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ABSTRACT

Shrinking transistor is undeniably important especially to reduce fabrication
cost and to increase power efficiency of electronic devices. However, as fabrication
technology progresses into deep submicron process, analog circuit design complexity
grows significantly together with the increase in design time due to complex behaviour
of short-channel Metal-Oxide-Semiconductor (MOS) transistor. Current scaling rules
are incapable of maintaining circuit performance as design technology moves to deep
submicron process. This research carries out a study on the effects of fabrication
process migration on analog design reuse approach and offers a complementary design
solution. In order to prove the concept, two-stage Operational Transconductance
Amplifiers (OTA) have been designed using Silterra 0.18 µm Complimentary-MOS
(CMOS) fabrication process and were later migrated to Silterra 0.13 µm. Existing
scaling rules were adopted in the study in order to maintain the original circuit
performance in 0.18 µm process. The performance degradation problems due to the
migration into a deep submicron process were observed. Then, a solid-state systematic
transistor tuning procedure based on Direct Current (DC) output scaling rule was
proposed and applied to rectify the performance degradation problem due to design
migration. Result shows that it improves the accuracy of the analog design scaling
and can be applied to both short-channel and long-channel designs. On a Miller
amplifier test circuit, the proposed tuning stage results in an additional voltage gain
up to 16 dB and twice faster settling time compared to a single-stage scaling alone,
and approximately 33% less power consumption and 28% smaller silicon area when
compared to the original design on 0.18 µm process. The research is expected to
contribute to current development of analog design reuse methodology.
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ABSTRAK

Pengecutan transistor adalah perkara mustahak yang tidak dapat dinafikan
terutamanya untuk mengurangkan kos fabrikasi dan untuk meningkatkan kecekapan
kuasa dalam peranti elektronik. Walau bagaimanapun, seiring dengan teknologi
fabrikasi yang bergerak menuju kawasan submikron mendalam, kerumitan mereka
cipta litar analog dan masa yang terlibat meningkat dengan drastik disebabkan
kelakuan transistor Logam-Oksida-Separa pengalir (MOS) bersaluran-pendek yang
kompleks. Peraturan penskalaan analog kini tidak berupaya untuk mengekalkan
prestasi litar ketika menuju proses submikron mendalam. Penyelidikan ini mengkaji
kesan penghijrahan proses fabrikasi ke atas pendekatan penggunaan semula litar
analog, dan menawarkan satu penyelesaian yang melengkapi. Untuk membuktikan
konsep tersebut, litar Amplifier Operasi Transkonduksi (OTA) dua-peringkat direka
menggunakan proses fabrikasi Pelengkap-MOS (CMOS) Silterra 0.18 µm dan
kemudian dihijrahkan kepada Silterra 0.13 µm. Peraturan penskalaan yang sedia ada
digunapakai dalam kajian ini untuk mengekalkan prestasi litar asal pada proses 0.18
µm. Masalah kemerosotan prestasi disebabkan penghijrahan kepada proses submikron
mendalam diperhatikan. Kemudian, satu kaedah baru prosedur talaan transistor yang
sistematik berdasarkan peraturan penskalaan output Arus Terus (DC) telah diusulkan
dan digunakan bagi menyelesaikan masalah kemerosotan prestasi tersebut. Keputusan
menunjukkan ia mampu meningkatkan ketepatan penskalaan rekaan analog dan boleh
digunakan untuk kedua-dua rekaan saluran-pendek dan saluran-panjang. Pada litar
ujian sebuah amplifier Miller, satu peringkat talaan usulan meningkatkan gandaan
voltan amplifier sehingga 16 dB dan mencapai dua kali kepantasan masa penyelesaian
apabila dibandingkan dengan penskalaan satu peringkat sahaja, dan dengan anggaran
33% lebih rendah penggunaan kuasa dan 28% luas silikon yang lebih kecil apabila
dibandingkan dengan rekaan asal pada proses 0.18 µm. Penyelidikan ini dijangka
dapat menyumbang kepada pembangunan metodologi penggunaan-semula rekaan
analog.
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CHAPTER 1

INTRODUCTION

This research work studies the issues and challenges of analog CMOS design
reuse methodology. The main objective is to formulate an analog design reuse
methodology which is compatible with short-channel CMOS design. This work
proposes a second-stage tuning methodology for analog design reuse to increase the
accuracy in maintaining the original analog circuit performance for short-channel
device. Silterra CMOS 0.18 µm and 0.13 µm fabrication processes are used in the
study. The study is divided into two parts. The first part is to study the impact of
process scaling on analog and mixed-signal designs. The second part is to formulate
an extension of existing analog design reuse methodology for short-channel analog
design application, and to rectify gain degradation problem which is usually associated
with short-channel transistor.

1.1 Scaling Rules and Design Reuse

Scaling rules are used to provide new transistor sizing while maintaining
the original circuit performance during process migration. The performance of an
analog circuit is highly dependent on process parameters. Therefore, it is important
to study the relationship between process parameters and circuit performance to
facilitate analog design reusability in various fabrication processes. The significant
advantage of having systematic analog design reuse methodology is the shorter time
needed for circuit rescaling compared to complete circuit redesign to meet the original
specification.

Systematic analog design reuse methodology can assist designer in maintaining
analog circuit performance in different processes. Digital circuits are easier to scale
and usually can be done by automation, thus much less complex migration process
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involved compared to analog circuits. As the analog design complexity keep growing,
systematic reuse methodology for analog circuits can help to reduce the design time.
Existing scaling rules for analog design reuse have to sacrifice some performance
matrics in order to maintain the more important matrics [1, 2, 3, 4, 5]. Furthermore,
the scaling rules were tested to MOS field effect transistors (MOSFETs) with the gate-
length equal to few micrometers [2, 4]. Therefore, this research proposes a tuning
procedure to increase the accuracy of the design scaling, and it is compatible with
short-channel design.

Emerging short-channel effects and leakage current contribute to the latest
analog design challenges in deep submicron process [6]. Moreover, power supply
scaling is the biggest challenge [7]. These design issues also contribute to the problems
of the analog circuit performance when migrating into deep submicron process such
as:

• Reduction in transistor intrinsic gain due to velocity saturation [8, 6]

• Reduction in signal to noise ratio as a result of using low supply voltage and
ultra thin gate oxide [6]

• Higher signal distortion for transistor operating in weak inversion [8]

Due to high design sensitivity in deep submicron process, designer is now relying even
more on simulator program and accurate device modeling [8]. Hundreds of parameters
are defined to describe short-channel transistor behaviour in various biasing points,
making hand calculation even more complex, time consuming and less reliable. The
growing design complexity reflects growing analog design time which affect the time-
to-market.

1.2 Problem Statement

When one design migrates to a smaller process compared to its original size, it
is expected that the performance of the design will be preserved if not better. However,
previous works have proven that preserving all design specifications in a migrated
design is not a straightforward process. Many reports [2, 3, 4, 5, 9, 10, 11] have
highlighted that one may be able to preserve some of the specifications but not all. This
issue is further aggravates when it involves migration to the deep submicron region.
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Scaling rules can maintain gain-bandwidth and dynamic range of an
operational amplifier during migration [1, 2]. However, the power consumption may
doubled or the silicon area can be much larger compared to the original design [1, 2].
Another work with modified scaling rules and a follow-on automatic tuning stage result
in significant power reduction but at a cost of few times bigger silicon area compared
to the original design [3, 4].

Channel-scaling rules derived from the MOSFET level-1 current equation [5,
11] resulted in lower power consumption and smaller area while maintaining the gain,
bandwidth and phase margin. However, in the smallest fabrication process tested
(0.12 micron), the amplifier gain is degraded [5]. Besides, all earlier works [1, 2, 5, 11]
were tested on considerable long-channel MOSFET. As technology progresses into the
deep submicron technology, consideration of short-channel MOSFET in analog design
migration must be taken into account.

The degradation of transistor intrinsic gain is one of the prominent design
problems in short-channel analog design [8]. Amplifier gain which is widely
considered as the most important performance in any analog amplifier is directly
related to the intrinsic gain. This research aims to rectify the amplifier gain degradation
problem in analog design migration which becomes more significance for migration
into deep submicron process. Hence, the design reuse methodology is further enhanced
by extending the compatibility of the scaling process with the short-channel analog
design.

1.3 Objectives

Based on the problem statement, this research work aims to achieve the
following objectives:

i. To propose a tuning procedure for analog design reuse which can be applied
to both short-channel and long-channel MOSFETs. The tuning procedure can
compliment existing scaling works which are more suitable for long-channel
transistors.

ii. To preserve the operational amplifier performance (gain, bandwidth and phase
margin) during process migration at reduced power consumption and silicon
area.
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1.4 Scope of Work

This research aims to upgrade existing scaling rules with the proposed tuning
procedure. The proposed tuning procedure is compatible with both long-channel and
short-channel analog designs and able to maintain circuit performance during the
process migration. Operational transconductance amplifier (OTA) circuits are used
as the test circuits. The circuits are designed and characterized by using Cadence
electronic design automation (EDA) on Silterra 0.18 µm process. Using scaling rules
proposed in [5], the designs are migrated to 0.13 µm Silterra process. The proposed
tuning procedure is then applied to the migrated designs. The significant of the tuning
procedure is presented by tables and graphs generated by Matlab software. Selected
designs are sent for fabrication at Silterra Malaysia and the IC is characterized using
on-wafer test by Collaborative Microelectronic Design Excellence Centre (CEDEC) of
Universiti Sains Malaysia (USM). Next, the IC is packaged, a test circuit is constructed
using off-chip components and characterized using Agilent test and measurement
instruments.

1.5 Methodology

This research is divided into three phases as shown in Figure 1.1. The first
phase is the background study of scaling rules and analog scaling challenges. Then,
problem statement is constructed based on the study.

The second phase started with a case study to formulate the design reuse
methodology. Based on preliminary results from a case study, this research decided
to propose a tuning procedure to achieve the objectives. The idea of preserving the
output swing during design migration is translated into equations which guide the
entire tuning process. This phase involves the circuit design and design migration
stages. During these stages, operational amplifier circuits are designed on 0.18 µm
and then characterized. Then the same designs are migrated to 0.13 µm process
and characterized. Performance degradation of the migrated design in the 0.13 µm
especially on short-channel design leads to the construction of tuning methodology
stage. In this stage, a DC output voltage scaling is proposed and related equations are
derived to adjust the output voltage of the two-stage analog amplifier. The last stage is
testing the methodology on another amplifier designs to evaluate the performance of
the proposed tuning procedure. Corner analysis and Monte Carlo simulation are used
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to measure the reliability of the designs.

In the second phase, similar OTA circuits used in previous literature [1, 2, 3,
4, 5, 11] are adopted as the test circuits. They are constructed using short-channel
or long-channel MOSFETs to represent two cases along with Miller compensation
circuit to realize high output gain. Five key performance indicators are considered to
be maintained during the design migration: voltage gain, bandwidth, phase margin,
power consumption, and silicon area. The proposed tuning procedure aims to maintain
the key performance during the process migration from 0.18 µm to 0.13 µm processes
at a minimal trade-off. In addition, amplifier circuits with multi-finger and split-length
transistors are used to verify the methodology.

The third phase of the research is to fabricate the design and characterized the
physical IC. The layout from the selected design is prepared for fabrication by Silterra
Malaysia using 0.18 µm CMOS process. The physical design is then characterized
using on-wafer test and breadboard test. The related problems and limitations are
discussed and analyzed in Chapter 4.

Phase I                                                            Phase II                                                         Phase III 

Literature review 
 

Case study  Methodology 
testing 

 
Physical design 

       

  
Circuit design 
&  simulation  Construct tuning 

procedure  Fabrication  
& characterization 

Figure 1.1: Flowchart of the research methodology.

1.6 Contributions

This research work contributes on an improved design reuse methodology that
is suitable for both long- and short-channels transistors. Specifically, the contribution
of the research are as follow:
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i. The preservation of the output swing is taken into consideration which leads to
the tuning procedure based on the scaled value of DC output voltage. This helps
maintain the voltage gain and phase margin.

ii. Instead of tuning both width and length of the transistor, this thesis proposes
the tuning of the width to adjust the DC output voltage. This is to ensure the
transistor threshold voltage is maintained. Another advantage of scaling the
width is to avoid short-channel effects (SCE) and drain-induced barrier lowering
(DIBL) from being significantly modified.

1.7 Structure of Thesis

The thesis is organized into five chapters. The rest of the chapters are as follow.

Chapter 2 discusses the analog design migration challenges into deep
submicron technology and existing scaling rules and its theories, advantages and
limitations.

Chapter 3 presents the design scaling and the proposed tuning procedure based
on DC output scaling. It is divided into four sections: the preliminary experiment, the
design scaling, the proposed tuning procedure and the proposed tuning for multi-finger
transistors.

Chapter 4 presents the performance analysis of the proposed tuning procedure
for all circuit examples and the result of the physical design characterization.

Finally, conclusion and suggestions for future works are presented in Chapter 5.
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