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ABSTRACT 
 
 
 
 

This study was focused on the suitability of commercial optical fibres as a 

new thermoluminescence dosimeter (TLD). The materials doped to silicon dioxide 

(SiO2) were germanium type A (Ge (A)) of first, second and third batch, germanium 

type B (Ge (B)), erbium (Er), aluminium and thulium (Al + Tm), photonic crystal 

fibre (PCF) of first and second batch, and multi photonic crystal fibres (MPCF). The 

MPCF came with different range of core diameter of 220 µm (MPCF 220 µm) and    

2 mm (MPCF 2 mm). The study also used pure glasses such as photosensitive flat 

fibre (PFF), flat fibre (FF) and dummy flat fibre (DFF). A comparison of the 

thermoluminescence (TL) response of electron irradiation concerning sensitivity, 

linearity, energy dependence, fading signal, reproducibility, minimum detectable dose 

(MDD) and effective atomic number, Zeff parameters as well as cross-comparison 

with that of TL dosimeter i.e TLD-100 (LiF:Mg,Ti) rods were investigated. Scanning 

electron microscopy (SEM) was used to determine the dopant concentration in each 

doped optical fibres. The irradiation was performed using 6 MeV electrons for doses 

ranging from 1 – 4 Gy at Pantai Hospital and University of Malaya Medical Centre 

separately according to the batch. All the optical fibres produced linear dose-TL 

responses for dose range of 1 – 4 Gy. TLD-100 produced greater TL sensitivity 

followed by PFF, FF, Ge (A), MPCF 2 mm, DFF, Al + Tm, Er, MPCF 220 µm,      

Ge (B) and PCF with their relative sensitivity of 0.2, 0.15, 0.08, 0.04, 0.02, 0.01, 

0.005, 0.004, 0.003 and 0.002 respectively compared to TLD-100. Ge (A) showed 

7% signal loss followed by PFF, Er, FF and PCF with 15%, 26%, 28% and 33% 

signal loss respectively after 14 days of irradiation. Reproducibility of Ge (A),        

Ge (B), Er, PCF, MPCF 2 mm and MPCF 220 µm were poor due to high degree of 

fading. The lowest MDD obtained from TLD-100, followed by FF, Ge (A) 1
st
 batch, 

Ge (A) 3
rd

 batch and PFF with their MDD of 0.13, 0.9, 4.0, 5.2 and 5.4 mGy 

respectively. The Zeff for Ge (B), Ge (A) and Er doped to SiO2 optical fibres were 

11.88, 12.95 and 20.69 respectively. Several attractive features offered by these fibres 

point to its use in radiation therapy. 
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ABSTRAK 
 
 
 
 

Kajian ini memberi tumpuan kepada kesesuaian gentian optik komersial 

sebagai dosimeter luminesens terma (TLD). Gentian optik yang didopkan kepada 

silikon dioksida (SiO2) ialah germanium jenis A (Ge (A)) kumpulan pertama, kedua 

dan ketiga, germanium jenis B (Ge (B)), erbium (Er), aluminium + tulium (Al + Tm), 

"photonic crystal fibre" (PCF) kumpulan pertama dan kedua, dan "multi photonic 

crystal fibre" (MPCF). MPCF terdiri daripada teras diameter yang berbeza iaitu     

220 μm (MPCF 220 μm) dan 2 mm (MPCF 2 mm). Kajian ini juga menggunakan 

kaca tulen iaitu "photosensitive flat fibre" (PFF), "flat fibre" (FF) dan "dummy flat 

fibre" (DFF). Perbandingan sambutan luminesens terma (TL) dilakukan terhadap 

sinaran elektron mengenai kepekaan, kelinearan, pergantungan tenaga, isyarat pudar, 

kebolehulangan, dos minimum terkesan (MDD) dan nombor atom berkesan, Zeff 

begitu juga perbandingan silang dengan dosimeter rod TLD-100 (LiF:Mg,Ti) turut 

dikaji. Mikroskopi pengimbas elektron (SEM) digunakan untuk menentukan 

kepekatan dopan dalam setiap gentian optik. Penyinaran telah dilakukan 

menggunakan 6 MeV untuk dos elektron dalam julat 1 – 4 Gy di Hospital Pantai dan 

Pusat Perubatan Universiti Malaya secara berasingan mengikut kumpulan. Semua 

gentian optik menghasilkan tindak balas dos linear-sambutan TL untuk julat dos        

1 – 4 Gy. TLD-100 menghasilkan sambutan TL yang lebih peka diikuti oleh PFF, FF, 

Ge (A), MPCF 2 mm, DFF, Al + Tm, Er, MPCF 220 μm, Ge (B) dan PCF dengan 

kepekaan relatif masing-masing adalah 0.2, 0.15, 0.08, 0.04, 0.02, 0.01, 0.005, 0.004, 

0.003 dan 0.002 berbanding dengan TLD-100. Ge (A) menunjukkan isyarat pudar 

sebanyak 7% diikuti dengan PFF, Er, FF dan PCF dengan masing-masing isyarat 

pudar adalah15%, 26%, 28% dan 33% selepas 14 hari penyinaran. Kebolehulangan 

Ge (A), Ge (B), Er, PCF, MPCF 2 mm dan MPCF 220 μm adalah rendah kerana 

darjah kepudaran yang tinggi. Nilai MDD terendah diperoleh daripada TLD-100, 

diikuti dengan FF, Ge (A) kumpulan pertama, Ge (A) kumpulan ketiga dan PFF 

dengan MDD masing-masing adalah 0.13, 0.9, 4.0, 5.2 dan 5.4 mGy. Zeff bagi Ge (B), 

Ge (A) dan Er yang didopkan kepada gentian optik silikon dioksida masing-masing 

adalah 11.88, 12.95 dan 20.69. Beberapa ciri menarik yang ditawarkan oleh gentian 

ini membawa kepada penggunaan dalam  terapi sinaran. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Overview 

 
 

As part of cancer therapy, every year 2.5 million people around the world are 

treated with ionizing radiation which is radiation therapy. A predictable fraction of 

the cancer cells die when high energy is applied in the deterministic regime. In spite 

of that, radiation can also act as a carcinogen (cancer-causing agent) which will cause 

radiation sickness. In addition to destroy the cancer cells, radiation therapy can also 

destroy the healthy tissue near the cancer cells when exposed to high energy. Dose 

that is delivered to the healthy tissue possibly creates an enhanced risk of cancer at 

some time later (Suzanne, 2003).   

 

For that, radiation energy that is deposited in human tissue should be 

measured. A specific dosimetric system is chosen for the planned measurement of 

absorbed dose. In radiotherapy, in vivo dosimetry is required in order to measure of 

actual dose delivered to internal organs with a high level of accuracy. Apart of 

ensuring the critical organ is delivered with the prescribed dose, it is also necessary to 

limit the dose burden from damaging of the surrounding normal tissue as low as 

possible (Khalil, 2006).  

 

In this work, thermoluminescence dosimetry (TLD) is used for radiotherapy 

application. TLD is found widespread in in vivo dosimetry, probably because of its 

high thermoluminescence (TL) output. One of the characteristic needed in a 
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dosimeter is that one must have closeness of its effective atomic number, Zeff to that 

of tissue (Zeff = 7.4). Only lithium fluoride in the form of LiF: Mg: Ti from all the 

phosphors available so far has found widespread application in electron dosimetry. It 

fills the characteristic needed in dosimetry system as its Zeff is 8.2 (Klevenhagen, 

1985, Greening, 1981, Attix, 1986). Different TL materials have different TL 

response. Lithium borate, Li2B4O7 has a better tissue equivalency, Zeff being 7.4 but 

its sensitivity is only one tenth to the LiF with respect to electron irradiation 

(Klevenhagen, 1985). A material such as CaSO4 although having high sensitivity for 

TLD has not been used as much in medical dosimetry as its atomic number was far 

from human tissue with respect to photons irradiation (Greening, 1981). 

 

As an improvement and a better understanding of the nature of the material in 

order to develop new TL materials, many researchers has investigated the potential 

use of silica glass (SiO2) optical fiber as TL materials. Applications of SiO2 optical 

fibre such as the measurement of absorbed dose for in vivo radiation therapy and 

diagnostics was reported by Aznar, 2002. The optical fibre also demonstrated high 

flexibility, easy handling and low cost compared with the other TL materials 

(Espinosa, 2006). 

 
 
 
 

1.2 Background of the problems 

 
 

The potential for health hazards will occur if ionizing radiation is not properly 

used or contained. When doses of radiation exceed certain level acute health effects 

such as skin burns or acute radiation syndrome can occur. Cancer will also occur 

when someone is exposed to low doses of ionizing radiation in longer term. Tissue or 

organ damage depends on the dose, type of radiation received and sensitivity of 

different tissues and organs.  

 

In order to prevent our health from being threatened by radiation hazard, first 

we have to make sure the dose received is in the standard level. For this purpose, we 
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use a device called radiation dosimeter that is capable of providing a reading of 

absorbed dose deposited in matter by ionizing radiation (Attix, 1986). Radiation 

dosimeters must exhibit several desirable characteristics in order to be useful. The 

desirable dosimeter properties such as accuracy and precision, linearity with dose, 

dose rate dependence, energy response, directional dependence and spatial resolution 

must be taking into account (Podgorsak, 2005). There are many types of integrating 

dosimeters such as TLD, photographic dosimetry, chemical dosimetry and 

calorimetric dosimetry (Attix, 1986). This work will focus on the TLD as it has been 

widely applied in areas such as environmental monitoring of ionizing radiation, 

personal dose monitoring, diagnostic radiology and radiation oncology. 

 

TLD is one of the methods widely used to measure ionizing radiation. TLD is 

based on the capability of the material itself to keep the energy trapped as it been 

radiated and release the energy in the form of light as it been heated. The amount of 

energy trapped and energy released after heated depend on the absorbed dose by the 

TLD (Wagiran, 1997).  

 
 
 
 

1.3 Statement of the problems 

  
 

While TLDs are widely used for in vivo dosimetry, the problem is that they 

are unable to store dose information permanently. Heating the TLD can erase the 

stored information. In addition, annealing procedures are required to restore the 

original sensitivity after being irradiated. This is because the sensitivity is unstable 

after receiving a large dose of radiation. Additional limitations of TLDs include their 

high sensitivity to light especially UV, sunlight or fluorescence light. Poor response 

due to environmental factor like humidity also is one of its limitations. 

 

For optical fibre provided by Universiti Malaya (UM), the manufacturer did 

not specified about the percentage dopant consist in each doped SiO2 optical fibres. 

Scanning Electron Microscopy (SEM) is required to determine its dopant 
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concentration.  The image of cross section area of optical fibres can be obtained by 

using SEM. In this research, Er, Ge (A) and Ge (B) doped optical fibres were 

investigated.  

 

Different dosimeters made in UM from a given batch of optical fibres showed 

a distribution of dopant uniformity. After being cut into 0.5 cm, the dopant 

concentration in each optical fibres still unknown. Thus, the TL yields were 

sometimes produced different average sensitivities. To overcome this problem several 

optical fibres for each material; at least five fibres are necessary for acceptable 

accuracy and precision. 

 
 
 
 

1.4 Research objectives 

 
 

This study embarks on the following objectives: 

 

i) To investigate the TL response of linearity, sensitivity, dose response, energy 

response, fading, the reproducibility and minimum detectable dose of doped 

optical fibres subjected to electron irradiation. 

 

ii) To compare the TL response of doped SiO2 optical fibres with TLD-100. 

 

iii) To determine the dopant concentration and effective atomic number (Zeff) for 

doped SiO2 optical fibres using a scanning electron microscope (SEM). 

 
 
 
 

1.5 Statement of the hypothesis 

 
 

For many applications, this study has hypothesized that the TLD-100 rods and 

SiO2 doped optical fibre have a high sensitivity, which means both high efficiency of 

the high emission and low threshold dose. The relationship between the TL signal and 
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dose applied is assumed to have a linear relation. In other words, a proportionality 

factor will always be included or implied in the considerations of response to dose. 

 

 Furthermore, TLDs are expected to have long term stability of the stored 

dosimetric information at the room temperature concerning thermal and optical 

fading. It is very important to get dosimeter with low fading. The greatest stability of 

signals on the electron traps is the preferred dosimeter either in medical or 

environmental fields. 

 

Moreover, it is preferred to get dosimeter with plan or fixed response for a 

wide range of energies. For precise dosimetric purposes, the proposed TLD should 

get a constant response over wide incident energy. To be used in radiotherapy 

application, TLD is expected to have close value of effective atomic mass with the 

biological tissue.  The ideal dosimeter is the mixture that have effective atomic 

number equal or close to the composition of human biological tissues of 7.4. The 

dosimeter with effective atomic number far from this composition is demanding for 

calibration and conversion factor.  

 

Minimum detectable dose determination is another important factor in 

determining the required dosimetric material that is appropriate. This lower dose or 

signal of an irradiated TLD is almost the same as the noise or background signal. 

Another official definition is “the dose which gives three times the standard deviation 

of the zero doses reading of the dosimeter” (Furetta et al., 2001).  

 

All these TL characteristics, plus the small size SiO2 optical fibre, the high 

flexibility, easy handling and low cost compared with other TL materials make the 

commercial optical fibre a very promising TL material for use in research, medicine, 

industry, reactor physics and a variety of other applications (Espinosa et al., 2006). 

This research is expected to have the way for the introduction of optical fibre as a 

new TL material in dosimetry. 
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1.6 Scopes of the research  

 
 

 This study may provide a basis for employing TL phenomena in various 

dosimetric situations.  Their general characteristics which include TL response, 

linearity, sensitivity, dose response, fading, reproducibility, minimum detectable 

dose, glow curve analysis and effective atomic mass, may provide ten types of doped 

SiO2 optical fibres. It consists of two types of Germanium (Ge) doped fibres named 

Ge (A) and Ge (B). Other material of TLDs investigated were Erbium (Er), 

Photosensitive Flat Fibre (PFF), Flat Fibre (FF), Dummy Flat Fibre (DFF), 

Aluminium+Thullium (Al+Tm), Photonic Crystal Fibre (PCF). PCF also came with 

different core diameter. They are 220 µm (MPCF 220 µm) and 2 mm               

(MPCF 2 mm).  This dosimeter may be suitable for a variety of applications 

particularly in radiation therapy. The TL responses of these TLDs were then 

compared to the well known, TLD-100 rod. 

 

 The irradiation on the core of the optical fibre has been conducted at dose 

levels ranging from 1 to 4 Gy of electron ionizing radiation source by using a linear 

accelerator Elekta Synergy machine (LINAC) at Pantai Hospital and Varian Clinac 

2100C at UMMC.  These dosimeters were irradiated to 6, 9 and 12 MeV of electron 

beams. The TL results obtained are compared with the commercially available TL 

material, TLD-100 rod.   

 

 The determination of the fading effect of all doped optical fibre has been 

perform using 6 MeV of electron irradiation for 1 – 4 Gy dose applied.  Readings of 

TL yield are obtained on 14 consecutive days following the time of irradiation, while 

the reproducibility characteristic were examined using 6 MeV electron with dose 1 

Gy produced by LINAC.   

 

 This research is also carried out to determine dopant concentration and Zeff for 

doped optical fibre using SEM.  By using SEM, the Zeff can be obtained by measuring 

the composition of the elements present.  In this study, the sample used is Ge (A),   
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Ge (B) and Er optical fibres only, due to unavailability of SEM equipment. Thus, 

study for the rest of doped optical fibres is not executed in this study.   

 
 
 
 

1.7 Organization of thesis 

 
 

 This chapter provides an introduction to the problems associated with TL and 

offers review of the existing literature regarding the subject.  The physics behind the 

TL theory is described in Chapter 2.  The methods of material preparation and 

analyzing the TL response will be described theoretically in Chapter 3.  In chapter 4, 

the results obtained are presented and discussed in detail.  Chapter 5 summarizes the 

findings of this investigation, and provides an outlook for future study in this area. 
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