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This article demonstrates that Hirota’s direct method or scheme for solving nonlinear waves equation is
linked to Sato theory, and eventually resulted in the Sato equation. This theoretical framework or simply
the Hirota-Sato formalism also reveals that the z — function, which underlies the analytic form of soliton

solutions of theses physically significant nonlinear waves equations, shall acts as the key function to

express the solutions of Sato equation. From representation theory of groups, it is shown that the
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7 — function in the bilinear forms of Hirota scheme are closely connected to the Plucker relations in Sato
theory. Thus Hirota-Sato formalism provides a deeper understanding of soliton theory from a unified
viewpoint. The Kadomtsev-Petviashvili (KP), Korteweg-de Vries (KdV) and Sawada-Kotera equations
are used to verify this framework.

Keywords: Hirota-Sato Formalism; 7 — function; Plucker relations; Kadomtsev-Petviashvili (KP)
equation; Korteweg-de Vries (KdV) equation; Sawada-Kotera equation

Abstrak

Artikel ini mempamerkan kaedah langsung Hirota atau skema bagi menyelesaikan persamaan tak linear
gelombang itu adalah berhubungan dengan teori Sato, dan akhirnya terhasil persamaan Sato. Kerangka
berteori ini atau mudahnya formalisme Hirota-Sato menyerlahkan fungsiz, yang mendasari bentuk
analitik penyelesaian soliton bagi persamaan gelombang tak linear berkepentingan fizikal itu, bertindak
sebagai fungsi utama bagi mengungkap penyelesaian persamaan Sato. Daripada teori perwakilan
kumpulan, dibuktikan bahawa fungsiz dalam bentuk bilinear skema Hirota adalah berkait rapat dengan
hubungan Plucker dalam teori Sato. Oleh itu, formalisme Hirota-Sato menyediakan satu kefahaman
mendalam terhadap teori soliton daripada satu pendekatan menyatukan. Persamaan Kadomtsev-
Petviashvili (KP), Korteweg-de Vries (KdV) dan Sawada-Kotera digunakan untuk mengesahkan kerangka

itu.

Kata kunci: Formalisme Hirota-Sato; fungsiz; hubungan Plucker; persamaan Kadomtsev-Petviashvili
(KP); persamaan Korteweg-de Vries (KdV); persamaan Sawada-Kotera
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1.0 INTRODUCTION

There are several methods of studying the integrable nonlinear
waves equations that have soliton solutions, where each technique
has its own suppositions and areas of usage. For example, the
inverse scattering transform (IST) can be used to solve initial
value problems, but it uses powerful analytical methods and
quantum scattering theory (e.g. [1]), and therefore makes strong
assumptions about the nonlinear equations. On the lesser extreme,
one can find a travelling wave solution to almost all equations by
a simple substitution which reduces the equation to an ordinary
differential equation (e.g. [2]). Between these two extremes lies
Hirota’s direct/bilinear method. Although the transformation was

intrinsically inspired by IST, Hirota’s method does not need the
same mathematical assumption and, as a consequence, the method
is applicable to a wider class of equations than IST (e.g. [3]). At
the same time, because it does not use such sophisticated
techniques, it usually produces a smaller class of solutions, the
multi-soliton solutions. It is particularly efficient for constructing
multisoliton solutions to integrable nonlinear waves equations.
The advantage of it over others is that it is algebraic rather than
analytic. In many problems the key to further developments is a
detailed understanding of soliton scattering, and in such cases
Hirota’s method is the optimal tool.

Hirota’s method is an effective tool as it can be employed
without a deep knowledge of the mathematics that lies beneath,
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namely Sato’s theory. This is not to say that what lies beneath is
valueless, in fact in this article, we will establish that Sato’s
theory allows Hirota’s method to have a deeper and beautiful
understanding of soliton theory from a unified viewpoint. Here we
note that Hirota’s method makes an efficient tool for an applied
mathematicians’ toolbox, and furthermore, we may credit it
(along with the pioneering IST) for inspiring a departure into
soliton theory.

This article also develops a brief introduction to Sato’s
theory in an elementary way, which will serve as a departure point
into soliton theory. In all of its beauty, Sato’s theory connects
solitons and infinite dimensional Grassmanians, which are Sato’s
formal generalisation of the finite dimensional Grassmanians of
algebraic geometry (e.g. [4-5]). We do not attempt to reach quite
as far as this inference, but aim to give an overture accessible to a
researcher of applied mathematics. Even in this preamble of the
framework, the beauty and power of Hirota-Sato formalism
becomes apparent.

Hirota direct method was first introduced by Hirota in his
well-known 1971 paper [6]. The first step of this method is to
transform the nonlinear partial differential equation into a
quadratic form in dependent variables. The new form of the
equation is called ‘bilinear form’. In the second step, we write the
bilinear form of the equation as a polynomial of a special
differential operator known as Hirota D-operator. This polynomial
of D-operator is called “Hirota bilinear form’. In this article we
shall only focus in solving on some physically significant
nonlinear wave equations which includes KP [7], KdV [8] and
Sawada-Kotera equations [9]. The KdV and KP equations have
been used extensively as a model for one- and two-dimensional
shallow water waves of long wavelength with weakly non-linear
restoring forces (e.g. [10]) and ion-acoustic waves in plasmas (e.g.
[11]), and Sawada-Kotera in some mathematical approaches to
tsunami (e.g. [12])

Grassmannian manifolds are known as the basics of Sato’s
theory where the z-function was obtained from the derivation of
the Sato’s equation (e.g. [13-14]). The manipulations of Schur
functions and Young diagrams later produce the Plucker relations.
In this article we show how the Plucker relations in Sato’s theory
can be transformed into the Hirota bilinear form of KP, KdV [15],
and Sawada-Kotera equations [16], [17] for their respective -
functions, and thus verify this conceptual framework.

2.0 THEORY AND METHOD
2.1 Results Related to Hirota’s Direct/Bilinear Method
To illustrate the statement mentioned in the introduction, we
consider in the context of Hirota’s method, some results linked to
nonlinear partial differential equations related to Kadomtsev-
Petviashvili (KP), Korteweg de Vries (KdV) and Sawada-Kotera
equations respectively.

a) The KP equation is given by

(4up — 12UUy — Uyyy)x — 3y, = 0. (2.1)

The logarithmic (or dependent variable) transformation, via
Hirota’s method is given by

u = (10g T)yx (2.2)

Thus, the Hirota bilinear form of KP takes the form of

(4D,D; — D —3D%) .7 = 0. (2.3)
b) The KdV equation is given by
Up + 6U Uy + Uyyy = 0. (2.4)
The logarithmic transformation, via Hirota’s method is given by
u = 2(10g T) - (2.5)
The Hirota bilinear form of KdV is then given by
D,(D,+D3t -T=0. (2.6)

¢) The fifth-order Sawada-Kotera equation can be written
as

Up + 45u?uy, + 15Uyl + Ugyylh) + Usgggy = O.
2.7)

The logarithmic transformation is the same as in (2.5), i.e.
u = 2(log 7).
Thus, the Hirota bilinear form of Sawada-Kotera is of the form

Dy(D;+ D3 t.T=0. (2.8)

2.2 Sato’s Theory
Let W be a pseudo-differential operator,
W=14+w, 0 +w, 0 24+w;973+ -, (2.9

where w; (j=1,2..., m, ...) are functions of x and ™" is defined
by

-n

o =(3) . (2.10)
The inverse operator W1 exists and can be written as
Wil=vo+v,0 1 +v,02+v;3073+, (2.11)
where

vo =1, (2.12a)

v, = —wy, (2.12b)

v, = —wy + w2, (2.12¢)
V3 = —Wy + 2wy W, — Wy Wy — WS, (2.12d)

We introduce the term H(x; t) as

1 (2) (m)
(ho hO hO
(€8] (2) (m)
Hoct) =M h - M (2.13)

\hgn h® . ™ /

where equation (2.13) is the denominator of the function
Wi (x; t).
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Let us consider the partial differential equation which depends on
x and t as,

Wi (o )™ (2 8) = (0™ + wy (o £) 0™ + -+ + Wiy (0 )RS (x; £)

=0
(2.14)
where j = 1,2,...,m, and
) m 4
R R gm
i H :_
SO I a
® (m)
h . h 1
W (x;t) = —= m
" IS
o 7 m
ST S0

After differentiating (2.14) with respect to t,, and solving the
remaining equation, we have

B, = (W a"W~1)*, (2.15)

where ()* denotes the differential part of the operator. Equation
(2.15) is called the Sato equation. It is important to note that in the
derivation of the Sato equation, we have assumed that the
solutions take the form W, (x; t) and this will eventually yield the
t-function [4].

Let us define the z-function as the determinant of H(x;t), the
denominator of the function W, (x; t),

ey m)
R |
ey m)
tot) = h1‘ hl'
@ ,m
h, .,
1 p1 p2 P35 - él) 82) ém)
0 1 p p2 1D @ (m)
=llo 0 1 p, .||t 1o St
\0 0 0 1 .../\fé” @ . §’")/
= det (E§ enN £), (2.16)

where E§ is am x oo matrix defined by

1

2.17)

[x

100
c_[0 10
0 0 0 1

By using the expansion theorem on the determinant of product of
matrices, t(t) in equation (2.16) can be expanded as a sum of
products of determinants,

() =
ISR P, P,
Pr-1 Pr,-1 Pi,-1
20s11<12<---<lm : : :
pll—m+1 plz—m+1 plm—m+1
@ 22 (m)
fll fll le
(€9)] ) (m)
’flz flz ’flz k (2.18)
o @ m
L P 1

where the summation comprised of all possible combinations of m
nonnegative numbers. It is also known that the determinants,
composed of p;’s in equation (2.16), are the Schur functions [5].
We may denote this by

Py b, P,
P, - P - v Dig-
S,(6) = 11 1 12 1 l: 1 ' 2.19)
pll—m+1 plz—m+1 plm—m+1
and
1 (2) (m)
A IR X
1 ) (m)
&= & % (2.20)
® L@
Im Im " Slp

where the suffix Y stands for the Young diagram that corresponds
to the set of numbers (I3,1,,...,1,). The Young diagram is
introduced to classify the irreducible representation of the
symmetric group (e.g. [18-19]). It is noted that, although different
sets of numbers may correspond to a certain Y if m is not fixed;
the RHS of equation (2.19) gives the same function for those sets.

Hence, equation (2.18) can be written as

() = Xosy=m Sy(DSy, (2.21)

where the summation includes all the Young diagrams which have
less than m + 1 rows. For the coefficients, &y’s in equation (2.20),
there exist constraints that are called the Plucker relations which
&y’s must always satisfy. This is defined in the next section.

3.0 RESULTS AND DISCUSSIONS

First, let us define the Plucker relations in the form of
2?:1'1(_1)6 fyl fyz =0, (3.1)
§=m+i—j 3.2)

where Y; is the Young diagram corresponding to
(fqsooer ki iy Kjiqy o kmeq) @nd Y5 10 (Uy, oo, ity Lty oo bingn),
and where k; <l; < kj,q is satisfied (refer [4], [18-19]). As
mentioned before, the coefficients &,’s will always satisfy certain
constraints called the Plucker relations. Therefore, for all k,, and
l,, equation (3.1) will give an infinite number of constraints on
the &,’s which are the Plucker relations.

The following subsections will show how the Plucker
relations can be transformed into the Hirota bilinear form of KP,
KdV and Sawada-Kotera equations for their respective -
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functions, and thus demonstrates the above-mentioned conceptual
framework of Hirota-Sato formalism.

3.1 KP Equation

We now wish to show that the -function which satisfies the
KP equation is of the same form as the Plucker relations, thus
verifying the framework.

From equation (2.16), the definition of z(t), we may write
(t +s) = det (55 e &N E(S)). (3.3)
We denote that

E(s) = e"N g, (3.4
hence, equation (3.3) can be expressed as
T(t +5) = Ly Sy D&y (5), (3:5)

where &, (s) is in the form of equation (2.20) and satisfies all the
Plucker relations with the parameters s = (sy, S, S3, ...). Now,
applying Sy(8,) to (3.5) and using the following orthogonality
condition, we have

Sy(gt) (t+s) = Sy(gt) Sy () &y (s) (3.6)
Sy(gt) (t +5) = & (s). 3.7)
We lett =0,

&y(s) = Sy(ét) T(t + 5)|t:0
= Sy(ds) T(t + s)|t:0

= Sy(05) T(s). (3.8)
Substitute (3.8) into (3.1) yields

T(=D{Sy, (3)t(OKSy,(3:)r(®)} =0, (3.9
Expanding equation (3.9) we have,
form=3,j=16=3i=1,

Y; corresponding to (kq,ly,k,) whiles Y, corresponding to
(lZ'l3rl4—)'

Form=3,j=1,6d§=4,i=2,

Y; corresponding to (kq,1,,k;) whiles Y, corresponding to
(llrl3rl4)'

Form=3,j=1,§=5,i=3,

Y; corresponding to (kq,l3,k;) whiles Y, corresponding to
(11»12»14)-

Form=3,j=1,8=6,i =4,

Y; corresponding to (kq,l4,k,) whiles Y, corresponding to
(L1, Lz, L)

Therefore, the corresponding Young diagram of Y; and Y, of
equation (3.9) yields,

- (kli lll kz)(lz, 13, l4) + (kli lz, kZ)(lll l3, l4) -
(k1;l3;k2)(l1; 12;14) + (k1; La, kz)(l1. L, l3) =0
(3.10)
We let (ky, ky, 1y, 1y, Is, 1) = (0,1,2,3,4,0),
—(012)(034) +(013)(024)— (014)(023)
+(010)(234) =0
(3.11)

where we have construed equation (3.11) in the fashion of
equation (3.9), and thus we have the Young diagram in the form

of
55(3,) (®) S Hft) LORENCALON Hﬁgt) (6)

+S Eﬂgt) T(t)SH ()t =0 (3.12)

where

= d 190 1 6
0y ==—,>—,= - ).
at,’20t,’30t;’

By using the definition of Sy (t) in (2.19), we obtain the value of

L5 tf |51
=7+t2,5 _?_tZ! Ej=?—t3 and
O H
4

S =2t +th
1
Substituting the value of Sy into (3.12), yields

o2 0t 110° 1 ¢ ©
"N\ 125 T 2202 “30n06) ©

Se=1,8 =t,S
O

+ (16—2+——) () (——+——) 7(t) = 0.

20t2  20t, 20t? 20t

If we simplify further the above equation, then we have

0% 92 92
r(t)(l 1o 1 )()

12 at4 49t2  30t,0t,
ad a3 d
~ar, '3 <ﬁ‘£> ()

+(§§; a0) T ()(EF 13c) T =0.
(3.13)

We multiply (3.13) by 24 (so as to obtain the standard form of the
KP equation), hence we have
2774 + 6TTy2

— 877y, — 87, Tz + 81T¢

+677; — 6127, + 67,27, — 617, =0 : (3.14)

By applying the D-operator properties, we then obtained the KP
equation as
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(4D,,D,, — D¢ —=3DZ)7 - T=0. (3.15)

3.2 KdV Equation

In obtaining the bilinear form of KdV equation, we consider only
t; and t in the formulation of KP equation, since KdV equation
is a one dimensional equation of KP. By substituting the value of
Sy into (3.12), this yields

©(®) (Eﬁ_ Eat dts ) ) -5, 703 (at3 -
d0t3 tt+ 14020¢12 1td20t12 rt=0. (3.16)

We multiply (3.16) by 24, then we have

2774 — 877y, — 87, T3 + 87, Ty, + 6‘[t2% =0 . (3.17)

Rearranging the above equation, we obtain

2774 — 8T, T2 + 613% + 4(2Tt1Tt3 - 2TT¢1t3) =0. (3.18)

Expressing in the D-operator terms, we then obtain KdV equation
(D¢ —4D, D)7 - T=0. (3.19)

3.3 Sawada-Kotera Equation

In obtaining the bilinear form of Sawada-Kotera equation we

consider only t; and ts, since the Sawada- Kotera equation is in

the fifth order form of KdV equation.

First, we let (kq, k,, 14, 1,15, 1) =(0,1,2,3,1,5), and substitute
this into equation (3.10),

—(012)(135) +(013)(125)—(014)(124) +
(015)(123)-(011)(235)=0 (3.20)

where if we interpret equation (3.20) in the structure of equation
(3.9), then we obtain the form of the Young diagram as

Sp(d:) T@®) S

;ED@gaas (3)1@®) - s E@ﬁ@waﬁgﬂo=

{70 - 5305 (3)r©

(3.21)

By using the definition of Sy(t) in (2.19), we then obtain the
following results

t3 t3
Sp =1, 19:|=t1,5 ==, S——=,§ =24t S =
T ¢ E{G 20 I

|
L]

Substituting the value of Sy into (3.21), yields

3 9 92
2T(t)<6t1 56t16t5> *®

65 18 0
_a_t'l T(t)( 5 ¥> T(t)

02
+ 30 < 2) 7(t) <6t1> 7(t)
63 3
—20( 3> T(t)( >T(t)—0

If we rearrange the above equatlon then we have

66 5
2 ‘r(t)( > 2(t) — ( ) T(t)( ) (6)
1

ats
aZ 4 63 3
+30 <6t1> T(t)( ) T(t) — ( ) T(t) <6t1> 7(t)

+ 210 (550) 1O -2 (55) 10 (55) T =0

(3.22)
Equivalently, we have
2176 — 127 Tys + 307,274 — 207,37, +
18(T‘L’t1t5 - Ttl’[ts) =0 (3.23)

By applying the D-operator properties, we then obtain the
Sawada-Kotera equation

(DE + DD )T - T=0. (3.24)

4.0 CONCLUSION

The t-function has acted as a key function to express the solutions
of the Sato equation and this is generated from Sato theory. From
the nonlinear waves equation being considered, i.e. the KP, KdV
and Sawada-Kotera equations, it is shown that the Plucker
relations can be represented by the coefficients of z-function. We
then deduce that the z-function in the bilinear forms of Hirota
scheme are closely associated to the Plucker relations in Sato
theory. Therefore, we may conclude that the t-function is
essential in indicating this relation between Hirota’s direct method
and the Plucker relations, and Sato equation in Sato’s theory. The
above deliberations showed that Hirota’s method is linked to Sato
theory, and the Hirota-Sato formalism brings to light that the -
function, which underlies the analytic form of soliton solutions of
the related nonlinear waves equations does act as the important
function to express the solutions of Sato equation. The
Kadomtsev-Petviashvili (KP), Korteweg-de Vries (KdV) and
Sawada-Kotera equations have been used to corroborate this
theoretical framework.
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