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ABSTRACT 

 
 
 
 

Phenolic resin waste contains harmful chemical compounds such as phenol, 

urea, and formaldehyde that need to be treated before disposal. In this study, a series 

of cyanamide modified Fe2O3 was prepared from FeCl2.4H2O as the iron precursor 

and cyanamide (CYA) as the carbon and nitrogen source. The cyanamide modified 

Fe2O3 was used for photocatalytic removal of phenol in the mixture of phenol-urea-

formaldehyde. X-ray diffractometry patterns showed the formation of Fe2O3 peak. 

The peak intensity decreased with the increased of cyanamide mol ratio. The addition 

of cyanamide decreased the band gap energy of Fe2O3, showing that carbon and 

nitrogen-based material might act as a dopant. The presence of carbon species was 

confirmed by diffuse reflectance UV-visible and Fourier transform infrared 

spectroscopy, as well as thermogravimetric analysis, especially on sample with high 

mol ratio of cyanamide precursor. Photoluminescence study revealed that addition of 

low mol ratio of cyanamide successfully decreased the electron-hole recombination, 

while the addition of high mol ratio of cyanamide might block the emission sites of 

Fe2O3. Scanning electron microscope images of the samples also confirmed that 

samples with high mol ratio of cyanamide have a flake-type structure that coated the 

surface of Fe2O3. In the photocatalytic removal of phenol both under UV and visible 

light irradiation, all prepared samples gave better photocatalytic activity than the 

bulk Fe2O3. The best activity was achieved on Fe2O3-CYA(6) catalyst with the mol 

ratio cyanamide to iron precursor of 6, in which the percentage of phenol removal 

was 75 and 80% under UV and visible light, respectively. The high activity would be 

due to the success suppression of electron-hole recombination, decrease of the band 

gap energy, and the good interaction between phenol and emission sites of Fe2O3-

CYA(6) catalyst, as supported by the fluorescence quenching study. The 

photocatalytic activity for phenol removal decreased in the presence of urea, 

formaldehyde, and urea-formaldehyde since there were adsorption competition as 

well as reaction competitions, such as oxidation of formaldehyde and formation of 

phenolic resin. 
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ABSTRAK 

 
 
 
 

Sisa resin fenolik mengandungi kandungan bahan kimia merbahaya seperti 

fenol, urea dan fomaldehid yang perlu dirawat sebelum dibuang. Dalam kajian ini, 

suatu siri ferum(III) oksida (Fe2O3) terubahsuai sianamida telah disediakan daripada 

FeCl2.4H2O sebagai pelopor ferum dan sianamida (CYA) sebagai sumber karbon dan 

nitrogen. Ferum(III) oksida terubahsuai sianamida digunakan untuk 

fotopemangkinan penyingkiran fenol dalam campuran larutan fenol-urea-

formaldehid. Corak teknik pembelauan sinar-X menunjukkan pembentukan Fe2O3, di 

mana keamatan puncak berkurang dengan meningkatnya nisbah mol sianamida. 

Pertambahan sianamida mengurangkan tenaga ruang jalur Fe2O3, menunjukkan 

bahawa bahan berasaskan karbon dan nitrogen berkemungkinan bertindak sebagai 

dopan. Kehadiran spesies karbon telah disahkan dengan menggunakan pantulan 

serakan ultra lembayung-cahaya nampak dan spektroskopi inframerah transformasi 

Fourier, serta analisis termogravimetri terutama pada sampel dengan nisbah mol 

sianamida yang tinggi. Kajian pendarcahaya menunjukkan bahawa pertambahan 

nisbah mol sianamida yang rendah berjaya mengurangkan penggabungan semula 

elektron-lubang, sementara penambahan nisbah mol sianamida dalam jumlah yang 

tinggi berkemungkinan menyekat tapak pemancaran Fe2O3. Imej sampel daripada 

mikroskop pengimbas elektron juga telah mengesahkan bahawa sampel dengan 

nisbah mol sianamida yang tinggi mempunyai struktur berbentuk kepingan yang 

menyaluti permukaan Fe2O3. Dalam fotopemangkinan penyingkiran fenol di bawah 

sinaran UV dan cahaya nampak, semua sampel memberikan aktiviti 

fotopemangkinan yang lebih baik daripada Fe2O3 pukal. Aktiviti terbaik diberikan 

oleh mangkin Fe2O3-CYA(6) dengan nisbah mol sianamida kepada ferum 6, yang 

memberikan peratusan penyingkiran fenol masing-masing 75 dan 80% di bawah 

cahaya UV dan cahaya nampak. Aktiviti yang tinggi oleh mangkin ini disebabkan 

kejayaan penyekatan elektron-lubang, pengecilan aras jalur tenaga dan interaksi yang 

baik antara fenol dan tapak pemancaran mangkin Fe2O3-CYA(6), seperti yang 

disokong dalam kajian pelindap kejutan pendarfluor. Aktiviti fotopemangkinan untuk 

penyingkiran fenol menurun dengan kehadiran urea, formaldehid dan urea-

formaldehid kerana terdapat persaingan penjerapan dan juga persaingan tindak balas 

seperti pengoksidaan formaldehid dan pembentukan resin fenolik.  

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CC0QFjAA&url=http%3A%2F%2Fid.wikipedia.org%2Fwiki%2FSpektrofotometer_Inframerah_Transformasi_Fourier&ei=bg8cUv25DYbYrQfE9IHwCQ&usg=AFQjCNErTROqaU5zNReHLYnjfXHwkAb2uw&bvm=bv.51156542,d.bmk
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CC0QFjAA&url=http%3A%2F%2Fid.wikipedia.org%2Fwiki%2FSpektrofotometer_Inframerah_Transformasi_Fourier&ei=bg8cUv25DYbYrQfE9IHwCQ&usg=AFQjCNErTROqaU5zNReHLYnjfXHwkAb2uw&bvm=bv.51156542,d.bmk
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 General Background 

 

 

 Phenolic resin is one type of thermosetting resins containing phenol, 

formaldehyde and also urea. Phenolic resins have been used in vast applications, 

such as plastic industry (Whitehouse et al., 1967), wood adhesives (Peshkova & Li, 

2003), and communication equipment (Hirano & Asami, 2013). As one of the 

compositions in the phenolic resins, phenol has been recognized as the most 

common organic pollutants, which can be easily found in the industrial waste. Since 

phenol can act as a carcinogenic compound to the human being, the permissible 

exposure limit (PEL) stated by Occupational Safety and Health is around 5 ppm 

(United States Department of Labour, 1996). Due to the toxicity of the phenol, many 

studies have been focused on the degradation of phenol. There have been many 

researches conducted on various methods suitable in dealing with this pollutant, such 

as biodegradation (El-Naas et al., 2009), adsorption (Caetano et al., 2009), thermal 

decomposition (Chen et al., 2008), catalytic conversion (Katada et al., 1997), and 

emulsion liquid membranes (Correia & Carvalho, 2003) and emulsion pertraction 

technology (Urtiaga et al., 2009). Another method that can be acknowledged is 

photocatalytic degradation method that is still stands as one the preferred methods in 

most of the studies, owing to its clean and environmentally safe process.  

 

 

  Photocatalysis has been proven to be one of the efficient methods in 

mineralization or removal of organic pollutant (Bandara et al., 2001; Yang et al., 
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2000; Zhang et al., 2010). While there have been many reports on photocatalytic 

removal of phenol as a single target pollutant, less attention has been made on the 

removal of phenol in the presence of other organic pollutants, such as in the case of 

phenolic resins, which contained of phenol, urea, and formaldehyde. Furthermore, 

most studies reported that the efficiency of the photocatalyst was restricted only to 

the low concentration of phenol (Araña et al., 2001). Therefore, photocatalytic 

removal of phenol in the presence of urea and formaldehyde was investigated in this 

study. For this purpose, development of a highly active heterogeneous photocatalyst 

that able to degrade phenol even in high concentration in the presence of other 

pollutants is very important. 

 

 

 On the other hand, iron (III) oxide (Fe2O3) has been recognized as a good 

catalyst for various chemical reactions. As it also has paramagnetic properties, it can 

be used as a good recyclable catalyst in heterogeneous catalysis. As example, Fe2O3 

can be reused easily for at least five cycles by collecting the catalyst using magnet 

(Drbohlavova et al., 2009). In addition to the paramagnetic properties, Fe2O3 is a 

semiconductor that has a band gap of 2.1 eV, suggesting that it might be a potential 

photocatalyst under visible light irradiation. Unfortunately, it was confirmed that 

even though Fe2O3 showed its efficiency in removing phenol from water under ultra-

violet (UV) light irradiation, it was not active under visible light irradiation (Roslan, 

2011). Since sunlight emits more visible than the UV light, development of visible 

light-driven photocatalysts is a very important approach in photocatalysis study. 

Therefore, the photocatalytic activity of Fe2O3 under visible light irradiation should 

be improved, such as by introducing other material that is active under visible light. 

One of such potential materials is carbon nitride (C3N4) that has been reported to 

have band gap of 2.66 eV and absorb light up to 460 nm (Wang et al., 2009a). 

 

 

 The C3N4 can be prepared by a simple thermal polymerization method using  

various molecular precursors reported to prepare the g-C3N4, such as melamine 

(2,4,6-triamines-triazine) (Zhang et al., 2001), C3N3(NH2)3 (Gillan, 2000), s-triazine 

(cyanuric; C3N3) ring compounds such as C3N3X3 (X= Cl, N, OH, NHCl) 

(Khabasheshku et al., 2000), cyanamide (Thomas et al., 2008) and urea (Lee et al., 

2012). There are several hypothetical phases of carbon nitride, which are alpha (α), 
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beta (β), cubic, pseudocubic and graphitic. Among of these phases, graphitic carbon 

nitride (g-C3N4) is the most stable phase at ambient conditions and possesses the 

smallest bad gap due to the sp
2
 hybridization of carbon and nitrogen forming the -

conjugated graphitic planes (Molina & Sansores, 1999). Since C3N4 has been 

reported to show good photocatalytic activity under visible light irradiation for 

various reactions such as water splitting (Yan et al., 2012) and selective oxidation of 

alkene (Li et al., 2011), several studies on the preparation of metal oxides modified 

by C3N4 have been investigated, such as In2TiO5 (Liu et al., 2011) and ZnO (Wang 

et al., 2011). These prepared metal oxides modified by C3N4 showed better 

photocatalytic activities under visible light irradiation than the non-modified metal 

oxides. 

 

 

Among the precursors of C3N4 mentioned above, cyanamide is of interest. In 

addition to formation of carbon nitride, cyanamide has been reported as a good 

carbon and nitrogen source in the preparation of metal nitrides (Buha et al., 2007), 

metal carbides (Li et. al., 2008) and metal cyanamide (Zhao et al., 2013). Therefore, 

in this study, Fe2O3 was modified by cyanamide for the first time. During the 

thermal calcination process, cyanamide could be converted to C3N4 or other carbon 

and nitrogen-based materials, which would help enhancing the photocatalytic 

activity of Fe

 

 

 

 

1.2 Statement of Problem 

 

 

Even though Fe2O3 has been recognized as potential photocatalyst in the 

photocatalytic degradation of phenol under UV light irradiation, it was reported that 

Fe2O3 suffered from the inability to work under visible light irradiation. Since visible 

light dominates 46% of solar light spectrum, the development of visible light-driven 

photocatalyst is highly desirable. Therefore, further modification needs to be 

conducted in order to improve the photocatalytic activity of Fe2O3 under visible light 

irradiation. Unfortunately, there is still no established method to modify the Fe2O3 

due to the lack understanding on how to design the Fe2O3-based photocatalysts. 
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Modification of Fe2O3 so that it can act as visible light-driven photocatalyst is 

still one challenging problem. Cyanamide is used in this study since the 

polycondensation process of cyanamide may lead to the formation of C3N4 as well as 

other carbon and nitrogen-based materials such as CN and NCN. This study is the 

first investigation on the effect of cyanamide modifier on the properties and 

phocatalytic activity of Fe2O3. Therefore, it is still unclear and needs to be clarified if 

cyanamide precursor may improve the efficiency in the electron charge transfer 

process of Fe2O3 under visible light irradiation. Some parameters, such as effect of 

the ratio of cyanamide to Fe2O3 need to be explored in order to get fundamental 

understanding on designing the Fe2O3-based photocatalysts. 

 

 

While the potential ability of Fe2O3 photocatalyst has been recognized for 

photocatalytic removal of phenol, the potential photocatalytic activity of Fe2O3-

based photocatalysts to remove phenol in the presence of other compounds is still 

needs to be clarified. In addition, efficiency of phenol removal in high concentration 

remains unclear and further investigations need to be conducted. In the present study, 

the first photocatalytic degradation of phenol in the presence of urea and 

formaldehyde over novel Fe2O3-based photocatalysts is carried out. Effect of some 

parameters, such as the ratio of urea or formaldehyde to phenol, on the 

photocatalytic activity of the   Fe2O3-based photocatalysts to remove phenol is still 

unclear and needs to be revealed. 

 

 

 

 

1.3 Objectives 

 

 

The main objectives of this study are: 

 

1. To synthesize novel Fe2O3-based photocatalysts that are active in the visible 

light region. 

2. To investigate the properties of the new Fe2O3-based photocatalysts. 



5 

 

3. To study the photocatalytic activity of the Fe2O3-based photocatalysts for 

phenol removal under UV and visible light irradiation in the presence of urea 

and/or formaldehyde. 

 

 

 

 

1.4 Scope of the Study 

 

 

 The scope of this study is shown below. For preparation of Fe2O3-based 

photocatalysts, iron precursor used was FeCl2.4H2O. As the modifier, cyanamide 

was used with the mol ratio of cynamide to iron precursor within the range of 2 to 10. 

The synthesis of Fe2O3-based photocatalysts was carried out using one pot oxidation 

method at temperature of 823 K with rate of heating of 2.2 K min
-1

. The prepared 

Fe2O3-based photocatalysts were characterized by X-ray diffraction (XRD), diffuse 

reflectance (DR) UV-visible spectroscopy, photoluminescence spectroscopy, Fourier 

transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), 

thermogravimetric analysis (TGA) and elemental analyzer. The photocatalytic 

activity of the prepared Fe2O3-based photocatalysts was tested for removal of phenol 

in the presence of urea, formaldehyde, and urea-formaldehyde at room temperature. 

The mol ratios of phenol to urea and formaldehyde used were 1:1 and 1:300, while 

for phenol-urea-formaldehyde were 1:1:1 and 1:300:300. All of the reactions were 

conducted under both UV and visible light irradiation for 25 h. The products of 

photocatalytic reactions were analysed and determined by a gas chromatography 

equipped with flame ionization detector (GC-FID). 

 

 

 

 

1.5 Significance of Study 

 

 

  Modification of Fe2O3 with cyanamide would result in a novel series of 

materials. Therefore, this study is important in the point of view of material science. 

Since Fe2O3-based materials were used as a photocatalyst, this study will also give 

contribution in the photocatalysis science. The study on the ability of Fe2O3-based 

photocatalysts to remove phenol into non-hazardous compound will be a stepping 
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stone for other researchers to explore the use of Fe2O3-based photocatalysts for other 

reaction such as conversion as well as the use of other photocatalysts for removal of 

phenol. Therefore, this study will give better knowledge and understanding on both 

photocatalyst and photocatalytic reaction. 

 

 

Study on the removal of phenol in the absence and presence of other organic 

pollutants, such as urea and formaldehyde by photocatalytic reaction is very 

important in the point of view of green technology to reduce environmental 

problems. As we know, phenol is one of the most toxic compounds found in 

industrial waste water. It is expected that the findings from this research will enrich 

our knowledge on the fundamental studies of converting toxic organic compound in 

industrial waste water into non-hazardous compound, thus minimizing the harmful 

effects towards human being.  
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