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namely Sato’s theory. This is not to say that what lies beneath is 
valueless, in fact in this article, we will establish that Sato’s 
theory allows Hirota’s method to have a deeper and beautiful 
understanding of soliton theory from a unified viewpoint. Here we 
note that Hirota’s method makes an efficient tool for an applied 
mathematicians’ toolbox, and furthermore, we may credit it 
(along with the pioneering IST) for inspiring a departure into 
soliton theory. 
  This article also develops a brief introduction to Sato’s 
theory in an elementary way, which will serve as a departure point 
into soliton theory. In all of its beauty, Sato’s theory connects 
solitons and infinite dimensional Grassmanians, which are Sato’s 
formal generalisation of the finite dimensional Grassmanians of 
algebraic geometry (e.g. [4-5]). We do not attempt to reach quite 
as far as this inference, but aim to give an overture accessible to a 
researcher of applied mathematics. Even in this preamble of the 
framework, the beauty and power of Hirota-Sato formalism 
becomes apparent. 
  Hirota direct method was first introduced by Hirota in his 
well-known 1971 paper [6]. The first step of this method is to 
transform the nonlinear partial differential equation into a 
quadratic form in dependent variables. The new form of the 
equation is called ‘bilinear form’. In the second step, we write the 
bilinear form of the equation as a polynomial of a special 
differential operator known as Hirota ܦ-operator. This polynomial 
of ܦ-operator is called ‘Hirota bilinear form’. In this article we 
shall only focus in solving on some physically significant 
nonlinear wave equations which includes KP [7], KdV [8] and 
Sawada-Kotera equations [9]. The KdV and KP equations have 
been used extensively as a model for one- and two-dimensional 
shallow water waves of long wavelength with weakly non-linear 
restoring forces (e.g. [10]) and ion-acoustic waves in plasmas (e.g. 
[11]), and Sawada-Kotera in some mathematical approaches to 
tsunami (e.g. [12]) 
  Grassmannian manifolds are known as the basics of Sato’s 
theory where the ߬-function was obtained from the derivation of 
the Sato’s equation (e.g. [13-14]). The manipulations of Schur 
functions and Young diagrams later produce the Plucker relations.  
In this article we show how the Plucker relations in Sato’s theory 
can be transformed into the Hirota bilinear form of KP, KdV [15], 
and Sawada-Kotera equations [16], [17] for their respective ߬-
functions, and thus verify this conceptual framework. 
 
 

2.0  THEORY AND METHOD 
 
2.1  Results Related to Hirota’s Direct/Bilinear Method 
 
To illustrate the statement mentioned in the introduction, we 
consider in the context of Hirota’s method, some results linked to 
nonlinear partial differential equations related to Kadomtsev-
Petviashvili (KP), Korteweg de Vries (KdV) and Sawada-Kotera 
equations respectively. 
 

a) The KP equation is given by 
 
 ሺ4ݑ௧ െ ௫ݑݑ12 െ ௫௫௫ሻ௫ݑ െ ௬௬ݑ3 ൌ 0.  (2.1) 
 
The logarithmic (or dependent variable) transformation, via 
Hirota’s method is given by 
 
ݑ  ൌ ሺlog ߬ሻ௫௫.    (2.2) 
 
Thus, the Hirota bilinear form of KP takes the form of 
 

 ൫4ܦ௫ܦ௧ െ ௫ܦ
ସ െ ௬ܦ3

ଶ൯ ߬ . ߬ ൌ 0.  (2.3) 
 

b) The KdV equation is given by 
 
௧ݑ  ൅ ௫ݑ ݑ6 ൅ ௫௫௫ݑ ൌ 0.   (2.4) 
 
The logarithmic transformation, via Hirota’s method is given by 
 
ݑ  ൌ 2ሺlog ߬ሻ௫௫.    (2.5) 
 
The Hirota bilinear form of KdV is then given by 
 
௧ܦ௫ሺܦ  ൅ ௫ܦ

ଷሻ ߬ ൉ ߬ ൌ 0.   (2.6) 
 

c) The fifth-order Sawada-Kotera equation can be written 
as 

 
௧ݑ  ൅ ௫ݑଶݑ45 ൅ 15ሺݑ௫ݑ௫௫ ൅ ሻݑ௫௫௫ݑ ൅ ௫௫௫௫௫ݑ ൌ 0.
      (2.7) 
 
The logarithmic transformation is the same as in (2.5), i.e. 
 
ݑ  ൌ 2ሺlog ߬ሻ௫௫.    
 
Thus, the Hirota bilinear form of Sawada-Kotera is of the form 
 
௧ܦ௫ሺܦ  ൅ ௫ܦ

ହሻ ߬ . ߬ ൌ 0.   (2.8) 
 
 
2.2  Sato’s Theory 
 
Let W be a pseudo-differential operator, 
 
ܹ ൌ 1 ൅ ଵ ߲ିଵݓ ൅ ଶ ߲ିଶݓ ൅ ଷ ߲ିଷݓ ൅  (2.9)  ,ڮ
 
where ݓ௝ (݆=1,2..., m, …) are functions of ݔ and ߲ି௡ is defined 
by  
 
 ߲ି௡ ൌ ቀ డ

డ௫
ቁ

ି௡
.    (2.10) 

 
The inverse operator ܹିଵ exists and can be written as 
 
ܹିଵ ൌ ଴ݒ ൅ ଵ ߲ିଵݒ ൅ ଶ ߲ିଶݒ ൅ ଷ ߲ିଷݒ ൅  (2.11)  ,ڮ
 
where 
଴ݒ  ൌ 1,    (2.12a) 
 
ଵݒ  ൌ െݓଵ,   (2.12b) 
 
ଶݒ  ൌ െݓଶ ൅ ଵݓ

ଶ,   (2.12c) 
 
ଷݒ ൌ െݓଷ ൅ ଶݓ ଵݓ2 െ ଵݓ ଵݓ

′ െ ଵݓ
ଷ,  (2.12d) 

 
We introduce the term ܪሺݔ;  ሻ asݐ
 

;ݔሺܪ ሻݐ ൌ

ۉ

ۈ
ۇ

݄଴
ሺଵሻ ݄଴

ሺଶሻ … ݄଴
ሺ௠ሻ

݄ଵ
ሺଵሻ ݄ଵ

ሺଶሻ … ݄ଵ
ሺ௠ሻ

݄ଶ
ሺଵሻ ݄ଶ

ሺଶሻ … ݄ଶ
ሺ௠ሻ

ڭ ڭ … ڭ ی

ۋ
ۊ

,  (2.13) 

 
where equation (2.13) is the denominator of the function 

௠ܹሺݔ;  .ሻݐ
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Let us consider the partial differential equation which depends on 
 ,as ݐ and ݔ

௠ܹሺݔ; ሻ߲௠݄଴ݐ
ሺ௝ሻሺݔ; ሻݐ ൌ ሺ߲௠ ൅ ;ݔଵሺݓ ሻ ߲௠ିଵݐ ൅ ڮ ൅ ;ݔ௠ሺݓ ሻሻ݄଴ݐ

ሺ௝ሻሺݔ; ሻݐ
ൌ 0 

      (2.14) 
where ݆ ൌ 1,2, … , ݉, and  

௠ܹሺݔ; ሻݐ ൌ

ተ
ተ

݄଴
ሺଵሻ … ݄଴

ሺ௠ሻ ߲ି௠

ڭ … ڭ ڭ
݄௠ିଵ

ሺଵሻ … ݄௠ିଵ
௠ ߲ିଵ

݄௠
ሺଵሻ … ݄௠

ሺ௠ሻ 1

ተ
ተ

ቮ
݄଴

ሺଵሻ … ݄଴
ሺ௠ሻ

ڭ … ڭ
݄௠ିଵ

ሺଵሻ … ݄௠ିଵ
ሺ௠ሻ

ቮ

. 

 
After differentiating (2.14) with respect to ݐ௡ and solving the 
remaining equation, we have 
 

௡ܤ ൌ ሺܹ ߲௡ܹିଵሻା,   (2.15) 
 
where ሺ ሻା denotes the differential part of the operator. Equation 
(2.15) is called the Sato equation. It is important to note that in the 
derivation of the Sato equation, we have assumed that the 
solutions take the form ௠ܹሺݔ;  ሻ and this will eventually yield theݐ
߬-function [4].   
 
Let us define the ߬-function as the determinant of ܪሺݔ;  ሻ, theݐ
denominator of the function ௠ܹሺݔ;  ,ሻݐ
 

߬ሺݔ; ሻݐ ൌ ተ
ተ

݄଴
ሺଵሻ … ݄଴

ሺ௠ሻ

݄ଵ
ሺଵሻ … ݄ଵ

ሺ௠ሻ

ڭ … ڭ
݄௠ିଵ

ሺଵሻ … ݄௠ିଵ
ሺ௠ሻ

ተ
ተ    

  
 

 ൌ ተ
ተ

ۉ

ۈ
ۇ

1 ଵ݌ ଶ݌ ଷ݌ …
0 1 ଵ݌ ଶ݌ …
0 0 1 ଵ݌ …
0 0 0 1 …
ڭ ڭ ڭ ڭ یڰ

ۋ
ۊ

ۉ

ۈ
ۇ

଴ߦ
ሺଵሻ ଴ߦ

ሺଶሻ … ଴ߦ
ሺ௠ሻ

ଵߦ
ሺଵሻ ଵߦ

ሺଶሻ … ଵߦ
ሺ௠ሻ

ଶߦ
ሺଵሻ ଶߦ

ሺଶሻ … ଶߦ
ሺ௠ሻ

ڭ ڭ … ڭ ی

ۋ
ۊ

ተ
ተ

   
 
 ൌ ଴ߌ൫ ݐ݁݀

௧ ݁ఎሺ௧,ٿሻ ߌ൯,   (2.16) 
 
where ߌ଴

௧ is a ݉ ൈ ∞ matrix defined by 
 

଴ߌ 
௧ ൌ ൮

1 0 0 …
0 1 0 …
0 0 1 …
ڭ ڭ ڭ ڰ

൲.   (2.17) 

 
By using the expansion theorem on the determinant of product of 
matrices, ߬ሺݐሻ in equation (2.16) can be expanded as a sum of 
products of determinants, 
 

 ߬ሺݐሻ ൌ

∑ ተ

௟భ݌ ௟మ݌ … ௟೘݌
௟భିଵ݌ ௟మିଵ݌ … ௟೘ିଵ݌

ڭ ڭ … ڭ
௟భି௠ାଵ݌ ௟మି௠ାଵ݌ … ௟೘ି௠ାଵ݌

ተ ൈ଴ஸ௟భழ௟మழڮழ௟೘

ተ
ተ
௟భߦ

ሺଵሻ ௟భߦ

ሺଶሻ … ௟భߦ

ሺ௠ሻ

௟మߦ

ሺଵሻ ௟మߦ

ሺଶሻ … ௟మߦ

ሺ௠ሻ

ڭ ڭ … ڭ
௟೘ߦ

ሺଵሻ ௟೘ߦ

ሺଶሻ … ௟೘ߦ

ሺ௠ሻ
ተ
ተ

,    (2.18) 

where the summation comprised of all possible combinations of m 
nonnegative numbers. It is also known that the determinants, 
composed of ݌௝’s in equation (2.16), are the Schur functions [5].  
We may denote this by 
 

ܵ௒ሺݐሻ ൌ ተ

௟భ݌ ௟మ݌ … ௟೘݌
௟భିଵ݌ ௟మିଵ݌ … ௟೘ିଵ݌

ڭ ڭ … ڭ
௟భି௠ାଵ݌ ௟మି௠ାଵ݌ … ௟೘ି௠ାଵ݌

ተ,  (2.19) 

 
and 
 

௒ߦ  ൌ
ተ
ተ
௟భߦ

ሺଵሻ ௟భߦ

ሺଶሻ … ௟భߦ

ሺ௠ሻ

௟మߦ

ሺଵሻ ௟మߦ

ሺଶሻ … ௟మߦ

ሺ௠ሻ

ڭ ڭ … ڭ
௟೘ߦ

ሺଵሻ ௟೘ߦ

ሺଶሻ … ௟೘ߦ

ሺ௠ሻ
ተ
ተ
,   (2.20) 

 
where the suffix ܻ stands for the Young diagram that corresponds 
to the set of numbers ሺ݈ଵ, ݈ଶ, … , ݈௠ሻ. The Young diagram is 
introduced to classify the irreducible representation of the 
symmetric group (e.g. [18-19]). It is noted that, although different 
sets of numbers may correspond to a certain ܻ if ݉ is not fixed; 
the RHS of equation (2.19) gives the same function for those sets. 
 
Hence, equation (2.18) can be written as 
 
 ߬ሺݐሻ ൌ ∑  ܵ௒ሺݐሻߦ௒,׎ஸ௒ஸ௠    (2.21) 
 
where the summation includes all the Young diagrams which have 
less than ݉ ൅ 1 rows. For the coefficients, ߦ௒’s in equation (2.20), 
there exist constraints that are called the Plucker relations which 
 .௒’s  must always satisfy. This is defined in the next sectionߦ
 
 

3.0  RESULTS AND DISCUSSIONS 
 
First, let us define the Plucker relations in the form of 
 
 ∑ ሺെ1ሻఋ௠ାଵ

௜ୀଵ ௒మߦ ௒భߦ ൌ 0,   (3.1) 
 
ߜ  ൌ ݉ ൅ ݅ െ ݆,    (3.2) 
 
where ଵܻ is the Young diagram corresponding to 
(݇ଵ, … , ௝݇, ݈௜, ௝݇ାଵ, … , ݇௠ିଵሻ and ଶܻ to ሺ݈ଵ, … , ݈௜ିଵ, ݈௜ାଵ, … , ݈௠ାଵሻ, 
and where ௝݇ ൏ ݈௜ ൏ ௝݇ାଵ is satisfied (refer [4], [18-19]).  As 
mentioned before, the coefficients ߦ௒’s will always satisfy certain 
constraints called the Plucker relations.  Therefore, for all ݇௩ and 
݈௩, equation (3.1) will give an infinite number of constraints on 
the ߦ௒’s which are the Plucker relations. 
  The following subsections will show how the Plucker 
relations can be transformed into the Hirota bilinear form of KP, 
KdV and Sawada-Kotera equations for their respective ߬-
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functions, and thus demonstrates the above-mentioned conceptual 
framework of Hirota-Sato formalism. 
 
3.1  KP Equation 
 
  We now wish to show that the ߬-function which satisfies the 
KP equation is of the same form as the Plucker relations, thus 
verifying the framework. 
 
From equation (2.16), the definition of ߬ሺݐሻ, we may write 
 ߬ሺݐ ൅ ሻݏ ൌ ݐ݁݀ ቀߌ଴

௧ ݁ఎሺ௧,ٿሻ ߌሺݏሻቁ.   (3.3) 
We denote that 
 
ሻݏሺߌ  ൌ ݁ఎሺ௦,ٿሻ (3.4)    ,ߌ 
 
hence, equation (3.3) can be expressed as 
 
 ߬ሺݐ ൅ ሻݏ ൌ ∑ ܵ௒ሺݐሻߦ௒ሺݏሻ,௒    (3.5) 
 
where ߦ௒ሺݏሻ is in the form of equation (2.20) and satisfies all the 
Plucker relations with the parameters ݏ ൌ ሺݏଵ, ,ଶݏ ,ଷݏ … ሻ. Now, 
applying ܵ௒ሺ ෨߲௧ሻ to (3.5) and using the following orthogonality 
condition, we have 
 
 ܵ௒൫ ෨߲௧൯ ߬ሺݐ ൅ ሻݏ ൌ ܵ௒൫ ෨߲௧൯ ܵ௒ሺݐሻ ߦ௒ሺݏሻ  (3.6) 
 
 ܵ௒൫ ෨߲௧൯ ߬ሺݐ ൅ ሻݏ ൌ  ሻ.   (3.7)ݏ௒ሺߦ
 
We let ݐ ൌ 0, 
 
ሻݏ௒ሺߦ  ൌ ܵ௒൫ ෨߲௧൯ ߬ሺݐ ൅   ሻห௧ୀ଴ݏ
 
 ൌ ܵ௒൫ ෨߲௦൯ ߬ሺݐ ൅   ሻห௧ୀ଴ݏ
 
 ൌ ܵ௒൫ ෨߲௦൯ ߬ሺݏሻ.    (3.8) 
 
Substitute (3.8) into (3.1) yields 
 
 ∑ሺെ1ሻఋ൛ܵ௒భ൫ ෨߲௧൯߬ሺݐሻൟ൛ܵ௒మ൫ ෨߲௧൯߬ሺݐሻൟ ൌ 0, (3.9) 
 
Expanding equation (3.9) we have, 
 
for ݉ ൌ 3, ݆ ൌ 1, ߜ ൌ 3, ݅ ൌ 1, 
 

ଵܻ corresponding to ሺ݇ଵ, ݈ଵ, ݇ଶሻ whiles ଶܻ corresponding to 
ሺ݈ଶ, ݈ଷ, ݈ସሻ. 
 
For ݉ ൌ 3, ݆ ൌ 1, ߜ ൌ 4, ݅ ൌ 2, 
 

ଵܻ corresponding to ሺ݇ଵ, ݈ଶ, ݇ଶሻ whiles ଶܻ corresponding to 
ሺ݈ଵ, ݈ଷ, ݈ସሻ. 
 
For ݉ ൌ 3, ݆ ൌ 1, ߜ ൌ 5, ݅ ൌ 3, 
 

ଵܻ corresponding to ሺ݇ଵ, ݈ଷ, ݇ଶሻ whiles ଶܻ corresponding to 
ሺ݈ଵ, ݈ଶ, ݈ସሻ. 
 
For ݉ ൌ 3, ݆ ൌ 1, ߜ ൌ 6, ݅ ൌ 4, 
 

ଵܻ corresponding to ሺ݇ଵ, ݈ସ, ݇ଶሻ whiles ଶܻ corresponding to 
ሺ݈ଵ, ݈ଶ, ݈ଷሻ. 
 

Therefore, the corresponding Young diagram of ଵܻ and ଶܻ of 
equation (3.9) yields, 
 
 െ ሺ݇ଵ, ݈ଵ, ݇ଶሻሺ݈ଶ, ݈ଷ, ݈ସሻ  ൅  ሺ݇ଵ, ݈ଶ, ݇ଶሻሺ݈ଵ, ݈ଷ, ݈ସሻ  െ
 ሺ݇ଵ, ݈ଷ, ݇ଶሻሺ݈ଵ, ݈ଶ, ݈ସሻ ൅  ሺ݇ଵ, ݈ସ, ݇ଶሻሺ݈ଵ, ݈ଶ, ݈ଷሻ ൌ  0 
      (3.10) 
 
We let ሺ݇ଵ, ݇ଶ, ݈ଵ, ݈ଶ, ݈ଷ, ݈ସሻ ൌ ሺ0, 1, 2, 3, 4, 0ሻ, 
 

െ ሺ0 1 2ሻሺ0 3 4ሻ  ൅ ሺ0 1 3ሻሺ0 2 4ሻ െ ሺ0 1 4ሻሺ0 2 3ሻ
൅  ሺ0 1 0ሻሺ2 3 4ሻ  ൌ 0 

      (3.11) 
 
where we have construed equation (3.11) in the fashion of 
equation (3.9), and thus we have the Young diagram in the form 
of 
 
 
൫׎ܵ  ෨߲௧൯ ߬ሺݐሻ  ܵ      ൫ ෨߲௧൯ ߬ሺݐሻ –  ܵ   ൫ ෨߲௧൯ ߬ሺݐሻܵ      ൫ ෨߲௧൯ ߬ሺݐሻ 
 
 
 ൅ ܵ     ൫ ෨߲௧൯ ߬ሺݐሻܵ     ൫ ෨߲௧൯ ߬ሺݐሻ ൌ 0  (3.12) 
 
where 
 
 ෨߲௧ ൌ ቀ డ

డ௧భ
, ଵ

ଶ
డ

డ௧మ
, ଵ

ଷ
డ

డ௧య
, ڮ ቁ. 

 
By using the definition of ܵ௒ሺݐሻ in (2.19), we obtain the value of  
 
׎ܵ ൌ 1, ܵ ൌ ,ଵݐ ܵ    ൌ ௧భ

మ

ଶ
൅ ,ଶݐ ܵ  ൌ ௧భ

మ

ଶ
െ ,ଶݐ ܵ     ൌ ௧భ

య

ଷ
െ  ଷ  andݐ

 
ܵ     ൌ ௧భ

ర

ଵଶ
െ ଷݐଵݐ ൅ ଶݐ

ଶ. 
 
Substituting the value of ܵ௒ into (3.12), yields 
 

߬ሺݐሻ ቆ
1

12
߲ସ

ଵݐ߲
ସ ൅

1
2

1
2

߲ଶ

ଶݐ߲
ଶ െ

1
3

߲ଶ

ଷݐଵ߲ݐ߲
ቇ  ߬ሺݐሻ 

െ
߲

ଵݐ߲
 ߬ሺݐሻ ቆ

1
3

߲ଷ

ଵݐ߲
ଷ െ

1
3

߲
ଷݐ߲

ቇ  ߬ሺݐሻ 

 
 ൅ ቀଵ

ଶ
డమ

డ௧భ
మ ൅ ଵ

ଶ
డ

డ௧మ
ቁ  ߬ሺݐሻ ቀଵ

ଶ
డమ

డ௧భ
మ ൅ ଵ

ଶ
డ

డ௧మ
ቁ  ߬ሺݐሻ ൌ 0. 

 
If we simplify further the above equation, then we have 
 

߬ሺݐሻ ቆ
1

12
߲ସ

ଵݐ߲
ସ ൅

1
4

߲ଶ

ଶݐ߲
ଶ െ

1
3

߲ଶ

ଷݐଵ߲ݐ߲
ቇ  ߬ሺݐሻ 

െ
߲

ଵݐ߲
 ߬ሺݐሻ

1
3 ቆ

߲ଷ

ଵݐ߲
ଷ െ

߲
ଷݐ߲

ቇ  ߬ሺݐሻ 

 ൅ ቀଵ
ଶ

డమ

డ௧భ
మ ൅ ଵ

ଶ
డ

డ௧మ
ቁ  ߬ሺݐሻ ቀଵ

ଶ
డమ

డ௧భ
మ ൅ ଵ

ଶ
డ

డ௧మ
ቁ  ߬ሺݐሻ ൌ 0. 

      (3.13) 
 
We multiply (3.13) by 24 (so as to obtain the standard form of the 
KP equation), hence we have 
  
2߬߬௧భ

ర ൅ 6߬߬௧మ
మ െ 8߬߬௧భ௧య െ 8߬௧భ߬௧భ

య ൅ 8߬߬௧భ௧య  
൅6߬௧భ

మ
ଶ െ 6߬௧భ

మ߬௧మ ൅ 6߬௧భ
మ߬௧మ െ 6߬௧మ

ଶ ൌ 0  . (3.14) 
 
By applying the ܦ-operator properties, we then obtained the KP 
equation as 
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൫4ܦ௧భܦ௧య െ ௧భܦ
ସ െ ௧మܦ3

ଶ ൯ ߬ ·  ߬ ൌ 0.   (3.15) 
 
3.2  KdV Equation 
 
In obtaining the bilinear form of KdV equation, we consider only 
 ଷ in the formulation of KP equation, since KdV equationݐ ଵ andݐ
is a one dimensional equation of KP. By substituting the value of 
ܵ௒ into (3.12), this yields 
 ߬ሺݐሻ ቀ ଵ

ଵଶ
డర

డ௧భ
ర െ ଵ

ଷ
డమ

డ௧భడ௧య
ቁ  ߬ሺݐሻ െ డ

డ௧భ
 ߬ሺݐሻ ଵ

ଷ
ቀ డయ

డ௧భ
య െ

 ൌ0.  (3.16)ݐ߬ 12ݐ2߲߲ݐ߬ 12ݐ൅ 14߲2߲ݐ߬ 3ݐ߲߲

 
We multiply (3.16) by 24, then we have 
 
2߬߬௧భ

ర െ 8߬߬௧భ௧య െ 8߬௧భ߬௧భ
య ൅ 8߬௧భ߬௧య ൅ 6߬௧భ

మ
ଶ ൌ 0 . (3.17)

  
 
Rearranging the above equation, we obtain 
 
2߬߬௧భ

ర െ 8߬௧భ߬௧భ
య ൅ 6߬௧భ

మ
ଶ ൅ 4൫2߬௧భ߬௧య െ 2߬߬௧భ௧య൯ ൌ 0. (3.18) 

 
Expressing in the ܦ-operator terms, we then obtain KdV equation 
 
 ൫ܦ௧భ

ସ െ · ߬ ௧య൯ܦ௧భܦ4  ߬ ൌ 0.   (3.19) 
 
3.3  Sawada-Kotera Equation 
 
In obtaining the bilinear form of Sawada-Kotera equation we 
consider only ݐଵ and ݐହ, since the Sawada- Kotera equation is in 
the fifth order form of KdV equation. 
 
First, we let ሺ݇ଵ, ݇ଶ, ݈ଵ, ݈ଶ, ݈ଷ, ݈ସሻ ൌ ሺ0,1, 2, 3, 1, 5ሻ, and substitute 
this into equation (3.10), 
 
 െ ሺ0 1 2ሻሺ1 3 5ሻ  ൅ ሺ0 1 3ሻሺ1 2 5ሻ െ  ሺ0 1 4ሻሺ1 2 4ሻ ൅
 ሺ0 1 5ሻሺ1 2 3ሻ െ ሺ0 1 1ሻሺ2 3 5ሻ ൌ 0   (3.20) 
 
where if we interpret equation (3.20) in the structure of equation 
(3.9), then we obtain the form of the Young diagram as 
 
൫׎ܵ ෨߲௧൯ ߬ሺݐሻ ܵ         ൫ ෨߲௧൯ ߬ሺݐሻ െ  ܵ    ൫ ෨߲௧൯ ߬ሺݐሻ ܵ         ൫ ෨߲௧൯ ߬ሺݐሻ 
 
  
൅ܵ      ൫ ෨߲௧൯ ߬ሺݐሻ ܵ      ൫ ෨߲௧൯ ߬ሺݐሻ െ  ܵ         ൫ ෨߲௧൯ ߬ሺݐሻ ܵ     ൫ ෨߲௧൯ ߬ሺݐሻ ൌ
0.  
      
      (3.21) 
 
By using the definition of ܵ௒ሺݐሻ in (2.19), we then obtain the 
following results 
 
׎ܵ ൌ 1, ܵ ൌ ,ଵݐ ܵ       ൌ ௧భ

య

଺
,    ܵ   ൌ ௧భ

య

଺
,   ܵ        ൌ ௧భ

ఱ

ଶ଴
൅ ,ହݐ ܵ    = 

ଵ
ଶ

ଵݐ
ଶ, 

 
ܵ        ൌ ௧భ

ల

ସହ
൅ ,ହݐଵݐ ܵ      ൌ ଵ

଼
ଵݐ

ସ. 
 
 
 
Substituting the value of ܵ௒ into (3.21), yields 
 

2 ߬ሺݐሻ ቆ
߲଺

ଵݐ߲
଺ ൅

9
5

߲ଶ

ହݐଵ߲ݐ߲
ቇ  ߬ሺݐሻ 

െ
߲

ଵݐ߲
 ߬ሺݐሻ ቆ12

߲ହ

ଵݐ߲
ହ ൅

18
5

߲
ହݐ߲

ቇ  ߬ሺݐሻ 

 

൅ 30 ቆ
߲ଶ

ଵݐ߲
ଶቇ  ߬ሺݐሻ ቆ

߲ସ

ଵݐ߲
ସቇ  ߬ሺݐሻ 

െ 20 ቆ
߲ଷ

ଵݐ߲
ଷቇ  ߬ሺݐሻ ቆ

߲ଷ

ଵݐ߲
ଷቇ  ߬ሺݐሻ ൌ 0. 

If we rearrange the above equation, then we have 

2 ߬ሺݐሻ ቆ
߲଺

ଵݐ߲
଺ቇ  ߬ሺݐሻ െ 12 ൬

߲
ଵݐ߲

൰  ߬ሺݐሻ ቆ
߲ହ

ଵݐ߲
ହቇ  ߬ሺݐሻ 

൅30 ቆ
߲ଶ

ଵݐ߲
ଶቇ  ߬ሺݐሻ ቆ

߲ସ

ଵݐ߲
ସቇ  ߬ሺݐሻ െ 20 ቆ

߲ଷ

ଵݐ߲
ଷቇ  ߬ሺݐሻ ቆ

߲ଷ

ଵݐ߲
ଷቇ  ߬ሺݐሻ 

൅ ଵ଼
ହ

߬ሺݐሻ ቀ డమ

డ௧భడ௧ఱ
ቁ  ߬ሺݐሻ െ ଵ଼

ହ
ቀ డ

డ௧భ
ቁ ߬ሺݐሻ ቀ డ

డ௧ఱ
ቁ  ߬ሺݐሻ ൌ 0. 

 
      (3.22) 
Equivalently, we have 
  
 2߬߬௧భ

ల െ 12߬௧భ߬௧భ
ఱ ൅ 30߬௧భ

మ߬௧భ
ర െ 20߬௧భ

య߬௧భ
య ൅

18൫߬߬௧భ௧ఱ െ ߬௧భ߬௧ఱ൯ ൌ 0    (3.23) 
 
By applying the ܦ-operator properties, we then obtain the 
Sawada-Kotera equation 
 
 ൫ܦ௧భ

଺ ൅ · ߬ ௧ఱ൯ܦ௧భܦ  ߬ ൌ 0.   (3.24) 
 
 

4.0  CONCLUSION 
 
The ߬-function has acted as a key function to express the solutions 
of the Sato equation and this is generated from Sato theory. From 
the nonlinear waves equation being considered, i.e. the KP, KdV 
and Sawada-Kotera equations, it is shown that the Plucker 
relations can be represented by the coefficients of ߬-function. We 
then deduce that the ߬-function in the bilinear forms of Hirota 
scheme are closely associated to the Plucker relations in Sato 
theory. Therefore, we may conclude that the ߬-function is 
essential in indicating this relation between Hirota’s direct method 
and the Plucker relations, and Sato equation in Sato’s theory. The 
above deliberations showed that Hirota’s method is linked to Sato 
theory, and the Hirota-Sato formalism brings to light that the ߬-
function, which underlies the analytic form of soliton solutions of 
the related nonlinear waves equations does act as the important 
function to express the solutions of Sato equation. The 
Kadomtsev-Petviashvili (KP), Korteweg-de Vries (KdV) and 
Sawada-Kotera equations have been used to corroborate this 
theoretical framework. 
 
 

Acknowledgments 
 
This research is partially funded by MOHE FRGS Vote No. 
78675. Aslinda is thankful to Universiti Teknologi Malaysia for 
the Zamalah/scholarship. 
 
 
References 
 
[1] Ablowitz, M., and Clarkson, P. 1991. Solitons, Nonlinear Evolution 

Equations and Inverse Scattering. Cambridge: Cambridge University 
Press. 



6                                Noor Aslinda Ali & Zainal Abdul Aziz / Jurnal Teknologi (Sciences & Engineering) 61:1 (2013) 1–6 

 

 

[2] Drazin, P. G., and Johnson, R. S. 1996. Solitons: An Introduction. 
Cambridge: Cambridge University Press. 

[3] Hirota, R. 2004. The Direct Method in Soliton Theory. New York: 
Cambridge University Press. 

[4] Ohta, Y., Satsuma, J., Takashi, D., and Tokihiro, T. 1988. An Elementary 
Introduction to Sato Theory. Progress of Theoretical Physics 
Supplement. 94: 210–241.  

[5] Miwa, T., Date, E., and Jimbo, M. 2000. Solitons: Differential Equations, 
Symmetries and Infinite Dimensional Algebras. Cambridge: Cambridge 
University Press. 

[6] Hirota, R. 1971. Exact Solution of the Korteweg-de Vries Equation for 
Multiple Collisions of Solitons. Phys. Rev. Lett. 27: 1192–1194. 

[7] Kadomtsev, B. B., and Petviashvili, V. I. 1970. On the Stability of 
Solitary Waves in Weakly Dispersive Media. Sov. Phys. Dokl. 15: 539–
541. 

[8] Korteweg, D. J., and de Vries, G. 1895. On the Change of Form of Long 
Waves Advancing in a Rectangular Canal, and on a New Type of Long 
Stationary Waves. Philosophical Magazine. 39: 422–443. 

[9] Sawada, K., and Kotera, T. A. 1974. method for finding N-solitons of the 
KdV equation and KdV like equation. Prog. Theor Phys. 51: 1355–1367. 

[10] Segur, H., and Finkel, A. 1985. An Analytical Model of Periodic Waves 
in Shallow Water. Stud. Appl. Math. 73: 183–220. 

[11] Infeld, E., and Rowlands, G. 2001. Nonlinear Waves, Solitons and 
Chaos. Cambridge: Cambridge University Press. 

[12] Helal, M. A., and Mehanna, M. S. 2008. Tsunamis from Nature to 
Physics. Chaos, Solitons and Fractals. 36:787–796. 

[13] Kolhatkar, R. 2004. Grassmann Varieties. McGill University: Master 
Thesis. 

[14] Mikhailov, A. V. 2009. Integrability. Lecture Notes in Physics 767. 
Berlin: Springer-Verlag.   

[15] Roelofs, G. H. M., and Martini R. 1990. Prolongation Structure of the 
KdV Equation in the Bilinear Form of Hirota. Jour. Phys. A: Math. Gen. 
23: 1877–1884. 

[16] Krishnan, E. V. 1986. On Sawada-Kotera Equations. IL Nuovo Cimento, 
92: 23–26. 

[17] Changfu, L., and Zhengde, D. 2008. Exact Soliton Solutions for the fifth-
order Sawada-Kotera Equation. Applied Mathematics and Computation. 
206: 272–275.  

[18] Ledermann, W. 1977. Introduction to Group Characters. New York: 
Cambridge University Press. 

[19] Cvitanovic, P. 2008. Group Theory: Birdtracks, Lie’s, and Exceptional 
Groups. Princeton: Princeton University Press.   

 

 
 




