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Abstract

The purpose of this study is to develop a model-based methodology for integration of process design and control
(IPDC) problems. The new methodology is organized in four hierarchical stages based on a decomposition of the
general optimization problem. The objective of each stage is to define the search space and enumerate/test a set of
promising (feasible) candidates. In each subsequent stage, the search space is reduced until in the final stage only a
small number of candidates need to be evaluated. Therefore, while the problem complexity increases with every
subsequent stage, the dimension and size of the problem is reduced. The proposed methodology does not have
difficulties in handling complex problem formulations with large number of variables and constraints, and its

applicability is highlighted in relevant case studies.

Introduction

Traditionally, chemical process design and process
control are two separate engineering problems that are
performed independently, with little or no feedback
between each other. Figure 1 shows a schematic
representation of the two problems. That is, first the
process is designed to achieve an optimum objective
based on a fully specified nominal case. Only after the
process has been designed the operability aspects are
taken into account. These might include the control
system design and the safety, reliability and the
flexibility of the design. Chemical processes therefore
tend to be highly constrained with few degrees of
freedom left for process control purposes. This
conventional sequential-forward approach has some
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inherent limitations such as dynamic constraint
violations, process overdesign or under performance
and does not guarantee robust performance [1]. In
practice, process design is often tackled by chemical
and process engineers, while process control is often
done by control and instrumentation engineers.

To overcome the limitations encompassed by the
conventional approach, a simultaneous approach for
exploiting interactions between process design and
process control that will include the process design
variables as optimization variables whilst, at the same
time, optimizing the controller tuning parameters, is
needed. The potential economic benefits of such a
simultaneous approach are also investigated.
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Figure 1: Conventional solution approach for process design and control problems.
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Figure 2: New approach for simultaneous solution of process design and control problems.

Figure 2 illustrates the simultaneous approach for
process design and process control. Using this approach,
both process design and control will share the same
variable(s) in their decisions.

One important question needs to be answered here.
Can we optimize the design and control decisions
simultaneously to maximize the overall process
performance in the presence of the operational and
model uncertainty? Or, can chemical and process
engineers sit down together with control and
instrumentation engineers to make simultaneous
decisions to guarantee robust performance of the new
processes?

The challenges of the integration of process design
and control (IPDC) were clearly identified and
discussed by several group of researchers [2].

The subsequent section will explain the objective of
the entire study. A new problem formulation based on
decomposition methodology will be presented in
Methodology section. Conceptual Validation section
will highlight the applicability of the proposed
methodology in solving simple optimization problem.
This article closes with conclusions and suggestion for
future work.

Specific Objective

The aim of this study is to develop a systematic model-

based methodology that is capable of exploiting the

interactions between process design and process control
without having difficulties in handling complex problem
formulations with large number of variables and
constraints.

In general, the solution of this IPDC problem will
require the determination of:

e the optimal process design, in terms of structural
decisions and connectivity (discrete decisions), and
the operating parameters/conditions such as reactor
volume, column length, etc. (continuous decisions);
and

¢ the optimal control scheme design, in terms of the
control configuration, control type, etc. (discrete
decisions), and the tuning parameters for the given
control structure (continuous decisions).

Methodology

Figure 3 shows an overview of the new IPDC
methodology. The new methodology is organized in
four hierarchical stages based on a decomposition of the
general IPDC problem into four subproblems: (1) pre-
analysis stage, (2) steady-state analysis stage, (3)
dynamic analysis stage, and (4) evaluation stage. The
objective of each stage is to define the search space and
enumerate (and/or generate) a set of promising
candidates. In each subsequent stage, the search space is
reduced until in the final stage only a small number of
candidates need to be evaluated. Therefore, while the
problem complexity increases with every subsequent
stage, the dimension and size of the problem is reduced.

Process flowsheet (mass & energy balances)

Stage 1: Pre-analysis Stage. Pre-analysis includes identification
of key components, problem and objective function definition,
reaction analysis, mathematical model development, degree of
freedom analysis and variables classification.

Stage 2: Steady-state Analysis. Identify the feasible region
using static bifurcation diagrams. From this region, candidate
feasible operational scenarios are generated and analyzed using
steady-state controllability analysis. A steady-state economic
analysis is also performed based on controllable scenarios and
ranked according to their capital cost.

Stage 3: Dynamic Analysis. The selected scenarios from Stage 2
are then transformed into their corresponding dynamic models in
Stage 3. Their controllability performances are analyzed in terms of
frequency analysis for stability, RGA for control structure design,
and PRGA, CLDG and RDG for controllability performance.
Candidate for operational scenarios are further refined and tested
in closed-loop analysis to study the controller performances and
from this, a final set of candidates are identified.

Stage 4: Evaluation Stage. The best scenario in terms of closed-
loop performance and economics is identified as a benchmark,
while the rest are ranked in ascending order according to a set of
performance criteria. The scenario with the lowest cost is
implemented and verified first through rigorous simulation.

Figure 3: Overview of the new IPDC methodology.



Problem formulation

The general IPDC problem is treated as a mixed-
integer dynamic optimization (MIDO) problem where
control-related dynamic properties are considered
simultaneously with ESSE Index, which is index of
performance that may include weight on the Economic,
and/or  Sustainability, and/or  Safety, and/or
Environmental Impact on the plant in order to design a
cost effective, sustainable, and highly controllable
process. It can be conceptually posed as follows:

Minimize  ESSE Index which may include weight on
the Economic, and/or Sustainability, and/or
Safety, and/or Environmental Impact on the
plant

Subjectto Differential-Algebraic ~ Process  Model,
Inequality Path  Constraints, Control
Scheme  Equations, Process Design

Equations, Feasibility of Operation, Process
Variability Constraints

A general formulation for IPDC problem can be
presented as:

reaMin P =0ldx(t)u(t) (1)
s.t.
Process control constraints
x = f(x(t)u(t)d,0(t)t) )
Xiin < X(t) < Xay @3)
ud, <ut)<ul,, @)
h?(d,x(t) u(t)©(t)t)=0 (5)
g°(d.x(t)ult)eft)t)<0 (6)
Process design constraints
f2(d,x*,u*)=0 )
Xnin < X° < X, ®)
Upin SUS <US (9)
he(d,x*,u*,0°)=0 (10)
9°(d,x*,u*,@°)<0 (11)
Plantwide control constraints
yeloif® (12)

where x is the vector of state variables, u the vector of
control variables, © the vector of disturbances, and d is
the vector of design variables. Superscripts d and s
denote dynamic and steady-state of relevant variables,
respectively.

In the objective function (Eq. 1), ®, represents the
ESSE Index which may include weight on the
Economic, and/or Sustainability, and/or Safety, and/or
Environmental Impact on the plant related to dynamic
properties. The system dynamics is described by a set of
differential equations given in Eq. 2. Egs. 3 - 4 are,
respectively, the dynamic bounds on system and control
variables. In Egs. 5 - 6, signify possible dynamic
equality and inequality constraints, respectively.

The steady-state system is described by the function
given in Eq. 7. The steady-state bounds on system and
control variables are represented in Egs. 8 - 9,
respectively. In Egs. 10- 11, the possible steady-state
equality and inequality constraints are expressed,
respectively.

In Eq. 12, plantwide control structure selection is
considered using binary numbers. NC represents the
total number of possible plantwide control structure
from controller superstructure.

The IPDC problem, which is combinatorial in
nature, can be solved in many ways, but finding the
optimal solution strategy is very important, especially
when the constraints representing the process models
are nonlinear or their number is large thereby causing
difficulties in convergence and computational
efficiency. Due to the large number of constraints
involved, the feasible region can be very small
compared to the search space. All of the feasible
solutions to the problem may lie in that relatively small
portion of the search space. The ability to solve such
problems depends on the ability to identify and avoid
the infeasible portion of the search space. One way to
this is by decomposing the problem into subproblems,
which are relatively easy to solve.

In Figure 4, we present a decomposition
methodology of general IPDC problems into
subproblems that correspond to their subsequent stages
of the new model-based IPDC methodology. In this
way, the solution of the decomposed set of subproblems
is equivalent to that of the original general IPDC
problem. The advantage is a more flexible solution
approach together with relatively easy to solve
subproblems and a solvable final optimization
subproblem no matter how complex the problem
formulations are.

Conceptual Validation

The solution through the proposed decomposition
methodology is illustrated with the help of an analytical
example. The objective here is to highlight the
applicability of the decomposed methodology to solve a
simple optimization problem. This is illustrated through
a small MINLP problem [3], which is solved through
the decomposition approach.

min 2x; +3x, + 1.5y, +2y, —0.5y, (v1)

subject to
x?+y,-1.25=0 (v2)
x3° +1.5y,-3=0 (v3)
X, +y,-1.6<0 (v4)
1.333%x, +y, -3<0 (v5)
Xy, X, 20 (v6)
Y1y, —1= 0 (v7)
“Yi—Y2tYs <0 (V8)
Y1:¥Y2:Y3 = {011} (v9)
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Figure 4: Decomposition methodology.

The above MINLP problem is decomposed using the
proposed decomposition methodology as shown in the
Figure 5. Since this is an MINLP problem, then it is
only decomposed into 3 stages where the Stage 3 of
dynamic analysis is skipped since there are no dynamic
constraints involved.

The MINLP problem is reduced to an NLP problem
for each set of candidates selected from Stage 2. For the
selected feasible solutions, the NLP problems are solved
using ICAS MoT, and the solution having the minimum
objective function value is the optimal solution for the
MINLP problem. The solutions are given in Table 1.
The smallest objective function value is 7.9311,
corresponding to (1,1,1). Therefore, the optimal solution
for the MINLP problem using decomposed
methodology, which could also have been obtained by
other method in [3], is

(V1 Y2:Y3: X1, Xz, Fopy )= (1,1,1,0.5000,1.3103,7.9311)

Table 1: Solution of NLP Problems

candidate X, X, Foj
(1,1,1) 0.5000 1.3103 7.9311
(1,1,0) 0.5000 1.3103 8.4311
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Figure 5:  Decomposition methodology of small
MINLP example problem.

Conclusions and Future Work

This article presents a new model-based methodology
for solving simultaneous process design and process
control problems. The methodology is organized in four
hierarchical stages based on a decomposition of the
general optimization problem into four sub-problems:
(1) pre-analysis stage, (2) steady-state analysis stage, (3)
dynamic analysis stage, and (4) evaluation stage. The
objective of each stage is to define the search space and
enumerate (and/or generate) a set of promising
candidates. In each subsequent stage, the search space is
reduced until in the final stage only a small number of
candidates need to be evaluated. Therefore, while the
problem complexity increases with every subsequent
stage, the dimension and size of the problem is reduced.
The applicability of this methodology was highlighted
through a simple conceptual example. The result shows
that the new methodology is able to find the same
solution reported by others. Current and future work is
involved with the further development of IPDC and
illustrate its application through case studies involving
reactor-separator-recycle systems.
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