIMA model 

assumed that in a time series the future values have a linear relationship with current 

and past values as well as with white noise, thus estimations by ARIMA model may 

not be adequate for nonlinear time series that inherited a complex real-world 

problems that often nonlinear (Chen, et al., 2005).  

 

 
Nevertheless, with a major progress in model combination or hybrid has 

given a way out in improving the forecasting performance. Both theoretical and 

empirical findings agreed that by combining different models together is effectively 

improve the forecasting performance, particularly when the hybrid is a combination 

of different models from each other (Berardi and Zhang, 2003). Many different 

techniques have been combined and proposed in order to overcome the deficiencies 

of a single model and hoping to produce more accurate results. Hybrid models can 

either be homogeneous, such as using differently configured neural networks or 

heterogeneous, such as using ARIMA and ANN models (Balkin and Ford, 2000). 
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Furthermore, a hybridization of ARIMA and ANN models as linear and 

nonlinear model is extensively studied by researchers since it produces promising 

results (Alwee, Shamsuddin and Sallehuddin, 2013). Further discussions about the 

literature of the hybrid between ARIMA and ANN are given in Section 2.6. In 

conducting this study, we are using a medium size of data and tried to control the 

training results from over fitting. Many factors will surely influenced the results from 

selected architecture and parameters of ANN model but the motivation behind this 

hybrid approach is largely due to the fact that the crime rates is often complex to 

predict. The selection of architecture and parameters of ANN model is made due to 

the limitation of study period and exploration efforts of this new domain personally.  

 

 

 

1.3  Research Objective 

 

 
The objectives of the research are: 

  
• To obtain a forecasting model by using ARIMA. 

• To obtain a forecasting model by using ANN with the correspond 

residuals as input data into the model. 

• To implement a hybrid approach by using the results from ARIMA and 

ANN. 

 

 

 

1.4 Research Scope 

 

 
The delimitation of the research noted as the following:   

 
• The dataset been used is a univariate historical time series. 

• The actual data from the dataset are presented by month, offense type and 

area. 

• The dataset is obtained from NSW Police of Australia website. 
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1.5  Thesis Outline 

 

 
The organization of this thesis is summarizes as follows. In Chapter 2, the 

concept of ARIMA, ANN and the hybrid models are reviewed. In Chapter 3, the 

methodology of each modeling process has been described. In Chapter 4, the results 

from the methodology are discussed and finally Chapter 5 will conclude the 

discussions. 
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