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ABSTRACT 

 

 

In this work, a part of a coaxial transmission line is used as a sample holder 

where the propagation of electromagnetic waves in the range of 500 MHz is studied 

using three-dimensional (3D) finite-difference time domain (FDTD) method.  This 

study presents the results from the numerical simulations of electromagnetic waves in a 

mixture of dielectric materials. The effective relative permittivity of the mixture is 

calculated by recording one of the electric field components (Ey) of the transmitted and 

reflected electromagnetic pulses in the transmission line. The complex frequency 

spectra of these time-domain signals are then obtained by taking the Fourier transforms 

of the respective signals. These spectra are then used to calculate the complex 

transmission and reflection coefficients for the sample. The analysis of raw data is 

performed using open source package, GNU Octave. Finally a numerical procedure is 

developed to convert the raw data into an effective dielectric property of the mixture of 

materials.  The influence of water contents on dielectric properties is studied using 

samples made from different mixtures of soil, water, and air. The results show that the 

effective dielectric permittivities of the mixtures are highly dependent on the soil’s 

moisture content. Strong frequency dependence in the dielectric properties is observed 

especially at the low end of frequency range which can be attributed to the presence of 

the DC conductivity of water (5 𝜇S/m) in the mixture. In general the results are 

consistent with those calculated using Maxwell-Garnett mixing formula especially at 

the high end of the frequency range. 
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ABSTRAK 

 

 

 Dalam kajian ini, sebahagian daripada talian penghantaran sepaksi digunakan 

sebagai pemegang sampel di mana perambatan gelombang elektromagnet dalam julat  

500 MHz dikaji dengan menggunakan kaedah perbezaan terhingga domain masa 

(FDTD) tiga dimensi (3D). Kajian ini membentangkan hasil simulasi berangka daripada 

gelombang elektromagnet dalam campuran bahan dielektrik. Ketelusan relatif berkesan 

campuran dihitung dengan merekodkan salah satu komponen medan elektrik (Ey) dalam 

denyut elektromagnet yang dipancar dan dipantulkan dalam talian penghantaran. 

Spektrum frekuensi kompleks bagi isyarat domain masa ini diperoleh dengan 

menggunakan transformasi Fourier signal berkaitan. Spektrum ini kemudiannya 

digunakan untuk menghitung pekali pantulan dan penghantaran kompleks bagi sampel. 

Semua analisis data asal ini dilakukan dengan menggunakan pakej sumber terbuka, 

GNU Octave. Kemudian, suatu prosedur berangka dibangunkan untuk menukar data 

asal kepada sifat dielektrik berkesan campuran bahan. Pengaruh kandungan air pada 

sifat dielektrik dikaji menggunakan sampel yang diperbuat daripada campuran tanah, 

air, dan udara yang berbeza. Keputusan menunjukkan bahawa ketelusan dielektrik 

berkeasan bagi campuran adalah amat bergantung kepada kandungan kelembapan 

tanah. Pergantungan kuat terhadap frekuensi dalam sifat dielektrik dapat diperhatikan 

terutamanya di hujung julat frekuensi rendah yang boleh dikaitkan dengan kehadiran 

kekonduksian DC air (5 𝜇S/m) dalam campuran. Secara umumnya, keputusan adalah 

konsisten dengan hasil yang dihitung menggunakan formula percampuran Maxwell-

Garnett terutamanya di hujung julat frekuensi tinggi. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1  Background of Study 

 

 Accurate extraction of reflection coefficient, 𝛤 from finite-different time-domain 

(FDTD) simulations is an important practical problem. The value of  𝛤 is used to obtain 

the S-parameters of the analysed circuit. A common approach consists of matching the 

outputs by means of high quality absorbing boundary conditions (ABC’s) which 

permits to assume 𝑆11 to be equal to 𝛤 at the input. Recently, a more elaborate method 

has been proposed by Sharkov in 1995, which multiple calculations of reflection 

coefficient at different ports allow to obtain the S parameters with good accuracy, even 

for relatively poor ABC’s. In either case, the main problem of Γ extraction resides in 

separating the incident and reflected waves at the considered port. To solve this 

problem, two basic approaches have been reported so far (Sharkov, 1995). 

 The first approach consists of running the simulation twice or concurrently on 

two models, one run is for the analyzed circuit and the other for a nonreflecting 

structure with the identical input. The second simulation provides a pure incident wave. 

It can be reduced to the two-dimensional (2D) simulation of the cross section of the line 

(V.J.Brankovic, 1995), but at the expense of repcating it independently for each relevant 

frequency. Although good results in applying this approach have been reported, it is 
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clear advantage is the necessity of double simulation, which significantly increases the 

employed computer resources and complicates the use of program. 

 The second approach (W.K. Gwarek, 1988) assumes that for reference, either 

wave impedance or characteristic impedance of the line is a priori known (analytically 

or heuristically). After application of correction factors due to the shifts between the E 

and H fields in time and space, this method gives very good results for homogeneously 

filled transverse electromagnetic (TEM) lines (J. Fang, 1995) which are when the wave 

impedance does not change with frequency or waveguides when it changes according to 

an analytically known rule. However, in application to inhomogeneous quasi-TEM 

lines, even if the quasi-static wave impedance is known, significant errors appear due to 

dispersive properties that are difficult to predict. 

 

1.1.1 Effective Permittivity of Dielectric Mixtures 

 

The study of the electromagnetic behavior and characterization of dielectric 

mixtures is a classical problem which was already been addressed by Maxwell more 

than a century ago. Nowadays, this initial interest has not decayed at all. On the 

contrary, new artificial materials have renewed and drastically increased this attention 

due to the design of new and even unknown applications non-existing in natural media. 

The quasi-static initial works have been substituted or completed with high frequency 

applications, such as perfect lens manufacturing, sub-wavelength microwave devices, 

enhanced radiation by small antennas and others.  

In addition, the availability of powerful computers has also modified the way in 

which these and other related problems are addressed. In this sense, the first attempts to 

model dielectric mixtures were concentrated on obtaining theoretical formulas to predict 

the effective permittivity of composite materials consisting of mixtures with several 

homogeneous components. 
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The Maxwell Garnett (MG) mixing rule yields; 

𝜀𝑒𝑓𝑓 − 𝜀2

𝜀𝑒𝑓𝑓 +  (𝑑 − 1)𝜀2
=  𝑝1

𝜀1 − 𝜀2

𝜀1 + (𝑑 − 1)𝜀2
                                 (1.1) 

Another famous mixing rule is the Bruggeman formula (D.A.G Bruggeman, 1935); 

𝑝1  
𝜀1 − 𝜀𝑒𝑓𝑓

𝜀1 +   𝑑 − 𝑎 𝜀𝑒𝑓𝑓
=  𝑝2

𝜀2 − 𝜀𝑒𝑓𝑓

𝜀2 +  𝑑 − 1 𝜀𝑒𝑓𝑓
                              (1.2) 

In both equations, the dimensionally d equals 2 if the problem is two-dimensional or 

equal to 3 in the case of considering a three-dimensional media. Besides the two simple 

approximation described above, many other mixing models exists. Nevertheless, it can 

be shown that in most case, it is impossible to completely determine the effective 

permittivity by the volume fractions and effective permittivity of phases. 

 

1.1.2 Transmission Line Method 

 

The transmission line method (P.B. Johns, 1971) is used for the modeling of 

composite mixtures. As it happens with the FDTD method, transmission line method is 

a low frequency numerical method which has been extensively used for the modeling of 

wave propagation problems, mainly electromagnetic nature but also for problems in 

acoustic or particle diffusion. The method is not only a numerical model to solve certain 

phenomenon, but also a conceptual approach which does not consider analytical 

equations governing the phenomenon, but directly considers the original phenomenon 

by means of equivalent transmission line. This conceptual nature of transmission line 

method makes this method a powerful tool transmission which allows considering 

challenging problems from a hybrid numerical-theoretical point of view in an elegant 

and suitable way.  
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1.2  Problem Statement 

 

Beginning with the development of finite difference equations and leading to the 

complete FDTD algorithm, the FDTD modeling of problems can be undertaken with 

computer resources readily available to individual user. FDTD methods are relatively 

forward and intuitively follow from a physical understanding of Maxwell’s equation. 

The full range of useful quantities can be calculated such as the transmission or 

reflection of light. In this research, the suitable coaxial transmission line for broadband 

materials for high efficiency will be finder. To find the suitable one, it needs to do a lot 

of sample and consume a lot of time to make the sample and test it. So, by simulating 

each material, it can compute and found the better sample holder for broadband 

material. It also include under several theoretical approaches for modeling dielectric 

properties of heterogeneous media. Strong frequency dependence in the dielectric 

properties is observe especially at the low and high end of frequency range which can 

be attribute to the presence of the DC conductivity of water in the mixture. Effective 

dielectric properties of heterogeneous mixtures can be obtained from FDTD simulation 

using wave propagation on coaxial transmission line as a sample holder. 

 

1.3  Objective of the Research 

 

The main objectives of this study are: 

1. To simulate the effectiveness of the coaxial transmission line for characterization of 

dielectric materials for over a range frequency using FDTD method. 

2. To determine the broadband dielectric properties of heterogeneous materials using 

part of the transmission line as a sample holder.  

3. To compare the effectiveness of dielectric properties obtained to those calculated 

using mixture formula. 
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1.3 Scope of Study 

 

 

This research are studied using three-dimensional finite-difference time-domain 

(3D FDTD) method comes with commercial package otherwise known as EastFDTD. 

This research is using a transmission line model as a sample holder and uses the input 

for range of frequencies 100-500 MHz. This research includes three mixtures using 

sand, water, air, and soil models.  

 

1.5 Significance of Study 

 

FDTD methods are well suited for analysis of problems with complex 

geometrical features as well as those containing arbitrarily inhomogeneous materials. 

FDTD method actually can save more costs than the vector analyzer network (VNA) 

and others method to get the propagation electromagnetic wave due to the different 

frequencies. Also, the FDTD method does not require the derivation of a Green’s 

function or the solution of matrix equation. FDTD methods have emerged as the 

methods with arguably the broadest range of applicability. This is especially true for 

electromagnetic problems involving complex and dispersive media, photonics 

applications, and modeling of high speed circuits and devices. 
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