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ABSTRACT 

 

 

 

 

This thesis presents the simulation of an integrated dual nanoprobe-

microfluidic system for single cell electrical characterizations. Recent cell studies 

have shown a possible early disease diagnosis at a single cell level by characterizing 

its electrical properties. One of the studies uses a dual nanoprobe showing its ability 

in quantitatively detecting single cell viability. However, this method has low 

throughput rate, high skilled labour requirement and bulky system. We propose an 

improved system that overcomes these limitations. This study is divided into five 

stages. The first stage focuses on deciding the system concept and nanoprobe design. 

The second stage involves nanoprobe characterization which is based on electrical 

and mechanical properties of five different materials: Silver, Copper, Aluminium, 

Tungsten and Zinc. The third stage is a single cell modeling of Saccharomyces 

cerevisiae for mechanical and electrical model. The fourth stage is nanoprobe 

integration with microfluidic system. The final stage is single cell electrical property 

characterizations. From the study, several findings were obtained and concluded. 

First, the most preferred material for nanoprobe is Tungsten which has low electrical 

resistance of 5.5 Ω and can withstand an external force up to 35.6 µN before failure. 

Second, the two layers cell model was validated by displaying a close agreement in 

terms of penetration force (640 nN) with experimental data. Third, successful cell 

penetration was achieved at 5.1 pl/min flow rate in 4 µm diameter micro channel. 

Lastly, insulating the nanoprobe reduces the effect of penetration depth on the 

current measurement and enables the characterization of single cell cytoplasm 

electrical conductivity to be realized.  Currently the developed system is suitable for 

cell viability detection application. Furthermore, this system has a potential to be 

used in single cell thermal measurement, single cell drug delivery and early disease 

diagnosis. 

 



   vi 

 

 

 

 

 

 

ABSTRAK 

 

 

 

 

Tesis ini membentangkan penyelakuan sistem dwi-nanoprob mikrofluidik 

bersepadu bagi pencirian elektrik sel tunggal. Kajian terbaru menunjukkan penyakit 

boleh dikesan pada peringkat awal hasil daripada pencirian sifat elektrik sel tunggal 

tersebut. Salah satu kajian tersebut menggunakan dwi nanoprob dual dalam 

mengesan daya maju sel tunggal secara kuantitatif. Walau bagaimanapun, kaedah ini 

mempunyai kelemahan daripada segi kadar pengesanan yang rendah, keperluan 

buruh yang mahir, dan sistem yang sukar digerakkan. Kami mencadangkan satu 

sistem yang dapat mengatasi batasan-batasan ini. Kajian ini dibahagikan kepada lima 

peringkat. Peringkat pertama memberi tumpuan kepada menentukan konsep sistem 

dan reka bentuk nanoprob. Peringkat kedua melibatkan pencirian nanoprob 

berdasarkan sifat-sifat elektrik dan mekanikal lima bahan yang berbeza: Perak, 

Tembaga, Aluminium, Tungsten dan Zink. Peringkat ketiga adalah memodelkan sel 

tunggal Saccharomyces cerevisiae untuk model mekanikal dan elektrik. Peringkat 

keempat ialah persepaduan nanoprob dengan sistem mikrofluidik. Peringkat akhir 

adalah pencirian sifat elektrik sel tunggal. Dari kajian ini, beberapa penemuan telah 

diperolehi dan disimpulkan. Pertama, bahan yang paling sesuai untuk nanoprobe 

adalah Tungsten kerana mempunyai rintangan elektrik yang rendah iaitu sebanyak 

5.5 Ω dan boleh menahan daya beban sehingga 35.6 μN. Kedua, model sel lapisan 

telah disahkan dengan memaparkan kuasa penembusan yang sama dengan data 

eksperimen iaitu 640 nN. Ketiga, penembusan sel berjaya dilakukan pada kadar 

aliran 5.1 pl / min dalam 4 μm diameter saluran mikro. Akhir sekali, nanoprob yang 

disaluti penebat dapat digunakan untuk mencirikan kekonduksian elektrik sitoplasma 

sel. Pada masa ini sistem yang dibangunkan sesuai bagi aplikasi pengesanan daya 

maju sel. Sistem ini juga mempunyai potensi untuk digunakan dalam pengukuran 

haba sel tunggal, penghantaran ubat sel tunggal, dan mengesan penyakit diperingkat 

awal. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background of Research 

 Single cell analysis has gained researchers attention in microbiological 

studies thanks to the rapid development in nanotechnology. The cells are now being 

studied individually and not only based on populations of cells. The main advantage 

of single cell analysis over population analysis is accuracy. Population studies unable 

to characterize individual cell accurately as the result obtained is based only on 

average data. Each cell may have unique properties which could be used as a marker 

for cell type classification. Each cell type is expected can be differentiated from one 

another if their individual properties, i.e. mechanical, electrical, and chemical, can be 

characterized. This information is important in early disease detection applications. 

Beside mechanical properties [1-9], cells can also be characterized based on the 

electrical properties [10]. 

1.2 Single Cell Characterization based on Electrical Properties  

 In recent years, studies on single cell analysis have been focusing on 

characterizing the cells electrical properties, i.e. resistance, capacitance, dielectric 

constant, and conductivity [11-16]. Some of the researches have shown their 

potential in a practical applications i.e. single cell viability detection and single cell 

cancer detection. 
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1.2.1 Single Cell Viability Application 

 One of the applications of single cell electrical property measurement can be 

seen in single cell viability detection [17]. Figure 1.1 shows a single cell electrical 

measurement results in detecting single cell viability. Cell viability is a determination 

of living or dead cells. It is very important in biological studies, especially when 

researchers try to manipulate cells in a cellular suspension which either the cells 

grown on a substrate or cells that have been removed from the body. This unnatural 

environment can cause certain types of cell to die.  

 

 

 Without knowing the cell viability a research cannot determine a valid result. 

In other words, before cell manipulation is carried out the cell need to be known in 

terms of viability for the result to be valid. During cell manipulation, the cell 

viability could also be affected. This cell manipulation can be categorized into 

different types such as mechanical, chemical, and electrical. So, it is also important 

to know the cell viability after cell manipulation.  

 

 

 
Figure 1.1 Single cell viability detection [17]. 
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The conventional method of cell viability detection uses colorimetric or 

fluorescent dyes. This method lacks the capability to produce instantaneous and 

quantitative cell viability information which is important in the study of dynamics of 

cell death [18]. Thanks to the new technology, cell viability is no longer determined 

through chemical reaction but based on the electrical properties. This method is 

much better in terms of producing instantaneous and quantitative information. 

1.2.2 Single Cell Cancer Detection Application 

 A more practical study has shown a potential application of single cell 

electrical properties characterization in detecting cancer cells [19, 20]. The human 

body is made of several types of cell and each one of them has their own function. 

Figure 1.2 shows several types of cell in the human body. However, certain cell may 

mutate into another form of cell type; cancer cell, and affect the human health and 

may lead to death without treatment. Hence, it is important to detect and cure the sick 

cells or remove them before they can give harm to the human body.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Cell types in human body. 
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 For example, patients with blood cancer are fortunate if their illness is 

detected at an early stage. However, chance for patient survival decreases when the 

illness is detected too late. Blood cancer is caused by abnormal growth and function 

of blood cells, i.e. red blood cells and white blood cells. It is possible to detect cancer 

if we are able to characterize the cell’s properties and used the information obtained 

to differentiate between cancer cells with normal cells.  

 

 

 Figure 1.3 shows the electrical measurement results for head and neck cancer 

(HNC) cell for different cancer phase [19]. The results showed significant changes in 

electrical properties of a cancer cells which may hold the answer for early disease 

detection for HNC. 

 

 

 
Figure 1.3 Single cell electrical measurements for different cancer phase [19]. 
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1.3 Problem Statement 

 Even though the single cell electrical measurement devices have already been 

invented, most of the devices have several disadvantages, i.e. labour intensive and 

bulky system. These disadvantages make the single cell electrical measurement 

ineffective, low throughput rate (inefficient), and costly.  

 

 

 Operator skills play an important role when manual measurement is being 

conducted especially for the type of instrument that requires a direct contact with the 

single cell in micrometer scale, e.g. dual nanoprobe [3, 13, 17, 21]. When a new 

operator is needed, they need to be intensively trained and familiarize with the 

technique in order to ensure an accurate and reliable measurement results. Operators 

skills can be gained through experience or sending them to a training program but 

both of them take times and costly. Easy equipment handling or minimum operator 

needs is favourable to those who need to focus more on the study rather than 

spending more time to learn new equipment or technique.  

 

 

 High number of data can provide convincing and accurate results to a study 

finding. However, low throughput rate measurement require more time in obtaining 

more data and it is become a disadvantage for a study on a single cell type that has 

short life cycle, i.e. yeast cell [22]. Currently, the throughput rate is depending on the 

operator ability. Therefore, measurement throughput rate improvement is limited.  In 

a repetitive measurement, the operator may not be able to keep their instrument 

handling consistency at a long period of time due to fatigue and induce human error. 

For high sensitivity measurement type, even a slight error may pose a significant 

effect to the measurement results.   

 

 

 Bulky system makes the single cell measurement less portable and costly to 

be built. The general type system or bulky system may suitable to be use at initial 

stage of the research but for other user to be able to use the same technique, the 

system need to be transform into a specific type measurement system. The 

transformation will improve the system by reducing the size of the system, cost, and 
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more portable. This way, more users will be interested to use them as one of their 

research tools. Therefore, there is a need to reduce the operator role in single cell 

measurement for a consistent measurement accuracy and higher throughput rate and 

also improve the device from bulky system to a more portable system. In the end, 

single cell electrical measurement can be conducted not only by inexperienced 

operator but also under none specific lab environment. 

1.4 Purpose of the Study 

 The purpose of the study is to improve the single cell electrical measurement 

based on dual nanoprobe technique proposed by M. R. Ahmad et al. in 2009 [13]. 

Figure 1.4 shows how the dual nanoprobe is used for single cell electrical 

measurement. Generally, our research aims to integrate the dual nanoprobe with a 

microfluidic system for reducing the requirement for labour skills, higher throughput 

rate and portable system. The new platform will replace the unnecessary bulky 

system. Our proposed system will be used to gain new findings or aid other research 

regarding cell studies, and researchers will be able to focus more on the study 

without the need to use complex equipment for advanced measurement. There are 

many applications prior to this study such as cancer cell detection, drug delivery, cell 

manipulation and others. Hence, more and more research can be done in the same 

period of time than before. 

 

 

 

Figure 1.4 Single cell electrical measurements using dual nanoprobe [13] (a) 

schematic diagram of the technique (b) experimental measurement.  

 

(a) (b) 
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1.5 Objectives of the Study 

The objectives of this research are; 

1) To design, characterize and optimize the dual nanoprobe for single cell analysis. 

2) To design a microfluidic system to be integrated with the dual nanoprobe. 

3) To implement the integrated dual nanoprobe-microfluidic system for single cells 

electrical property measurement. 

1.6 Scope of the Study 

1. The research will be carried out mostly through simulation using finite 

element analysis software, ABAQUS. 

2. In the simulation the cell model is based on Yeast cell and the parameters 

involved will be obtained from experiment and journal papers.  

3. Only the cell’s cytoplasm electrical properties will be measured. 

1.7 Organization of Thesis 

 This thesis is divided into 7 chapters. First chapter discusses on the 

significance of the research including research background, problem statement, 

objectives, and scopes. In the second chapter, single cell electrical measurement 

techniques and theory are being thoroughly discussed. Third chapter discusses on the 

research methodology been used in the study and explains on the system concept and 

nanoprobe design. The forth chapter discusses on the nanoprobe characterization for 

both electrical and mechanical properties using five different materials i.e. Silver, 

Copper, Aluminium, Tungsten, and Zinc. The fifth chapter explains on single cell 

simulation model of Saccharomyces cerevisiae for mechanical and electrical model. 

The sixth chapter discusses on nanoprobe integration with microfluidic system and 

single cell electrical property characterization.  



   8 

 

 

 The last chapter is the conclusion and future recommendations for this 

research. Each chapter has its own objective and the results obtained are directly 

discussed. 

1.8 Summary of Works 

Work flow on system development during research is summarized in the flow 

chart as shows in Figure 1.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Research development work flow. 
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