0D Feature In 3D Planar Polygon Testing For $3 Đ$ Spatial Analysis

Chen Tet Khuan and Alias Abdul-Rahman

Department of Geoinformatics, Faculty of Geoinformation Science and Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Malaysia

(kenchen, alias)@fksg.utm.my

Abstract

In this paper, we discuss the problem of 0D feature-in-3D planar polygon. It has been recognized that 3D union and 3D intersections are among important spatial operators in 3D GIS. A 0D feature-in-polygon test is one of the problems in 3D GIS. Though it is a classic problem, however, it has not been addressed appropriately in the literature. Moreover, the $O D$ feature-in-polygon query is rather complicated if it is implemented into 3D spatial information system. From the aspect of 3D spatial analysis, the general 0D feature-in-3D planar polygon problem should be formulated in a suitable way. Our basic idea is to solve a general 0D feature-in-3D planar polygon problem that includes all special conditions. The method addresses an essential mathematical algorithm that applicable for real objects and provides an approach for implementation in further 3D analytical operation, e.g. 3D union or 3D intersection for 3D GIS.

Key words: 0D feature, 3D planar polygon, and 3D GIS

1. Introduction

Ir GIS, a very natural problem that implements the field of computational geometry is the determination of 0 D feature in polygon. By given a 0 D feature, N and an arbitrary closed polygon P represented as an array of n points, $P_{0^{\prime}} P_{1^{\prime}} \ldots, P_{n-1^{\prime}} P_{n}=$ $P_{0^{r}}$ determine whether N is inside or outside the polygon P. In literature (Foley, et. al, (1990); Haines, (1994b); Harrington, (1983); Nievergelt and Hinrichs, (1993); O'Rourke, (1998); Sedgewick, (1998); Weiler, (1994); Woo et. al, (1997)), two categories of definitions can be found. The first one is the even-odd, in which a line is drawn from N to some other point S that is guaranteed to lie outside the polygon. If this line $N S$ crosses the edges $e_{1}=$ $P_{t} P_{t+1}$ of the polygon an odd number of times, the N is inside P, otherwise it is outside (see Figure 1a). This rule can easily be turned into
an algorithm that loops over the edges of P, decides for each edge whether it crosses the line or not, and counts the crossings. We discuss these issues in detail in Section 4. The second one is based on the winding number of N with respect to P, which is the number of revolutions made around that point while traveling once along P. By definition, N wil! be inside the polygon, if the winding number is nonzero, as shown in Figure 1(b).

From these two methods, various implementations of these strategies exist like (Franklin, (2005); Haines, (1994a); Haines, (1994b); Mehthorn and Näher, (1999); O'Rourke, (1998); Sedgewick, (1998); Stein, (1997); Theoharis and Böhm, (1999)), which differ in the way to compute the intersection between the line and an edge in order to determine whether the 0D feature is inside or outside the polygon. However, some of the
problems need to be investigated, since these determination strategies are rather fragmented, i.e. in term of applying into 3D planar polygon instead of 2D, or if y-intercept crosses the vertices or line of 3D polygon in certain special cases.

4 4

(b)

Figure 1: Determination of 0D feature in polygon, (a) odd-even, and (b) winding methods

In this paper, we focus on simple but complete strategy in determining the 0D feature insideor outside 3D planar polygon. Section 2 discusses the 3D plane equation and covers some examples in order to verify the mathematical function. Then, the determination of OD feature on/above/below the 3D planar polygon is described in section 3. The determination will only be continued to next stage if this test is successfully passed, i.e. 0D feature is on the 3D planar polygon. The determination of 0D feature is located inside or outside 3D planar polygon will be discussed in detail in section 4 . The paper presents the experiments on the algorithm in section 5 and finally, the concluding remarks of the work.

2. The 3D Plane Equation

π

There are many ways to represent a plane . Some work in any dimension, and some work only in 3D. In any dimension, one can always specify 3 non-collinear points $\Gamma_{n 1}=\left(X_{11} Y_{(1)} Z_{0}\right)$, $P_{1}=\left(X_{1}, Y_{1}, Z_{1}\right), P_{2}=\left(X_{2}, Y_{2}, Z_{2}\right)$ as the vertices of a triangle, the most primitive planar object. In 3D, this uniquely defines the plane of points (x, y, z) satisfying the equation:

$$
\begin{aligned}
&\left|\begin{array}{lll}
X-X_{0} & Y-Y_{0} & Z-Z_{0} \\
X_{1}-X_{0} & Y_{1}-Y_{0} & Z_{1}-Z_{0} \\
X_{2}-X_{0} & Y_{2}-Y_{0}^{0} & Z_{2}-Z_{0}
\end{array}\right|=0 \quad \text { (Eq. 1) } \\
& \mathbf{A x}+\mathbf{B y}+\mathbf{C z}+\mathbf{D}=0 \quad \text { (Eq. 2) }
\end{aligned}
$$

plane equation, with normal, $\mathrm{Pn}=(\mathrm{A}, \mathrm{B}, \mathrm{C})$, and (x, y, z) denotes any point on the plane

For any plane more than 4 vertices, plane equation is same as the equation of a triangle formed by any 3 points. As both polygon and triangle in Figure 2 have the same plane equation if and only if they are co-planar. In order to compute the equation ot any polygon, which more than 3 vertices, any 3 vertices can be used to calculate the piane equation. Figure 3 denotes an example of calculating the plane equation from rectangular.

Figure 2: Both Triangle and polygon are coplanar

Figure 3: Rectangular
To calculate the plane equation of a polygon that more than 3 vertices, e.g. rectangular from Figure 3, only 3 vertices will be used. In the 1st case, $\mathrm{P}_{1^{\prime}} \mathrm{P}_{2^{\prime}}$ and P_{3} are used. The plane equation of the rectangular in Figure 2 is: Given $P_{1}=(5,5,10), P_{2}=(5,10,10)$, and $P_{3}=$ 10.1n.10):

	$\left\lvert\, \begin{array}{ll} X & -X_{1} \\ X_{2} & \cdots X_{1} \\ X_{3} & -X_{1} \end{array}\right.$	$\begin{aligned} & Y-Y_{4} \\ & Y_{2}-Y_{1} \\ & Y_{3}-Y_{1} \end{aligned}$	$\begin{aligned} & Z-Z_{1} \\ & Z_{2}-Z_{1} \\ & Z_{3}-Z_{1} \end{aligned}$	-	0
\Rightarrow	$\left\lvert\, \begin{aligned} & X-(5) \\ & (5) \\ & \text { (10) } \\ & (10) \\ & \text { (5) }\end{aligned}\right.$	$\begin{gathered} y-(5) \\ (10) \cdots \\ (10)-(5) \end{gathered}$	$\begin{gathered} Z- \\ (10) \\ (10) \end{gathered}$	$\begin{aligned} & (10) \\ & (10) \end{aligned}$	
	$(X-5) \bullet[0-0]-(Y-5) \bullet[0-0]+(Z-10) \bullet[0-25-0$				
\Rightarrow	$[0 X-19 Y-25 Z+250] /-25=0 /-25$				
	$0 X+D Y+$	$2-10$	0		

This determinant is satisfying general form of

In order to prove the plane equation is unique for any co-planar polygon, P_{1}, Γ_{2}, and P_{1} are used. In the $2^{n 4}$ case, the plane equation is:
Given $P_{1}=(5,5,10), \Gamma_{2}=(5,10,10), P_{4}=(10,5,10)$;

$$
\begin{align*}
& \rightarrow \left\lvert\, \begin{array}{cccc}
X & (5) & \gamma-(5) \quad Z \quad(10)
\end{array}\right. \\
& \left\lvert\, \begin{array}{ccccc}
(5) & (5) & (10) & (5) & (10) \\
-110) \\
(10) & (5) & (5) & (5) & (10) \\
(110)
\end{array}\right. \\
& \rightarrow \quad\{Y-5) \bullet[0-0]-(\xi-5) \bullet[0-0] 1(\%-10) \bullet[0- \tag{0}\\
& \therefore \quad[6 x \quad 0 Y-2571250] \text {] } 3
\end{align*}
$$

These 2 cases prove that:
For any polysom that more than \hat{i} zertices, the Flane staition is whitute and it ctm the computed wing only 3 eertices.

3. Determination of $0 D$ Feature an/above/ below 3D Planar Polygon

To determine a 0 D tenture is inside a 3 D planar polygom, one important condition must be fulfilled in the first place. The 0D feature must located an the 3 D plane. In order to verify this condition, the plane equation from Eq. (2) is followed:
$A x+B y+C \angle+[)-0, \quad$ (from F_{c}. 2)
with normai, $1_{n}=(A, B, C)$, and 0D feature $=$ ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)

Take note that the 3D polygon is created from a set of points. The sequence of this point set is important in determining of oD feature is locaked ont, above or betow a 3 D planar polygon. If the sequence of points is counter-clockwise, any point that fuitils, $A x+B y+C z+D=0$ denotes that a OD feature is above the 3D plane. Conversely, a OD feature is located betow the 3 D plane when $\mathrm{Ax}+\mathrm{By}+\mathrm{C} z+\mathrm{D}<0 . \wedge 0 \mathrm{D})$ feature is located on the 3 D plane when $A x+$ $B y+C z+D=0$. Figure 4 denotes the a $0 D$ feature is located in two different cases.

Figure 4: The point set sequence of a polygon: (a) counter-clockwise, and (b) clockwise

4. Determination of 0 D Feature inside/ outside 3D Planar Polygon

After a (0D feature is verified either om/ atwe befow a 3D planar polygon, the second condition is followed. The OD feature must within the boundary or interior of a 3 D planar polygon. To determine whether a OD feature is inside or outside a 3 D polygon, the λY plane is tested in the first place. If a OD feature is located at the interior of 3 D polygon, the $Y Z$ plane test will be ignored. This is because only od teature that is co-planar with the 30 polygon will be tesked. If the OD feature is located above or below the 3D planar polygon, it is definitely oulside the polygon. Conversely, if the OD feature is located at the border of 3 D polygom, the Y 7 plane test will be carried out.

4.1 The XY plane test

In most of the common test for detecting point inside polygon, either x-intercept or y-intercepl ray are implemented. Figure 5 denotes a simple test for point inside 2 D) polygon. If the amomat of intersecting point between y-intercept ray and the border of polygon is even, then the point is outside the polygon, otherwise is inside.

(a)

Figure 5: Amount of intersecting point, (a) add, and (b) even

However, there are 4 special cases exint in reality. There are:

Case 1: y-intercept ray intersects the border of polygon at a line (one of the intersection point)

In certain case. the y-intercepl ray crasses the border of polygon at a line. Figure 6 denotes the example of intersection between
y-intercept ray and border of polygon. In this case, the intersection will bo considered. The total number of intersection (from Figure 6a) is 1 , although the y-intercept ray intersects 2 vertices or a line.

1:1

Figure 6: The intersection between y-intercept ray and border of polygon,
(a) Inside, and (b) Outside

Case 2: y-intercept ray intersects the border of polygon at a line (NOT One of the intersection point)

In this case, the y-intercept ray also crosses the border of polygon at a line. Figure 7 denotes the example of intersection between y-intercept ray and border of polygon. The internection will not be considered. The total number of interscetion (from Figute 7d) is 1, although the y-intercept ray intersects a line and a verlex.

Figure 7: The intersection between y-intercept ray and border of polygon,
(a) Inside, and (b) Outside

Case 3: y-intercept ray intersects the border of polygon at a point (one of the infersection point)

In certain case, the y -intercept ray crosses the border of polygon at a point. Figure \& denotes the example of intersection between y-intercept ray and vertex of polygon. In this case, the intersection will be considered. The lotal number of intersection (from Figure 8a) is 1 .

Figure 8: The intersection between y-intercept ray and border of polygon,
(a) Inside, and (b) Outside

Case 4: y-intercept ray intersect the border of polygon at a line (NOT one of the intersection point)
In certain case, the y-intercept ray crosses the border of polygon at a point. Figure 9 denotes the example of intersection between y -intercept ray and vertex of polygon.

Figure 9: The intersection between y-intercept ray and border of polygom,
(a) Inside, and (b) Outside

In this case, the intersection will not be considered. The latal number of intersection (from Figure 9 a) is 1 , allhough the y-intercept ray intersects 2 vertices.

4.2 The YZ plane test

The YZ plane test will be carried out if and only if the UD feature is located at the border of the 3D polygon at $X Y$ plane. Figure 10 denotes the OD feature is located at the border of 31) polygon at XY plane.

Figure 10: 0D feature is located at the border of 3 D polygon at XY plane

In certain case, OD feature is located at the

Geoinformation Science Journal, Vol. 6, No. 1

border of 3D polygon at XY plane, but it is located outside the polygon in reality. Figure 11 denotes the OD feature is located at border of 3D polygon at XY plane but outside the polygon in reality. Figure 11; 0D feature is located at border of 30 polygon at $X Y$ plane, but (a) outside, and (b) inside polygon in reality

Refer to the Figure 11, the $Y Z$ plane test needs to be carried out in order to verify correctly the 0D feature is located either inside or outside the 3D planar polygon. However, the $Y Z$ plane test is same as the $X Y$ plane. The $Y Z$ test needs also to compute the amount of intersection between the y-intercept ray of 0 D feature and border of 3D polygon. If the amount is
even, the $0 D$ is located outside the polygon, otherwise is located inside the 3D polygon. All the special cases mentioned in $X Y$ plane test will need to follow as well.

5. The Experiment

The experiment is implementing the $\mathrm{C}++$ program to test the approach mentioned in section 2, 3, and 4. Figure 12 denotes the methodology for the determination of the 0D feature is located insideloutside 3D planar polygon.

Figure 12: The procedure for determining 0D feature inside/outside 3D planar polygon

Geoinformation Science Journal, Vol. 6, No. 1

Figure 13: (a) Experiment, and (b) Software module

The experiment is given in Figure 13 is to verify the capability of the methodology from Figure 12 in producing the correct result. C++ program is used to create a software interface that consists of all related algorithms given from Figure 11. In this experiment, a 3D polygon created from 4 vertices is tested. There are $P,(300,600,300), P_{2}(300,300,300)$, $P_{3}(300,300,600)$, and $P_{4}(300,600,600)$. The 0 D feature is given as $\mathrm{N}(300,400,400)$. The software module read the dataset from a text file that consists of the 3D polygon and 0D feature dataset. The interface read P1 as the ID number for 3D planar polygon, whereas N 1 is the ID number for 0D feature (see Figure 13b). The following triplet is the dataset for 0D feature. Later on, the vertices for 3D polygon are followed until the character "END" is reached. The result from the implementation is given as a test file (see Figure 14).

Figure 14: The result

6. Concluding Remarks

The paper presents an approach for determining 0-D feature inside/outside 3D planar polygons. This research work could provide an initial analytical computation for 3D spatial analysis as they are needed in such 3D spatial systems (i.e. 3D GIS). Providing such operations for the systems is one of our research efforts. The proposed method and algorithm was programmed using C++ language. Initial results show the methodology works for the typical 3D planar polygons. These works could be extended and incorporated into 3D GIS analytical operations problems include:

1) $3 D$ union,
2) $3 D$ intersection, and other operations.

Obviously, the initial outcomes of this experiment certainly would be beneficial to the development of 3D GIS software.

References

「1] Foley, J.D., A. van Dam, S.K. Feiner, I.F. Hughes (1990), Computer Graphics: Principles and Practice, 2nd Edition, AddisonWesley.
[2] Franklin, R. (2005), [NDOLY - Point molusiom in polypon ion, http:// www.ecse.rpi. edu/Jtomepages/wrf/geom/pnpoly.html
[3] Haines, F. (1994a), point in polygon insute/ontside code, http://www.acm.org/ tog/GraphicsGems / gemsiv/ptpoly_haines/ ptinpoly.c
14) Haines, F. (1994b), Pomb in polygon strategies, In: P. Heckbert (Ed.), Craphic Gems IV, Academic Press, Boston, MA, pp. 24-46.
[5] Harrington, S. (1983), Computer Grophics: A Programmines Apmath, MciowHill.
[6] Mehlhorn, K., and S. Nohere (1999), LEDA: A Platform for Combinatorial and Genmetric Computher Cambridyc University Press.
[7] Nievergelt, i., and K. Hinrichs (1993),

Aherithme and data strnchures: with apphations to graphics and geometry, Prentice-Hall.
[8] O'Rourke, J. (1998), Computational gemmetry in C, 2nd Edition, Cambridge University l'ress.
[9] Sedgewick, R. (1998), Abmithms, 2nd Edition, Addison-Wesley.
[10] Stein, B. (1997), A pminh nond polysons, Linux Journal 35.
[11] Theoharis, T., and A. Böhm (1999), Computar shatics: principles \mathcal{E} atsorithms, Symmetria.
[12] Weiler, K. (1994), An incromental ands punn in potysun tost, In: P. Heckbert (Ed.), Graphic Cems IV, Academic P'ress, Boston, A1A, PF. 16-23.
[13] W.w, M., J. Neider, and T. Davis (1997), OpinCl programming guide, 2nd Fdilion, Addison-Wesley.

Geomformation Science Journal. Vot. 6. No. 1

```
Appendix
FIL.F *InputData - fopon("Input dat", "rt");
FILE *OutputData - Iopen("Output.dat","w");
// Read planar polygon dataset, I' and 0D data, N(X,Y,Z).
// Calculate the plane equation of plande polygon
// Ax + By + (%+D-0
lF(A(\checkmarkN)+B(yN)+C(zN)+D-0)
{
    // N(X,Y,7) is located on the plamar polygon
    // N(X,Y,Z) will be tested fur other conditions
|
Nlme
|
    // N(X,Y,Z) is NOT located on the planar polygom
```



```
        exit;
}
// Determination ar minimum & maximum of x-coordinate from polvgonP
// Determination of minimum & maximum of y-coordinate f:om polygon P
// Delermination of minimum & maximum of z-coordinate from polygon P
```



```
|
    // N(X,Y,Z) is located on the plamar polygon
    // N(X,YZZ) will be tested for other conditions
|
else
|
    // N(X,Y,L) is NOT localed on the planar polygon
```



```
        exit;
}
// Compute N(X,Y,Z) INSIDE or (MLITSi\GammaIF
polygan tor the (X&Y) and (Y & Z) plame
IF (N(X,Y;7) wuch the BORDER of polygon P in the X & Y planc)
l
    // check the Y&Z planc
    IF (N(X,Y,Z) touch the BORDEK of polygon [' in the Y& Z plame)
    {
        // N(X,Y,Z) is Incaled INSIL)E the polygon \Gamma
        fprintf(Outpui[)ata, "OD is INSIDE plamar polygon =- %f 要f %.f\n",N,Ny,Nz);
    |
    ELSE
```

Geoinformation Science Journal, Vol. 6, No. 1

```
    l
        // Calculate the amount of intersection point of Z-axis
        IF (Amount is odd) // MUST involve all special cases, please refer to Sec. 4.1
    {
            // N(X,Y,Z) is located INSIDE the polygon P
            fprintf (OutputData, "OD is INSIDE planar polygon = %f %f %t \n", Nx,Ny,
Nz);
    J
    ELSE
    l
            // N(X,Y,Z) is located OUTSIDE the polygon P
            fprintf (OutputData, "OD is OUTSIDE planar polygon = %,f %f %f \n", Nx,Ny,
Nz);
    l
        }
|
ELSE
{
    // Calculate the amount of intersection point of Y-axis
    IF (Amount is odd) // MUST involve all special cases, please refer to Sec. 4.1
    {
            // N(X,Y,Z) is located INSIDE the polygon P
            fprintf (OutputData, "OD is INSIDE planar polygon = %f %f %f\n", Nx, Ny,Nz);
    |
    ELSE
    {
            // N(X,Y,Z) is located OUTSIDE the polygon P
                tprintf (OutputData, "OD is OUTSIDE planar polygon = %f %f %f\n",Nx,Ny,
Nz);
    }
I
```

