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ABSTRACT

The research focuses on the development of a virtual wheeled mobile robot
(WMR) simulator that integrates the essential aspects of motion planning, motion
control and virtual reality (VR) technique. The developed simulator may serve as a
virtual testbed for the repetitive experimentation of the proposed mobile robot
control scheme within a specified workspace or layout. The motion path planning is
based on the A*heuristic search algorithm with a specific reference to the six-
elementary jumps graph for the generation of a nonholonomic global collision-free
path environment. A robust active force control (AFC) strategy is incorporated as the
WMR motion controller that can accommodate effective disturbance compensation
control action in order to produce accurate trajectory tracking task even in the wake
of the modelled disturbances. A trajectory planner has been deliberately introduced
as the interface between the motion planner and the motion controller. Later, a VR
technique is applied to create the virtual environment (VE) that effectively integrates
the main elements and transforms the system into a virtual WMR simulator with the
added features that will enable researcher to perform experimentation of the mobile
robot. A case study is furnished in the research study taking into account a computer
integrated manufacturing (CIM) layout in which the proposed mobile robot is
supposed to navigate. A rigorous simulation study is performed to demonstrate the
effectiveness of the proposed system. Results clearly indicate the successful
realization as well as implementation of the developed virtual WMR simulator in
which the WMR has been conclusively shown to be very stable, robust and accurate

in its tracking ability.
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ABSTRAK

Penyelidikan ini adalah berkaitan dengan langkah menyepadukan beberapa
aspek, iaitu perancangan pergerakan, kawalan pergerakan, dan teknik realiti maya
(VR) dalam pembinaan suatu penyelaku maya robot mudah gerak beroda (WMR).
Penyelaku yang dibina ini dapat menyediakan satu pentas uji maya bagi penyelidik
untuk menjalankan eksperimen secara berterusan dan berulang terhadap skema
kawalan robot mudah gerak di dalam suatu ruang kerja yang tertentu. Secara amnya,
perancangan pergerakan robot mudah gerak adalah berdasarkan kepada algoritma
pencarian heuristik A* yang menggunakan graf enam lompatan asas dalam
perancangan secara global untuk memperolehi satu laluan tak holonomik yang bebas
daripada segala halangan. Sementara itu, skema kawalan daya aktif (AFC) juga telah
disepadukan ke dalam kawalan pergerakan robot mudah gerak supaya kawalan
tersebut adalah lasak dan berkeupayaan dalam memampas segala gangguan yang
wujud dalam sistem tersebut. Dengan ini, robot mudah gerak dapat mengikut laluan
dengan tepat dan berkesan. Dalam kajian ini, satu perancang laluan juga telah
dimodel dan diaplikasikan sebagai satu pengantara di antara perancang pergerakan
dan kawalan pergerakan. Seterusnya, teknik VR telah digunakan untuk membina satu
persekitaran maya (VE) yang menggabungkan kesemua unsur yang terlibat ke dalam
model penyelaku maya WMR. Satu kajian kes telah dilakukan dengan melibatkan
suatu susunatur pelan bagi sistem pembuatan berbantukan komputer bersepadu (CIM)
di mana robot mudah gerak diarahkan beroperasi dalam suasana kerja tersebut. Akhir
sekali, kajian simulasi telah dilakukan untuk mengkaji keberkesanan sistem yang
dicadangkan. Hal ini dapat diperhatikan hasil daripada keputusan simulasi yang telah
diperolehi yang menunukkan bahawa robot mudah gerak yang diuji dapat beroperasi
secara stabil, lasak dan tepat ketika menjalankan tugas menjejak laluan yang

direncanakan.
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CHAPTER 1

INTRODUCTION

1.1 General Introduction

Recent improvements in manufacturing technology related to computer
integrated manufacturing (CIM) environment result in hi gher demand and
expectation for more sophisticated automated components including the utilization of
automated guided vehicle (AGV), autonomous transporter or simply mobile robot.
The mobility and manoeuvrability of this particular robot provides an added
flexibility to the manufacturing system in terms of its capability to effectively
improve the manipulating or handling of materials within the bounded workspace of
the CIM layout. The limitation of the workspace for the static manipulator has
actually failed to meet all these requirements, and thus the robot should be granted
with the mobility (freedom to roam or move) feature. However, the expansion of the
mobile robot’s workspace on the other hand has also increased the risk of having the
robot to collide with obstacles or other “disturbances’ along its navigation path. It has
been proven that robots were absolutely unsafe and easy to collide among themselves
or with the environmental obstacles [1]. Therefore, it is important that the mobile
robotic system should be endowed with the appropriate capabilities and intelligence
with respect to motion planning and control. With drastic advances in current
electronic and computing technology, the research area on motion path planning has
expanded tremendously while at the same time, considerable efforts have been

devoted for the synthesis and analysis of the mobile robot contro] strategies [2].



Actually, motion planning is just one of the components of the more general
paradigm of robot control which consists of both motion planning and control
components [3]. Generally, motion planning breaks down the high-level control tasks
into the low-level motion execution commands [4]. At a higher-level, the motion
planning is responsible for the generation of a collision-free nonholonomic trajectory
with reference to the time optimality and the workspace layout [5]. Motion planning
involves various disciplines and subfields such as map building, search space
generation, graph searching, path refining, and trajectory planning. It is presumed
that the motion planning is performed in advance before the mobile robot is actually
operated in the workspace [6]. Meanwhile at a lower-level, a motion controller is
designed in such a way that the high-level ‘motion plan’ is refined and converted into
a series of motor execution commands which drives the mobile robot in the local

environment.

Usually, the workspace for the mobile robot is not ideal, i.e. it is full of
disturbances and uncertainties. These undesired forces tend to perturb the mobile
robot away from the desired course and consequently result in the degradation of the
performance of the mobile robot. Thus, appropriate control mechanism must be
incorporated into the robot system so that these unwanted features could be
effectively accommodated or compensated in such a way that the actual performance

is virtually unaffected.

With the emergence of virtual reality (VR), simulation study is no longer
limited to the analysis of graphs and numbers. In fact, VR has provided a new tool
for the effective virtual and graphical presentation of the simulation results which are
easier to be interpreted and understood. Besides, in some specific cases, the mobile
robot experimentation can be so complex that it is either too dangerous for the
human operators or too costly for the expenditure overheads. As a solution for these
situations, VR technique is sometimes applied, particularly during the simulation
process in order to cut down the experimentation cost or reduce the safety risk which
might be encountered by the human operators. Meanwhile, VR also provides an
artificial testbed which is very close to the reality for the simulation study and thus,

the results obtained through the simulator are more promising and reliable.



It is clear from the above description that the proposed research centres on the
three aspects related to motion planning, motion control and the application of virtual
reality technique. In this research project, a virtual environment (VE) of a CIM
facility at the Industrial Automation Laboratory, Faculty of Mechanical Engineering
(FME), Universiti Teknologi Malaysia (UTM) is modelled in advance prior to being
utilized as the VR-based testbed for the autonomous mobile robot motion control
simulator. Among other means of control strategies, active force control (AFC) as a
type of acceleration feedback control scheme is proposed and applied to the system
under study to effectively compensate the disturbances and uncertainties. Likewise, a
number of motion planning algorithms will be explored and used in the study. The
coordination and implementation of all the components shall be done according to

the objectives and scope outlined in the thesis.

1.2  Research Objectives

The aim of this project is to develop a virtual wheeled mobile robot (WMR)
simulator that comprises three elements (motion planning, motion control, and VR)
that are fully integrated and linked. The research is carried out towards approaching
the following objectives:

. To endow the WMR system with basic capabilities and intelligence in

collision-free motion planning.

o To incorporate AFC scheme into the nonholonomic WMR system for

a precise and robust trajectory tracking.
. To investigate the application of VR in mobile robot simulation and

control.

1.3 Scope of Study

The scope of the study shall encompass the following aspects.



. Implementation of a collision-free global path planning for the WMR
in a known stationary environment.

. Reference trajectory for the motion controller is generated from
geometrical collision-free path through parametric cubic spline
interpolation.

o Simulation is implemented with Microsoft Visual C++ which is
assisted with MATLAB software package.

o Application of VR using WorldToolKit as a means of a graphical
representation of the simulation results.

o The construction of virtual wheeled mobile robot simulator as a
testbed for the case study of the motion planning and control scheme
of the WMR in the CIM facility of the Industrial Automation
Laboratory, FME, UTM.

14 Problem Statements

Over the last two decades, the problems of motion planning and motion
control have been studied extensively but the two areas are often studied separately
or in an isolated fashion. Very few researches have studied the integration of these
two topics. Most of them either aim solely on the construction of the motion planner
or thoroughly concentrate on the modelling of the motion controller. Very few
studies have been carried out on the direct interaction or link between the motion
planner and motion controller. In fact, current researchers in this area have ignored
the dynamic effects of the WMR in their works. Extensive reviews on this research

will be discussed in Chapter 2.

In the motion planning study, most of the researchers gravitate on the
collision-free path planniné which gives only a sequence of time-independent
continuous configurations from the initial position to the goal position as in [7] and
[8]. There are also researchers who solely contribute to the time-indexed collision-

free trajectory formulation [9, 10]. Meanwhile, for motion control study, it is usual



that during the simulation process, the mobile robot is required to trace a very simple
reference trajectory in the form of either a straight line or a circular path 11, 12, 13].
Thus, the study of the motion controller is somewhat constraint along this line,
whereas it is sometimes necessary to drive the mobile robot to execute a very
complex trajectory tracking activity. Besides, the simulation also neglects the
presence of the obstacles in the workspace and thus, it relies very much on a
previously planned collision-free trajectory environment. All these factors contribute
to the reduced applicability of the motion planner and controller. To overcome this,
an interface between the motion planner and motion controller can be constructed to
transform the time-independent feasible geometry points from the motion planner
into time-dependent trajectory form. The resulting trajectory obtained from this
procedure is then fed into the motion controller as the desired reference trajectory.
The motion of the WMR should be restrained by the nonholonomic constraint
that consequently increases the degree of complexity in obtaining the solution for the
motion planning task. A nonholonomic constraint is expressed as a non-integrable
equation involving the derivative of the configuration parameters, and thus an
arbitrary path in the admissible configuration space does not necessarily correspond
to a feasible path [14]. Conventional path planning methods always assume that the
mobile robot as an omni-directional point mobile robot and travels slowly at constant
velocity [15]. In other words, the mobile robot is assumed to have excellent
manoeuvrability and it is able to access all of the directions of moving without any
constraints. In many applications, this condition is actually not realistic and in fact
degrades the performance of the motion controller. Therefore, nonholonomic
constraint of the WMR should be taken into consideration during the motion

planning process.

Besides, it is a fact that the WMR does not meet Brockett’s well-known
necessary smooth feedback stabilization condition [16]. Therefore, system with non-
integrable velocity constraint such as the WMR can not be stabilized to a point with
smooth static-state feedback control law. A more sophisticated motion controller,
such as the non-smooth feedback controller, time-varying feedback controller and
hybrid controller has to be modelled in order to stabilize the mobile robot to a point.

However, all these controllers are still not yet fully generic. In this research, the



mobile robot is stabilized about a reference trajectory instead of a point to ensure that
the motion controller is robust to the modelling and also the initial condition position

errors [17].

In most cases, the mobile robot is often assumed to operate in an ideal
workspace which is free from any disturbances and uncertainties. The existence of
these disturbances will usually and significantly degrade the system’s stability and
performance. In order to solve this problem, a robust control mechanism should be
incorporated into the proposed system. Thus, in this study, an AFC scheme is
employed in the design of the simulator serving as an explicit disturbance
cancellation control technique. Although AFC is renowned for its effectiveness in
disturbance compensation, the main drawback of this control scheme is the
computation Burden of th.e- esfimated inertia matrix (denoted as IN) which is required
in the AFC feed-forward loop [18] to trigger the control action. Several approaches
have been proposed for the appropriate estimation of the IN, such as referring to a
look-up table, through the crude approximation method or even intelligent means
[19, 20, 21]. In this research, a simple crude approximation method is considered

suffice and can be applied for the estimation of IN.

For the development of a virtual robot simulator, Abe et al. [22] pointed out
that there are several issues which need to be addressed, i.e. equality, variety,
synchronism, and interface. Among all these issues, the concept of equality is the
most important. The virtual environment should be modelled in such a way that there
should not be significant errors between the artificial world and the genuine world. It
is possible to express the real world in greater details or complexities, however it
takes longer time for the scene rendering to take place. Therefore, for practical
considerations, the modelled objects should be simple enough to ensure a fast
rendering process, and at the same time the virtual environment does not lose its

similarity or equality with the real environment.

For the computer-graphic generation procedure, a computer with massive
computing power and memory resources are the most fundamental issues that have
to be fulfilled first. As a Personal Computer (PC) is used in this project, it generally

has very limited resources for the implementation of virtual reality simulation task.



Therefore, in order to avoid the computer from running out of memory occurrence
during the simulation, the memory management aspect should be taken into serious
consideration to ensure a wiser use of the computer resources and at the same time

improve the virtual environment’s rendering capability.

1.5  Research Methodology

Motion planning and motion control of the mobile robot involves various
subfields and disciplines. Therefore, the coordination between all these subfields has
to be carefully managed and planned in order to ensure a systematic and smooth
implementation of the simulé;ién work. With the iricorpbration of VR into the
simulation, this has greatly increased the complexity of the simulation algorithm.
Figure 1.1 shows the research procedures applied in this project involving all the

three main components, namely the motion planning, motion control and VR.

With reference to Figure 1.1, the research begins with the fundamental study
of the nonholonomic WMR, where the kinematic and dynamic models of the WMR
are obtained. This is followed by the construction of the workspace for the WMR. A
binary map indicating the free and obstacle spaces inside the WMR’s workspace is
generated. The binary map is then invoked by the motion planner for the generation
of search space which is closely related to the configuration space (C-space) of the
mobile robot. The formulated search space is named as six elementary jumps graph
and from this search space, a collision-free path is found through the implementation
of the graph searching algorithm. Several graph searching algorithms or artificial
intelligence methods have been introduced in the past, such as breadth first, depth
first, Dijkstra’s method, and A* algorithm [23]. In this project, A* heuristic
algorithm is applied for a near-optimal and short collision-free path searching. The
path obtained is generally very rugged and coarse. Therefore, it has to be refined and
smoothened first by extracting the checkpoints from the planned path, where the
WMR is required to pass through all these checkpoints. Before the modelling of the
motion controller, the developed motion planning algorithm is simulated and

verified.
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Figure 1.1: Implementation procedures for the research

In order to ensure precise functionality of the nonholonomic WMR, the robot
should be well-controlled in such a way that it is able to track the desired trajectory
with very small margin of errors. In this research, RAC and AFC have been adopted
in the modelling of the motion control algorithm. For the testing of the proposed

motion control algorithm, several test and pre-defined trajectories are introduced,

namely the linear and circular trajectories. Besides, a number of disturbances or

loading conditions in the form of constant friction force, and harmonic disturbance

torques are also developed. The modelled trajectories and disturbances are utilised in

the motion controller system to determine the robustness and stability of the

nonholonomic WMR in trajectory tracking performance.




To link the motion planner with the motion controller, a trajectory planner is
developed. This is because the collision-free path generated by the motion planner is
in geometric form only. Therefore, the trajectory planner should be modelled in such
a way that it is able to transform the geometrical path into the time-indexed
trajectory. In this research, the parametric cubic spline interpolation method is used.
Through this technique, the trajectory planmer is able to generate the spline constants
for each arc or segment between the points of the path. With this calculated spline

constants, the reference trajectory for the motion controller can be obtained.

After the construction of the motion planner, motion controller and trajectory
planner, the virtual WMR simulator is then constructed. Generally, the VE consists
of two objects, namely the nonholonomic WMR itself and its working environment
which is assumed to be éiétic. The modelling of WMR and all the components within
its workspace shall be accomplished using 3D CAD software prior to the created
solid models being loaded into the VE. In this research, the CIM facility of Industrial
Automation Laboratory, FME, UTM has been chosen as the case study for the
application of the proposed virtual WMR simulator. The modelled virtual CIM
facility contains various information about the mobile robot’s workspace, such as the
three dimensional description of the objects’ geometry, texture mapping, floor plan

layout, viewpoints, and lights.

During the virtual WMR simulation, a topographical map in the form of
bitmap is first extracted from the virtual CIM’s orthographic view. It is then
classified into a binary map that depicts the mobile robot’s workspace into either free
space or obstacle space. This task is completed by simply stating that all the pixels
with different RGB colours that are in contrast with the floor (of CIM) are classified
as obstacle space. This binary map is then used by the motion planner in the
generation for a geometrical global collision-free path through A* heuristic
algorithm. Through the trajectory planner, the planned geometrical path is
transformed into time-indexed trajectory which is then fed into the motion controller.
From this trajectory, the motion controller generates a series of motor execution
commands that drive the mobile robot on track. The controlled motion is then
directed to the virtual WMR before the scene of the VE is rendered. Meanwhile, the

current position and orientation of the virtual WMR is fed back into the motion
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controller for the estimation of the trajectory tracking errors. Towards the end of the
research, the simulation results obtained from the virtual WMR simulator are finally

analyzed and verified.

1.6 Equipments and Tools Requirements

The implementation of this project requires several equipments for the
construction of the virtual autonomous mobile robot simulator. Due to the potential
intense graphical processing and computation burden, a PC with excellent computing
resources and fast processing capability is required. For the simulation study,
Microsoft Visual C++ is chosen as the main programming platform since it is widely
supported by other software, such as MATLAB and WorldToolKit. MATLAB
library provides the programming-ready mathematical functions which are required
during the simulation. Meanwhile, WorldToolKit which is originally based on C
functions has greatly simplified the implementation of VR into the simulation.

In this project, the CIM facility in Industrial Automation Laboratory, FME is
chosen for the case study to imitate the actual manufacturing environment in which
the robot is supposed to navigate. A complete knowledge of the Industrial
Automation Laboratory is thus required for the VE modelling. To facilitate VE
modelling, 3D CAD sofiware shall be used for the objects modelling tasks in the
laboratory. The attributes of all the virtual objects, in terms of the texture mapping,

materials designation, and glossiness are assigned before they are loaded into the VE.

1.7 Research Contribution

One of the main contributions of this research work is the construction of a
virtual WMR simulator as a platform for the designing, developing and testing of the
autonomous mobile robot motion planning and control algorithm. In most cases, real

world is far too complex and involves a number of risks for the actual physical
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testing to take place. Therefore, a simulation testbed which is designed to mimic the
real world and contains all the necessary information is required to serve this
purpose, subsequently providing a more reliable and generic experimentation of the
newly developed and proposed algorithms. Meanwhile, the interactivity between the
autonomous mobile robot with its virtual environment under the operation of this
newly designed algorithm can also be analyzed in depth and more importantly the
VR testbed is able to provide the realistic scientific visualization of this simulation
module. The knowledge learnt through the simulation may potentially be used by the

physical vehicle in real world operation.

This research shall also incorporate the AFC scheme into the mobile robot
motion controller. In real world application, the mobile robot’s workspace is not
ideal, in the sense that the mobile robot is always disturbed by “noises’ and
‘uncertainties’, such as the friction forces, wind and gravity effects. It has been
proven that conventional controller alone, such as proportional-derivative (PD)
controller is not sufficient to ensure a robust and accurate operation of the mobile
robot. In fact, the performance of the controller degrades significantly once the
mobile robot is operated at high speed or disturbed by external forces [24, 25, 26].
Therefore, AFC is incorporated into this simulator as the disturbance compensation
scheme. In order to replicate the real world condition during simulation, a number of
disturbances have been modelled and applied such as the constant drag force and the
harmonic forces. With the incorporation of AFC into the mobile robot motion
controller, the robot should be able to achieve stability and convergence even in the

presence of the disturbances.

1.8  Organization of Thesis

The thesis consists of six chapters. Chapter 1 introduces and mainly discusses
the basic information about this research project which is related to the project’s
research objectives, scope, problem statements, research methodology and tools, and
contributions. Chapter 2 reviews a number of research issues pertaining to the subject

focus of the study, i.e. the development of virtual WMR simulator. This includes the
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aspects of path planning, search space generation, graph searching, trajectory
planning, motion control, and virtual reality. A theoretical modelling on the
kinematics and dynamics of the proposed WMR is also given in this chapter. Chapter
3 provides a brief description about the global collision-free path planning
considering a number of appropriate motion path planning algorithms applied to
WMR. A simulation study is carried out and the results relevantly discussed. Chapter
4 describes the modelling of the nonholonomic mobile robot motion controller that
incorporates the robust AFC scheme. The simulation aspect is also highlighted and
the chapter ends with the discussions of the simulation results. Chapter 5 describes
the integration of motion planning and the motion control of the system with a
particular emphasis on the application of the VR technique. In this chapter, the
modelling of the trajectory planner and the creation of virtual element with respect to
the case study are introduced followed by the presentation and discussion of the
simulation results. Finally, Chapter 6 summarizes the research work and
consequently recommends further works that can be done in future to implement the

research study.
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discarded. In future researches, this problem should be further investigated so that
none of these potential paths are neglected. Generally, this involves the study of local
path planning which is responsible for the calculation of the mobile robot’s desired

orientation.

It is observed that the computation time for the simulation is generally very
slow. This is because of the intensive calculation during the solution of the ordinary
differential equation by MATLAB. As a result, this has reduced the rate of frames
rendering per second and thus reduced the feeling of immersive within the virtual
environment. In order to solve this problem, it is reccommended that the distributed
computing method should be applied where the solution for a tedious task is shared

over a network of computers.

For effective cancellation of the undesirable disturbances, the estimated
inertia matrix of the dynamic system through the AFC scheme has to be properly
approximated. In this research, the inertia matrix is obtained through crude
approximation method which is rather crude and unsystematic. Therefore, it is
recommended that in future, a more proper way of estimating the inertia matrix
should be employed, for example through the use of intelligent mechanism such as

fuzzy logic, neural networks, iterative learning algorithm or other Al methods.

PERPUSTAKAAN SULTANAH ZANARIAH
Universiti Teknologi Malaysia

21 NOV 2005
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