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Abstract 
 

The aim of this study is to detect the brain activation on scalp by Electroencephalogram (EEG) task-based 

for brain computer interface (BCI) using wirelessly control robot. EEG was measured in 8 normal subjects 

for control and task conditions. The objective is to determine one scalp location which will give signals 
that can be used to control the wireless robot using BCI and EEG, using non invasive and without subject 

training. In control condition subjects were ask to relax but in task condition, subjects were asked to 

imagine a star rotating clockwise at position 45 degrees direction pointed by the wireless robot where at 
this angle the target is located. At position 0 and 90 degree angle subjects were asked to relax since there 

is no target on that direction. Using EEG spectral power analysis and normalization, the optimum location 

for this task has been detected at position F8 which is in frontal cortex area and the rhythm happened at 
alpha frequency band. At this position, the signals from the brain should be able to drive the robot to the 

required direction by giving correct and accurate signals to robot moving towards target. 

 
Keywords: Electroencephalography (EEG); Brain-computer interface (BCI); visual imagery; right frontal 

cortex 

 

Abstrak 

 

Matlamat kajian ini adalah untuk mengesan keaktifan otak melalui kulit kepala dengan 
Electroencephalogram (EEG) untuk pengantaramuka computer otak (BCI) menggunakan robot tanpa 

wayar. EEG telah diukur dan direkod pada 8 subjek yang normal untuk keadaan terkawal dan tugasan. 

Objektifnya adalah untuk menentukan satu lokasi di kulit kepala yang akan memberikan isyarat yang 
boleh digunakan untuk mengawal robot tanpa wayar menggunakan BCI dan EEG, menggunakan prosedur 

bukan invasive dan tanpa perlu melatih subjek. Dalam keadaan terkawal, subjek diminta untuk bertenang, 

namun dalam keadaan tugasan, subjek  diminta untuk mengimaginasikan sebutir bintang berputar 
mengikut arah jam pada kedudukan 45 darjah seperti ditunjukkan oleh robot tanpa wayar dimana pada 

sudut ini terletaknya sasaran. Pada kedudukan 0 dan 90 darjah subjek diminta untuk bertenang kerana 
tiada sasaran berada pada sudut ini. Menggunakan analisa power spectrum ke atas EEG dan penormalan, 

kedudukan optimum untuk tugasan ini telah dapat dikesan di kedudukan F8 iaitu dalam kawasan korteks 

hadapan dan ritmanya berlaku di jalur frekuensi alfa. Di kedudukan ini, isyarat-isyarat dari otak 
sepatutnya boleh mengawal robot dengan memberi arah yang betul setelah diberi isyarat-isyarat yang tepat 

untuk robot bergerak ke sasaran. 

 
Kata kunci: Electroencephalography (EEG); Brain-computer interface (BCI); imaginasi visual;korteks 

depan kanan 
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1.0  INTRODUCTION 

 

Brain electrical activities can be measured through invasive 

(Electrocorticogram–ECoG) and non-invasive 

(Electroencephalogram–EEG) method. The invasive method is 

where the electrodes are implanted underneath the scalp that may 

involve clinical risks and substantial technical difficulties.1 On the 

other hand, EEG is known as a procedure to measure electrical 

signals from scalp produced by monitoring neurons activities in 

brain, captured non-invasively which is rather safe, doable and 

low risk procedure where the electrodes are place on the scalp 

without the need of surgery.2 Brain computer interface (BCI) is a 

device that translates EEG signals into a command that can be 

understood by and operates any technical devices.3 BCI can be 

used in application such as moving robot,4 control of cursor 

movement5 or spelling software,6 control of wheelchair7 or control 

of any other devices.  

  The common problem nowadays for people with motor 

disabilities or motor dysfunctions is the requirement for the 

alternative communication in order to communicate rather than 

just being locked inside their body. EEG-based BCI is primarily 

used to enable people with severe motor disabilities,8 people who 
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are totally paralyzed (e.g., amyotrophic lateral sclerosis (ALS) or 

brainstem stroke) or people who lost control over every motor 

output in which the people transmit information by brain activity 

without conventional peripheral nerves and muscles.9 Common 

routine for EEG and BCI system requires training every time the 

electrode cap is placed on subjects10 and often it needs more than 

one electrode to transmit the signals from scalp.11 Therefore it 

requires longer time to implement and process the data to get the 

best accuracy on controlling the device during real application.  

  In order to reduce the training session, a task should be 

device. Motor imagery task is a tool to differentiate the desired 

and undesired EEG signals. A specific task allowed the brain to 

give different signals during the visual imagery task and relax 

condition. Since more than 20 years back motor imagery has been 

known to provide very similar way as observable with real 

executive movements by modifying the neuronal activity in the 

primary sensorimotor areas.12 There are many motor imagery 

tasks have been done such as motor imagery of left and right hand 

movement,13 a multiplication task, a geometric rotation task, a 

letter composition task, and a visual counting task.14 Nowadays, 

various motor imagery tasks have been done in the study of 

translating EEG signals into a command to control output devices. 

This will enhance the build of other prototypes systems for EEG-

based BCI and become as a foundation and contribution in the 

areas of cardiology, muscle physiology and neuroscience by the 

increasing knowledge along with comprehension about motor 

dysfunctions.15 

  In this study the objective was to use non-invasive method, 

having only one scalp location to send signal to robot without 

subject training. The advantages are that disable people need only 

one electrode attach on the scalp without the need of surgery and 

training session, while controlling robot wirelessly. In order to 

achieve this, identification of the best location on the scalp that 

can be used to control the robot must be obtained. 

 

 

2.0  METHODOLOGY 

 

2.1  Data Collection  

 

2.1.1  Experimental Setup  

 

Using EEG data monitoring equipment from Nihon Kohden, an 

EEG cap with 19 channels/electrodes were placed on the scalp of 

a subject based on 10-20 electrode placement systems.  Robot was 

connected wirelessly to the BCI (Figure 1). A program using 

LabVIEW was created to control robot movement and send 

triggering signal to EEG machine from BCI. The signal was sent 

wirelessly to the robot via Xbee connection while connection to 

the EEG machine was via NI-USB6008. 

 

 
 

Figure 1  Experimental setup 

 

2.1.2  Human Subject 

 

8 healthy human subjects aged 23-30 years old participated in 

this study. They have never been tested on any research (never 

had training session) and does not have any health problem. 

They gave informed consent to participate in these experiments. 

 

2.1.3  Condition 

 

Subjects sat on a chair facing a robot which was located about 

two feet away from their feet. Two conditions were applied, i.e. 

Control condition and Task conditions. In Control conditions, 

subjects were asked to relax (resting) and were instructed to fix 

their eyes at the robot in front of them. In Task condition, 

subjects were asked to imagine a star rotating clockwise when 

the robot is facing the target. In this Task condition, robot scans 

through three angles, i.e. 0, 45 and 90 º to check for target 

location. Subjects were asked to relax when angle 0 and 90 º 

because there was no target in the direction of those particular 

angle location (non-target). At angle of 45 º, subjects were ask 

to imagine the star rotating clockwise (target) for about 10 

seconds starting right after the robot turned the direction from 0 

to 45 degrees, until the robot change again its angle to 90 º. 

 

2.1.4  Data Acquisition 

 

EEG signals were obtained according to 10-20 electrode 

placement system with reference electrodes attached to left ear 

(for electrodes on left side of the scalp) and right ear (for 

electrode on right side of the scalp). EEG signals were recorded 

with pass bands of 0.5 - 120 Hz and stored in a computer with a 

sampling frequency of 1 kHz. They were recorded for 10 
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seconds each condition. A single trial that comprises of Control 

and Task condition (all angles) lasted for 40 seconds and was 

repeated four times. As this study focuses on robot movement 

signal analysis, the basic step of BCI system was followed. 

First, EEG signal was recorded from the scalp through 19 

electrode channels and digitized using acquisition system from 

the EEG machine. Then the digitized signals were manipulated 

to feature extraction procedures, such as power spectral 

analysis. After such feature extraction, the system has enough 

information to brain map the activated location on scalp  

 

2.1.5  Frequency Classification 

 

EEG frequency classification follows standard set by 

Terminology Committee of International EEG Waveform 

society as shown in Table 1. 

 
Table 1  Frequency ranges in EEG signal 

 

 

2.2  Data Analysis 

 

EEG signals were converted into frequency domain using FFT16 

which represent the time domain in a power spectrum value 

divided into six frequency bands as in Table 1. 

  The EEG data were divided into 10 intervals with each 

interval consists of 1024 data points (1 second data). For 

Control condition, the power spectrum data were averaged over 

10 intervals. The power spectrums at every frequency in Task 

condition were compared to get the maximum difference in 

power (DP). 

 

Difference power (DP) = power in task – power in baseline    (1) 

 

where baseline is the average value of power of Control 

condition. 

  The DP values were averaged over 10 intervals and over 

four trials in order to get the ideal value of power spectrum for 

each frequency band. Then the values were calculated to find 

the power changes at each angle. For condition-related power 

change was expressed as: 

 

(powercondition - powercontrol) / powercontrol  (2) 

 

2.3  Statistical Analysis 

 

Analysis of variance (ANOVA) with repeated measures (within 

subject changes) was used for multiple comparisons. The 

ANOVA factor used three levels, i.e. 0 (non-target), 45 (target) 

and 90 degrees (non-target). Other factors were the frequency 

band with six levels (delta, theta, alpha, beta, gamma, high 

gamma) and channels with 19 levels. If a significant effect was 

identified, post-hoc testing was applied for multiple 

comparisons. The significance level was set to P < 0.05. 

3.0  RESULTS ANALYSIS 

 

No statistical difference between any of the signal was observed 

using difference in power (DP). However, when the power 

changes at each angles were calculated, obvious changes were 

observed (Figure 2). Figure 2 shows topographic map of 

condition related power changes for delta, theta, alpha, beta, 

gamma, and high gamma. 

  Spectral power changes between non-target and target 

conditions were observed at frontal region in delta, alpha and 

beta frequency bands (Figure 2A). In contrast, not much power 

changes were seen between 0 and 90 degrees where both were 

non-target. Statistical analysis was done to find whether the 

changes were significant or not. Using minitab software, 

ANOVA has been done to the normalized data. Normalized data 

is condition-related power changes data. The interaction 

between Task angles, frequency band and electrodes position on 

scalp were observed. 

  T-test values are shown in Table 2 for non-target and target 

conditions. P-value and df value for each electrode position 

from ANOVA were also included in the table. From the table, 

the most significant difference was found at F8 location in alpha 

frequency band (P < 0.001). At F8 location, the repeated-

measure ANOVA revealed significant interaction between 

condition × frequency band (F10,70=5.31, P=0.001). Beyond this 

results, t-test were done to determine which channel means 

differ from each other where the results have shown 

significantly that location F8 has given P value for less than 

0.01 which means there is 99% significant difference between 

the data groups which is the highest among the results. 

  In contrast, no significant difference was found between 0 

degree and 90 degree conditions (both are non-target) in the 

EEG power spectrum in any frequency range (condition × 

frequency band, with P > 0.05). At this point ANOVA 

concluded that null hypothesis for all 19 channels are equal and 

dependent have not been rejected since the value of P > 0.05. 

This concludes none channel mean is significantly different 

from the others.  

 

 

4.0  DISCUSSION 

 

This study observes the maximum difference in power between 

resting and active task in which the experiment use visual 

imagery of moving object (rotating a star clockwise. However 

no significant difference was found for the maximum difference 

in power between conditions. On the other hand, the condition-

related power changes, showed significant difference between 

target and non-target. The most significant difference was found 

at F8 location in alpha frequency band. 

  Frontal lobe which includes F8 location is structure which 

inhibits responses to the environment, planning future action 

and control the movement.17 Imagery related condition also 

involves right- frontal cortex. Compared with other 

experimental conditions, mental imagery was associated with 

stronger activity in frontal and parietal regions mainly on the 

right. A study from18 shows fMRI results from visual imagery of 

brisk walking activated at right frontal cortex. Their results 

support the findings of this study.  

 

 

Frequency band Range 

Delta   0 ≤ δ < 4 

Theta    4 ≤ θ < 8 

Alpha    8 ≤ α < 13 

Beta    13 ≤ β < 31 

Gamma    31 ≤ γ < 51 

High gamma  51≤ high γ < 120 
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Figure 2  Topographic map for condition related power changes. A: changes between angle 0 and 45 degrees (non-target and target conditions). B: changes 

between 0 and 90 degrees angle (both are non-target) 
 

Table 2  Values of t-test for all 19 channels at each frequency band and ANOVA p-value for 0-45 º  angle 

 

ttest delta theta alpha beta gamma hgamma ANOVA 

 
0-45 0-45 0-45 0-45 0-45 0-45 df p-value 

Fp1 0.049* 0.661 0.042* 0.078 0.256 0.368 5 0.014 

F7 0.110 0.295 0.098 0.206 0.478 0.970 5 0.038 

T3 0.246 0.469 0.383 0.189 0.421 0.482 5 0.193 

T5 0.067 0.010* 0.554 0.233 0.418 0.351 5 0.013 

O1 0.467 0.024* 0.363 0.645 0.020* 0.056 5 0.520 

F3 0.172 0.107 0.029* 0.180 0.938 0.659 5 0.057 

C3 0.150 0.297 0.174 0.170 0.474 0.954 5 0.058 

P3 0.417 0.234 0.738 0.305 0.854 0.771 5 0.596 

Fz 0.119 0.199 0.004** 0.157 0.912 0.993 5 0.020 

Cz 0.094 0.095 0.008** 0.190 0.788 0.694 5 0.009 

Pz 0.579 0.469 0.867 0.244 0.773 0.554 5 0.849 

F4 0.120 0.109 0.023* 0.221 0.892 0.996 5 0.021 

C4 0.031* 0.108 0.104 0.039* 0.452 0.036* 5 0.000 

P4 0.422 0.260 0.938 0.202 0.616 0.706 5 0.572 

Fp2 0.157 0.726 0.049* 0.148 0.480 0.428 5 0.125 

F8 0.032* 0.339 0.001*** 0.126 0.141 0.696 5 0.001 

T4 0.706 0.750 0.846 0.657 0.548 0.605 5 0.971 

T6 0.938 0.955 0.554 0.419 0.953 0.896 5 0.970 

O2 0.187 0.351 0.613 0.012* 0.493 0.308 5 0.136 

Indicator: 

         * : p < 0.05 

       ** : p < 0.01 

       *** : p < 0.001 

       

Delta Theta Alpha Beta Gamma High Gamma 

A 

B 
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In previous brain imaging studies, it was found that fronto-

parietal networks were activated during specific visual imagery 

tasks which also underlie the spatial analysis of mentally 

imagined representations.19-20  The activation of frontal regions 

is common to all mental imagery tasks .21 In addition, a recent 

study from22 identified that frontal cortex brain region 

subserving the visual imagery of complex scenes resulted at 

theta and beta oscillations. They studied visual imagery of 

complex scenes to investigate the spectro-temporal properties of 

its nodes. Meanwhile this study investigates the power-related 

spatial distribution in the brain during the motor imagery task 

found right-frontal region activation at alpha frequency band. 

Visual imagery of star rotating may contributes to the increase 

power in alpha frequency band at the right-frontal region as bold 

in red color in Figure 3. 

 

 
Back 

 
Figure 3  The location of right-frontal region 

 
 

5.0  CONCLUSION 

 

From the finding, it is concluded that alpha frequency band at 

right-frontal region may be used to control robot to the direction 

of the target location. It will be simple to control the wireless 

robot for a subject since no surgical needed, only one electrode 

attach to the scalp and no training session needed for the subject 

to do the task and control the wireless robot.  Future work for 

this study can be done by doing on-line and real time analysis to 

a patient. The main concern in future work can be the accuracy, 

precision, and a shorter time taken to complete the task.   
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