TESTING OF METAL OXIDE SURGE ARRESTER MONITORING (MOSAM)

ZURAIDA BINTI ZAINOL

UNIVERSITI TEKNOLOGI MALAYSIA

TESTING OF METAL OXIDE SURGE ARRESTER MONITORING (MOSAM)

ZURAIDA BINTI ZAINOL

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Electrical – Power)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > JANUARY 2015

Dedicate to my beloved family:

Mohammad Jailani bin A Jamil (hurband) Zainol bin Ahmad (father) Zabidah binti Wahab (mother) Zakiah binti Zainol (rirter) Zanariah binti Zainol (rirter)

You are all my inspiration and my strength

What I have been through. you were there all the time.

and

All my friends in MEP programme

for their support and encouragement

ACKNOWLEDGEMENT

Alhamdulillahirabilalamiin and thank to Allah SWT for blessing me for ensuring myself to be healthy to carry out my study and to complete this project. I wish to express my sincerest appreciation to my supportive supervisor Associate Prof. Dr. Zulkurnain bin Abdul Malek for the guidance and persistent help given throughout the progress of this project. I like to express my thanks to Saaed Vahabi, Wooi Chin Leong and all IVAT staff and technicians who were involved in this project. Finally, I would also like to thank all my fellow friends for their support and assistance technically and mentally in various occasions. All your kindness would not be forgotten. And I am grateful to all my family members.

ABSTRACT

Surge arrester is a device used to protect the transmission lines and substations. It protects the power systems from lightning impulses and very fast transient over voltage. The degradation of a metal oxide surge arrester can be accomplished by using the measurement of its leakage current in particular, the third harmonic resistive component. A significant change in the third harmonic level may indicate a severe ageing of the arrester. Metal Oxide Surge Arrester Monitoring (MOSAM) is a new smartphone based device capable of assessing the current status of gapless MO arresters. This project aims to test and verify the MOSAM previously developed in Institute of High Voltage and High Current (IVAT). Low voltage and high voltage calibration were carried out. It is shown that the obtained calibration results using the low voltage are consistent with those using the high voltage. Three types of clamp meters were used. MOSAM is proven to work as designed for at least one type of clamp meter.

ABSTRAK

Penangkap pusuan ialah alat yang digunakan biasanya untuk melindungi talian penghantaran dan pencawang. Ia melindungi sistem kuasa dari *impuls* kilat dan voltan fana yang sangat cepat. Degredasi penangkap pusuan oksida logam boleh dicapai dengan menggunakan pengukuran arus bocor khususnya komponen rintangan harmonik ketiga. Perubahan ketara dalam tahap harmonik ketiga mungkin menunjukkan penuaan yang teruk ke atas penangkap. Pemantauan Penangkap Pusuan Oksida Logam (MOSAM) adalah peranti baru berasaskan telefon pintar yang mampu menilai status semasa penangkap pusuan oksida logam tanpa sela. Projek ini bertujuan untuk menguji dan mengesahkan MOSAM yang sebelum ini dibangunkan di Institut Voltan Tinggi dan Arus Tinggi (IVAT). Penentukuran voltan rendah dan voltan tinggi telah dijalankan. Ia menunjukkan bahawa keputusan penentukuran diperolehi dengan menggunakan voltan rendah adalah sejajar dengan menggunakan voltan tinggi. Tiga jenis meter pengapit digunakan untuk ujian ini. MOSAM terbukti mampu beroperasi seperti yang direka bentuk untuk sekurang-kurangnya satu jenis meter pengapit.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DECLARATION		ii
	DEL	iii	
	ACF	KNOWLEDGEMENT	iv
	ABS	STRACT	v
	ABS	STRAK	vi
	TAB	BLE OF CONTENTS	vii
	LIST	T OF TABLES	Х
	LIST	Γ OF FIGURES	xi
	LIST	Γ OF ABBREVIATIONS	xiv
	LIST	Г OF SYMBOLS	XV
	LIST	Γ OF APPENDICES	xvi
1	INTE	RODUCTION	1
	1.1	Project Background	1
	1.2	Problem Statements	4
	1.3	Objectives of Project	4
	1.4	Scope of project	4
	1.5	Methodology	5
	1.6	Thesis Outline	5
2	LITE	CRATURE REVIEW	6
	2.1	Introduction to surge arrester	6
	2.2	Development of surge arrester	7

		2.2.1	Silicon carbide drawback	8
		2.2.2	Design of metal oxide surge arrester	8
	2.3	Surge	arrester failure	9
		2.3.1	Sealing problem	9
		2.3.2	Internally humidity	10
		2.3.3	Arrester degradation	10
		2.3.4	Arrester displacement	11
		2.3.5	Superficial pollution	11
		2.3.6	Irregular voltage distribution	12
	2.4	Degrad	dation of metal oxide surge arrester	12
	2.5	Moistu	are ingress problem	14
	2.6	Perfor	mance monitoring of surge arrester	14
	2.7	Metal	oxide surge arrester leakage current	16
3	LOV	N VOLI	FAGE CALIBRATION AND TESTING	18
	3.1	Introdu	uction	18
	3.2	Overvi	iew of MOSAM	18
		3.2.1 I	Low voltage calibration	19
		3.2.2 F	Regression analysis	20
		3.2.2 I	Low voltage calibration set up	20
	3.3	Low v	oltage testing	23
4	HIG	H VOLI	TAGE CALIBRATION AND TESTING	25
	4.1	Introdu	uction	25
	4.2	High v	oltage calibration set up and testing	25
	4.3	Detern	nine the third harmonic of leakage current	
		using I	Matlab	27
	4.4	High v	voltage testing when clamp meter is 3	
		meter	distance from the bottom of arrester	27
5	RES	ULTS A	ND ANALYSIS	28
	5.1	Introdu	uction	28
	5.2	Low v	oltage calibration results	28
	5.3	Low v	oltage testing results	33

	5.4	Low voltage mixture testing results	37
	5.5	High voltage calibration results	38
	5.6	High voltage testing results	44
		5.6.1 High voltage testing with the clamp meter	
		is at the bottom near to arrester	45
		5.6.2 High voltage testing when clamp meter	
		is 3meter distance from the bottom of arrester	49
6	CON	CLUSION AND FUTURE WORKS	49
	6.1	Summaries	49
	6.2	Future works	50
REFERENC	ES		56
Appendices A	A - B		59- 60

ix

LIST OF TABLES

TABLE NO.

TITLE

PAGE

3.1	Ratio of 50 Hz and third harmonic for C1, C2 and C3	23
5.1	Summarize of clamp meter ratios for low voltage	
	calibration results	33
5.2	Summarize of low voltage testing results	37
5.3	Summarize of mixture testing results	38
5.4	Total RMS current for C1	39
5.5	Total RMS current for C2	40
5.6	Total RMS current for C3	41
	and compensated value zero offset	48
5.7	RMS current of high voltage testing after	
	compensated and compensated value zero offset	43
5.8	Summarize of clamp ratio in high voltage calibration	44

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

1.1	Voltages and overvoltages in electric power system	2
1.2	(a) Simplified model representation of surge arrester	
	and (b) Vector diagram of Ix, Ic and I	3
2.1	The design of Silicon Carbide Arrester and Metal	
	Oxide Surge Arrester [1]	8
2.2	Electrical discharge due to humidity level [3]	10
2.3	Salty pollution over arrester housing	11
2.4	Current puncture in arrester	12
2.5	Types of degradation of metal oxide surge	
	arresters and background of diagnostic [8]	13
2.6	Simplified model representation of MO surge arrester	17
3.1	Display of MOSAM applications from smart phone	19
3.2	Low voltage calibration set up	21
3.3	Ratio and accuracy captured bu MOSAM smartphone	22
3.4	Three types pf clamp meters used in the experiment	22
3.5	Mixture testing low voltage set up	23
3.6	Clamp ratio setting and required arrester information	
	need to key in in the MOSAM	24
4.1	High voltage testing set up with the clamp meter at the	
	bottom near to the arrester	26
4.2	High voltage testing with clamp at 3 meter distance	
	bottom of arrester	28
5.1	50 Hz RMS current of ammeter vs. 50 Hz RMS	

	current of MOSAM for C1	30
5.2	150 Hz RMS current of ammeter vs. 150 Hz RMS	
	current of MOSAM for C1	30
5.3	50 Hz RMS current of ammeter vs.50 Hz RMS	
	current of MOSAM for C2	31
5.4	150 Hz RMS current of ammeter vs. 150 Hz RMS	
	current of MOSAM for C2	31
5.5	50 Hz RMS current of ammeter vs. 150 Hz RMS	
	current of MOSAM for C3	32
5.6	150 Hz RMS current of ammeter vs. 150 Hz RMS	
	current of MOSAM for C3	32
5.7	50 Hz RMS current of ammeter vs. 50 Hz RMS current	
	of MOSAM for C1	34
5.8	150 Hz RMS current of ammeter vs. 150 Hz RMS	
	current of MOSAM for C1	34
5.9	50 Hz RMS current of ammeter vs. 50 Hz RMS	
	current of MOSAM for C2	35
5.10	150 Hz RMS current of ammeter vs. 150 Hz RMS	
	current of MOSAM for C2	35
5.11	50 Hz RMS current of ammeter vs. 50 Hz RMS	
	current of MOSAM for C3	36
5.12	150 Hz RMS current of ammeter vs. 150 Hz RMS	
	current of MOSAM for C3	36
5.13	Total RMS current for C1	39
5.14	Total RMS current for C2	40
5.15	Total RMS current for C3	42
5.16	Current zero offset for C3	42
5.17	Ammeter current and current compensated value	43
5.18	Total RMS current of high voltage testing for C1	45
5.19	Total peak current of high voltage testing for C1	46
5.20	Current 50 Hz of high voltage testing for C1	46
5.21	Third harmonic current of high voltage testing for C1	47
5.22	Total peak current of high voltage testing for C2	47
5.23	Total RMS current of high voltage testing for C2	48

5.24	Current 50 Hz of high voltage testing for C2	48
5.25	Third harmonic current of high voltage testing for C2	49
5.26	Total RMS current of high voltage testing when clamp	
	3 meter from arrester for C1	50
5.27	Third harmonic current of high voltage testing when	
	clamp 3 meter from arrester for C1	50
5.28	Total RMS current of high voltage testing when clamp	
	3 meter from arrester C2	51
5.29	Third harmonic current of high voltage testing when	
	clamp 3 meter from arrester for C2	51

LIST OF ABBREVIATIONS

MO	-	Metal oxide
RMS	-	Root Mean Square
MOSAM		Metal Oxide Surge Arrester
MOSA		Metal Oxide Surge Arrester
TOV		Temporary Over Voltage
Si		Switching Impulse
VFTOs		Very Fast Transient Over Voltage
ZnO		Zinc Oxide
Hz		Hertz
Ref		Reference
IRMS		Current Root Mean Square
3 rd		Third
IVAT		Institute of High Voltage and High Current
Min		Minimum
Max		Maximum

LIST OF SYMBOLS

V	Voltage
Ι	Current
kV	kilo volt
k	constant
α	coefficient
μ	micro
А	Ampere
m	mili
C1	Clamp 1
C2	Clamp 2
C3	Clamp 3
VS	versus

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Surge Arrester Status	59
В	MATLAB Programming to determine the	
	Third Harmonic Leakage Current Measured	
	by Oscilloscope	60

CHAPTER 1

INTRODUCTION

1.1 Project background

Surge arresters are widely used to help damage of apparatus due to high voltage. It has been used in service since 1970's. It protects the power systems from temporary over voltage, switching impulses, lightning impulses and very fast transient over voltage as shown in Figure 1.1. This arrester has two functions which are to provide a point in the circuit where an over voltage pulse can pass to ground and to prevent any follow up current from flowing to ground. It's provides a low impedance path to ground for the current from a lightning strike or transient voltage and then restore to a normal operating condition.

Figure 1.1 Voltages and overvoltages in electric power system

The Metal Oxide (MO) was based on metal block and not require series gap and hence is referred as a gapless metal oxide arrester. The metal oxide surge arrester is a non linear resistor. It consists of disc of metal oxide arranged in a stack inside in suitable insulator. The construction of metal oxide blocks with a highly non-uniform current voltage (I-V) is appropriate for over voltage suppression.

Many researchers have been done to study the performance and monitor the condition of the metal oxide surge arrester. One of that is measurement on leakage current. Metal Oxide Surge arrester has small leakage current mainly comprises the capacitive current and the resistive part of the current flowing through it due to its gapless construction. The surge arrester performance is evaluated by measuring the resistive part of the leakage current, which is proportional to the watt loss of the arrester. The increase of in watt loss is a direct measure of deterioration.

The total leakage current mainly comprises of the capacitive component and resistive component. The capacitive and resistive component leakage current differs in phase by 90°. Therefore, a large increase in the resistive current of the non-linear metal oxide resistor is needed to observe a significant change in the total leakage current level. Online measurement of the leakage current are extremely used in

practice to show the root means square (r.m.s), mean or peak value of the leakage current.

Figure.1.2 (a) Simplified model representation of surge arrester and (b) Vector diagram of I_X , I_C and I_R

The surge arrester performance is evaluated by measuring the resistive component of the leakage current, which is proportional to the watt loss of the arrester (Figure 1.2). The increase the watt loss means the increase of deterioration. The resistive component consists of third harmonic leakage current when the waveform shown not purely sinusoidal. These harmonics increase with the increase of resistive leakage current.

Metal Oxide Surge Arrester Monitoring (MOSAM) is a new smart phone based device capable of assessing the current status of gapless MO arrester. However, being developed within the institute, the device lacks data from field testing. This project requires data measurement from low voltage testing and high voltage testing to calibrate the MOSAM. The correlation between the measurement parameter and age or condition of arrester can be established. Accurate reading of the arrester leakage current is required in order to obtain real physical condition of the MOSA insulation.

1.2 Problem statement

There are several available metal oxide surge arrester condition monitoring device. An example of these devices is the SCAR-10 manufactured by ISA ITALY. However, there are still a lot of implements that can be made on these devices. This project aims to test and verify a new device previously developed in Institute of High Voltage and Current (IVAT). The device is named is named is Metal Oxide Surge Arrester (MOSAM).

Among the tasks need to be carried out are the calibration of MOSAM and the performance checking against electromagnetic and high voltage interferences.

1.3 Objectives of Project

There are three main objectives that have been achieved in this project:

- a) To do calibration on MOSAM
- b) To carry out testing of MOSAM
- c) To finalize the MOSAM configuration based on the testing data.

1.4 Scope of Project

This scope will cover to 132kV system MO gapless polymeric housed arresters.

1.5 Thesis Outline

This thesis has been divided into five chapters. All contents about some basic or generally principles, theories, formula, previous studies references, methodology of the project, experimental results and discussions are included based on contents requirement.

Chapter 1 contains of projects overview and the objectives of conducting the project. Chapter 2 is discussing about the background information of the project such as the history of the surge arrester, and design of MOSA. This chapter discussed briefly on cause of the surge arrester failure and the degradation of MOSA.

In chapter 3, presents the methodology of calibration and testing on MOSAM. The process and the experimental procedure to carry out the MOSAM were explained in this chapter. Then, the results and discussion are covered in Chapter 4.

Summarize of all the studies and procedures of works from previous four chapters discussed in Chapter 5. Besides, future works and recommendation are recommended at the end of the chapter.

REFERENCES

- 1. Keith Hill, "Surge Arrester and Testing", Double Engineering Company
- 2 K. Izumi, H. Honma, and J. Tanaka, "Deterioration of metal oxide surge arrester element caused by internal partial discharges under polluted conditions," in Proc. 3rd Int. Conf. Properties and Applications of Dielectric Materials, Tokyo, Japan, Jul. 8–12, 1991, pp. 517–520.
- L. Chrzan, "Concentrated discharges and dry bands on polluted outdoor insulators". 13th International Symposium on High Voltage Engineering, Delft, Netherlands, August 25 – 29, 2003.
- K. Eda et al., "Degradation Mechanism of Nonohmic Zinc Oxide Ceramics", J,Appl, Plyrs,vol. 51, pp 26782684, 1980.
- 5. H. R Phillip and L. M Levinson, "Degradation phenomena in Zinc Oxide Varistor: A Review," Advanced in Ceramics, vol. 7, pp.1, 21 1983.
- 6. T.Nilla and Y. Fujiwara," Stability of Metal Oxide Surge Arrester under Continuous Operating Voltage," Cigre 33 87, 1987.
- K-II Weck, W. Heiβ, V. Hinrichsen and II.-B Solobach, "Beurteilung der Nutzungsdauer von Uberspannungsableitern," ETG Fachtagung, 1995.
- 8 Christian Heinrich and Volker Hinrincsen, "Diagnostic and Monitoring of Metal Oxide Surge Arrester in High Voltage Networks – Comparison of Existing and Newly Developed Procedures", IEEE Trans. on Power Delivery, vol. 16, no. 1, Jan 2001.
- 9. <u>http://en.wikipedia.org/wiki/Regression_analysis</u>
- E. T. Wanderley Neto, E. G. da Costa, T. V. Ferreira, and M. J. A. Maia, *"Failure Analysis in ZnO Arresters Using Thermal Images"* IEEE PES Transmission and Distribution Conference and Exposition Latin America, Venezuela, 2006

- B. Weise, C. Heinrich, L. Klingbeil, W. Kalkner, "High Energy Lightning Impulse Stress on MO Arresters and their Degradation". 25th International Conference on Lightning Protection. September 18 – 22, 2000. Rhodos, Greece.
- A Bargigia et. al, "Study of The Performance of The Metal Oxide Arrester For The High Voltage System", in Proc. Int. Conf. Large High Voltage Electric System, Paris France 1986, pp 33.14.1 – 33.14.12.
- Tong Zhao, Qing Min Li (Member IEEE), and Jiali Qian, "Investigation on Digital Algorithm For On-Line Monitoring and Diagnostics of Metal Oxide Surge Arrester Based On An Accurate Model", Power Delivery Transaction, Vol. 20, No. 2, April 2005.
- L. Zhou, et al "A Study On Variable Coefficient Compensation Method and Performance Diagnostic of Metal Oxide Arrester's Operating State Detection", Electric Technology Transaction, Vol. 13. No. 6 Dec 1998.
- 15 Peng Hui, Lou Xiaowen, "A High Precision Calibrator For Metal Oxide Surge Arrester On-Line Monitor", in Hubei China, ICEMI 2009.
- 16. Vivek Johri, M. Mohana Rao, "Handbook of Switchgears".
- M.Nju, S.H Myung, J.B Lee, Y.G Cho, B.Y Lee, S.H Chang, S. Shenderey, "Evaluation of The Resistive Current of The Metal Oxide Surge Arrester Using The Differential Method".
- 18 Volker Hinrichsen, Gerd Scholl, Matthias Schubert, Thomas Ostertag, " Online Monitoring of High Voltage Metal Oxide Surge Arrester By Wireless Passive Surface Acoustic Wave (SAW) Temperature Sensors".
- Zulkurnain Abdul Malek, Novizon Yusoff, Mohd Fairouz Mohd Yousuf, *"Field Experience on Surge Arrester Condition Monitoring – Modified Shifted Current Method*", Johor Bahru, Malaysia, UPEC2010.
- 20. Volker Hinrichen, "Monitoring of High Voltage Metal Oxide Surge Arrester", *Berlin, Germany.*
- Zulkurnain Abdul Malek, Novizon Yusof, Aulia, "Portable Device to Extract Resistive Component of the Metal Oxide Surge Arrester Leakage Current", UTM Johor Bahru, Johor Malaysia, AUPEC08.
- T. Klein, K. Feser, W. Schmidt, R.Bebensee, "A New Monitoring System For Metal Oxide Surge Arresters", Stuttgart Germany, 22-27 Aug 1999.

- 23. Kai Steinfield, "Design of Metal Oxide Surge Arresters with Polymeric Housings" Siemen AG, Germany.
- K.L. Wong, "Electromagnetic Emission Based Monitoring Technique for Polymer ZnO Surge Arresters", Deakin University, Victoria Australia, Dielectric and Electrical Insulation Transaction, Vol. 13, No. 1, Feb 2006.
- 25. Volker Hinrichsen, "Metal Oxide Surge Arrester in High Voltage Transmission and Distribution Systems, Effective and Reliable Devices Increasing System Availability and Reducing Maintenance Costs", Siemen PTD, Berlin Germany.
- 26 K. Kannus, K. Lahti and K Nousiainen, "Aspects of The Performance of Metal Oxide Surge Arresters in Different Environmental Conditions", Tempere University of Technology, Finland, CIRED 97, June 1997.
- E.T. Wanderley Neto, E.G. da Costa and M.J.A Maia, "Artificial Neural Networks Used for ZnO Arrester Diagnosis", Power Delivery Transac 58 Vol. 24, No. 3, July 2009.
- 28 E.T. Wanderley Neto, E.G. da Costa, M.J.A Maia, T. C. L Galindo and A.H.S Costa, " *Electro-thermal Simulation of ZnO Arresters for Diagnosis Using Thermal Analysis*", Transmission& Distribution, 2004.
- 20. Dr. Ahmad Zahedi MIEEE Ceng.MIEE, "Effect of Dry Band on Performance of UHV Surge Arrester and Leakage Current Monitoring, Using New Development Model", Monash Uni, Australia, July 1994.
- 30. M. Jaroszewski, P. Kostyla, K.Wieczorek, "Effect of Voltage Harmonics Contenton Arrester Diagnostic Results", Poland, Solid Dielectric, 2004.