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ABSTRACT

Spintronics generally refers to technology where devices utilise the spin of the
electron in addition to its charge for information transmission, processing and storage.
Graphene is a sheet of carbon atoms bound together with double bonds (called the sp2

bonds) in a thin, one atom thick layer. It is a very special material because of the large
spin relaxation length and ballistic transport characteristics that can provide a great
platform for developing spin-polarized devices. The carbon atom itself does not own
any magnetic moment, therefore, the researches on graphene-based spintronics mainly
focus on the substantial magnetism in graphene due to the presence of defects. This
study will investigate the magnetism originating from quasilocalised states induced
by defects in graphene sheet using first principle approach. The density functional
theory calculations were performed using SIESTA software in the spin-unrestricted
manner, using the diagonalization-based method for solving Kohn-Sham equations.
The calculation was done in parallel modes. The generalized gradient approximation
(GGA) exchange-correlation functional of Perdew, Burke and Ernzerhof (PBE) was
used throughout this work. In addition, all the calculations for the models were carried
out using the double-zeta plus one polarization (DZP) basis set. In this study, the
magnetic moments generated due to atomic vacancies were calculated for supercells
of different sizes namely 3×3, 4×4, 5×5, and 6×6 multiples of the graphene unitcell.
The results show that the values of the magnetic moment in graphene supercells
strongly depend on the size of the supercell, the number of the vacancies as well as on
the sublattice where the vacancies are located. This is generally consistent with Lieb’s
theorem regarding the magnetism in materials with different sublattices. Furthermore
the presence of exchange splitting in the density of states (DOS) for electrons with
different spins can be considered as indication that this magnetism is of the itinerant
type and this should enhance the potential of using graphene for spintronic devices.



vi

ABSTRAK

Secara umumnya, spintronik merujuk kepada teknologi di mana sesebuah
alat peranti menggunakan spin elektron sebagai tambahan kepada casnya bagi
pemindahan, pemprosesan dan juga penyimpanan maklumat. Grafin adalah kepingan
atom karbon yang terikat bersama dengan ikatan berganda (dikenali sebagai ikatan
sp2) dengan kenipisan satu atom. Ia adalah bahan yang sangat istimewa kerana
keupayaan santaian spin yang panjang serta mempunyai ciri pemindahan balistik
yang mampu menyediakan satu platform yang baik untuk membangunkan peranti-
pengutuban spin. Atom karbon sendiri tidak mempunyai sebarang momen magnet,
maka pengkajian mengenai spintronik berasaskan grafin diberikan perhatian terutama
sekali kemagnetan disebabkan kehadiran kekosongan atom. Kajian ini dijalankan
menggunakan pendekatan prinsip pertama pada kemagnetan yang berasal dari
keadaan penyetempatkan-kuasi yang disebabkan oleh kecacatan pada kepingan grafin.
Pengiraan teori berfungsi ketumpatan (DFT) telah dijalankan menggunakan perisian
SIESTA mengikut cara yang tiada penghadan spin menggunakan kaedah berasaskan
pepenjuruan untuk menyelesaikan persamaan Kohn-Sham. Pengiraan telah dilakukan
dalammod selari. Penghampiran kecerunan teritlak (GGA) dengan tukar ganti korelasi
berfungsi Perdew, Burke dan Ernzerhof (PBE) telah digunakan sepanjang kajian ini.
Di samping itu, semua pengiraan untuk model telah dijalankan menggunakan dua-
zeta ditambah dengan pengutuban (DZP) set asas. Dalam kajian ini, momen magnet
yang dijanakan berikutan kekosongan atom telah dikira untuk saiz supersel yang
berbeza iaitu 3×3, 4×4, 5×5 dan 6×6 dalam gandaan unitsel grafin. Keputusan
kajian menunjukkan bahawa nilai momen magnet pada supersel grafin sangat
bergantung kepada saiz supersel, bilangan kekosongan serta kedudukan kekosongan
pada subkekisi dan ini adalah selaras dengan teorem Lieb mengenai kemagnetan dalam
bahan dengan subkekisi berbeza. Tambahan pula kehadiran tukar ganti pembelah
dalam ketumpatan keadaan (DOS) bagi elektron dengan spin yang berbeza boleh
dianggap sebagai petunjuk bahawa kemagnetan ini adalah jenis beredar dan ini mampu
meningkatkan potensi menggunakan grafin sebagai peranti spintronik.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

Nanotechnology has become one of the interesting and most important fields
in recent years. The direction of technological development will change as the
nanotechnology shows great promise for providing many discoveries in various
application. However as it was done in the past thirty years, the rapid increase cannot
be compensated by simple downscaling of the semiconductor devices. In order to keep
up with the demand, currently many researchers are working on systems which operate
on the nanoscale and exploit quantum effects. One of the best option is to use the spin
of the electron in addition to its charge for information transmission and storage, that
is, going from the conventional electronics to spintronics.

1.1.1 Spintronics

Electronics and spintronics are two fields of technology which are very strongly
coupled. This is due to the fact that both use the same elementary particles, that is
electrons for their operations. But then each field uses a different fundamental property
of particles. In electronics it is the charge while in spintronics it exploits the angular
momentum, also better known as spin.

The term “spintronics” (a neologism meaning “spin transport electronics”)
also known as magnetoelectronics. Spintronics burst on the scene when a much
more powerful effect called giant magnetoresistance (GMR) discovered by Fert and
Grünberg in 1988. It has already become reality in the field of data storage when the
GMR effect is used in modern memory devices. They received the 2007 Nobel price.
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The advantages of these new devices would be nonvolatility, increasing the
data processing speed, decreasing the electric power consumption, long coherence or
relaxation time, and reduced size of device structure compared to the conventional
electronic devices.

1.1.2 Graphene as Spintronic Material

More than sixty years since the study of graphene was performed. However,
graphene could not draw enough attention because it was presumed not exist in the
free-state and was believed to be unstable. Then, in 2004, free-standing graphene
was discovered by A.K. Geim in collaboration with the postdoctoral associate K. S.
Nonoselov and his co-workers at the University of Manchester (Geim and Novoselov,
2007). Graphene is a sheet of carbon atoms bound together with double electron bonds
(known as sp2 bond) in a thin film only one atom thick. It is a very special material
because in follow-up experiment confirmed that its charge carriers were indeed mass-
less Dirac fermions.

Graphene contains no magnetic atoms, thus known as a metal-free material.
However from the local states caused by the present of defect or molecular adsorption
induced magnetism in graphenes(Kumazaki and Hirashima, 2007; Lehtinen et al.,
2004; Palacios et al., 2008; Ugeda et al., 2010; Yazyev and Helm, 2007; Zhang et al.,
2007). Arrangement of atoms of graphene in a honeycomb-style lattice pattern has
captured the interest of the physics community because of its versatile application
to microelectronics as it provides ballistic transport characteristics and large spin
relaxation length. In the development of spintronic devices, it can be a great platform.
Like d or f shell elements, carbon atoms do not own magnetic moment, thus the
researches on graphene-based spintronics mainly pay attention to the magnetism in
graphene.

1.1.3 Magnetism in Graphene

Electrons like all fundamental particles have a property called spin which can
be oriented in one direction or the other called ‘spin-up’ or ‘spin-down’. The electron
spins will create a large-scale net magnetic moment when they are aligned (all spin-
up or all spin-down). Magnetism is an intrinsic physical property associated with the
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spins of electrons in a material. Magnetism is already exploited in recording devices
such as computer hard disks. The existence of unpaired electrons is the essential of a
magnetic materials. More precisely the presence of a net spin that is spins associated
with unpaired electrons. If the electron is seen as a classical charged particle literally
spinning on the axis with angular momentum, L, its magnetic dipole moment,µ is
given by :

µ =
−e

2me

L (1.1)

where me is the electron rest mass.

As a metal-free material, graphene can be visualized by honeycomb structure
that contains two triangular interpenetrating sublattices. From previous studies,
molecular adsorption or defects give rise to the magnetism that come from the local
states. In the ideal graphene, defects can be introduced by both external doping and
vacancies. The carbon atoms that removed from the sheet give quasilocalized states
at Fermi level. Beside the vacancies, graphene can also show magnetism by doping
defects. By introduced boron (B) and nitrogen (N ) atoms, the π orbitals of the atoms
around the border regions of graphite and BN are localized according to the result
studied by (Okada and Oshiyama, 2001) on electronic structure of hexagonally bonded
honeycomb.

Other than defects, atom or molecules adsorption also can lead to the
occurrence of magnetic moments. Mainly the magnetic moment will localize around
the adsorption of the atom or molecule(Yazyev and Helm, 2007).

1.1.4 Modelling and Simulation Approach Used in This Research

In the study of a solid state system, density functional theory (DFT) plays
the role of providing the means to investigate the bulk properties of materials. The
investigation of the electronic structure (principally the ground state) in physics and
chemistry normally using quantum mechanical theory applied in DFT. DFT was
developed by Hohenberg and Kohn in 1964 as well as Kohn and Sham in 1965 provided
some hope of simple method for describing the effects of exchange and correlation
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among the particles (Kohanoff, 2006). As such, DFT has become the main tools for
calculation of electronic structure in condensed matter, and is increasingly important
for quantitative studies of molecules and other finite system.

1.2 Statement of Problem

The introduction of defects to induce magnetic responce in graphene has been
generating much interest. So far there have been many theoretical studies (Yazyev
and Helm, 2007; Palacios et al., 2008; Faccio and Mombru, 2012) predicting that point
defects in graphene should carry magnetic moments. However, experimental evidence
for such magnetism remains both scarce and controversial (Haase et al., 2011; Matte
et al., 2009).

In this work, approximation methods implemented in density functional theory
are used in order to simulate magnetism in graphene sheet. Approximation methods
is one of the efficient methods to model the systems within density functional theory
(DFT).

1.3 Objectives of Study

The objectives of the study are as follows:

i To determine from first-principle calculations the magnetic moment in
graphene due to atomic vacancies.

ii To establish the dependence of the magnetic moment on other factors such as
the number and location of the vacancies, the size of the supercell used in the
calculations and the formation energy required to generate the vacancy

1.4 Scope of Study

This study will focus on graphene sheet as a test system of solid state. Graphene
has been chosen partly because of its potentials in carbon-based nano-scale electronics.
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To motivate the experimental study on graphene, first-principles calculation are used
within the DFT using SIESTA code in parallel node. The magnetism of graphene due
to local states in the presence of defect will be investigated using the first-principles
calculations by removal the carbon atom from the graphene sheet. In general, the
defect in graphene can be introduced by both atomic vacancies and external defects.
This study only focused on magnetism due to the atomic vacancies.

1.5 Significance of Study

This research describe technique to investigate the emergence of magnetism
in graphene due to the local defects. Besides, it can contribute to the knowledge that
can enrich the understand in this area. Magnetic order in patterned or nanostructured
graphene can also bring up new opportunities of research in spintronics.
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